Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength
Abstract
1. Introduction
2. Theoretical Analysis and Structure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brongersma, M.L.; Shalaev, M.V. The case for plasmonics. Science 2010, 328, 440–441. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Xu, H.; Stief, F.; Zn, N.; Yu, M. Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits. Opt. Express 2011, 19, 20233–20243. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.L.; Righini, R.M. Quidant Plasmon nano-optical tweezers. Nat. Photonics 2011, 5, 349–356. [Google Scholar] [CrossRef]
- Epstein, I.; Arie, A. Arbitrary bending plasmonic light waves. Phys. Rev. Lett. 2014, 112, 23903. [Google Scholar] [CrossRef] [PubMed]
- Jianhua, H.; Wei, W.; Xuan, X.; Jun, T.C.; Fan, G.; Jing, C.; Shuai, Z. Ultraviolet ultranarrow second-order magnetic plasmon induced reflection of lifted 3D metamaterials for slow light and optical sensing. Results Phys. 2023, 47, 2211–3797. [Google Scholar] [CrossRef]
- Ren, Y.Q.; Wang, X.X.; Di, X.J.; Jia, T.X.; Chen, T.S.; Zhang, L.P.; Yang, H.; Qi, Y.; Tang, C. Theoretical study on fabrication of sub-wavelength structures via combining low-order guided mode interference lithography with sample rotation. J. Opt. 2023, 25, 15001. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Tavousi, A.; Mansouri-Birjandi, M.A. Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl. Opt. 2018, 57, 7798–7804. [Google Scholar] [CrossRef]
- Ferrari, E. Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors 2023, 13, 411. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. High sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity with round-corners. IEEE Sens. J. 2016, 16, 3041–3046. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuators B Chem. 2017, 249, 168–176. [Google Scholar] [CrossRef]
- Min, C.; Shen, Z.; Shen, J.; Zhang, Y.; Fang, H.; Yuan, G. Focused plasmonic trapping of metallic particles. Nat. Commun. 2013, 4, 2891. [Google Scholar] [CrossRef]
- Zhu, X.; Schülzgen, A.; Wei, H.; Kieu, K.; Peyghambarian, N. White light bessel-like beams generated by miniature all-fiber device. Opt. Express 2011, 19, 11365–11374. [Google Scholar] [CrossRef]
- Baumgartl, J.; Mazilu, M.; Dholakia, K. Optically mediated particle clearing using airy wavepackets. Nat. Photonics 2008, 2, 675–678. [Google Scholar] [CrossRef]
- Arlt, J.; Garces-Chavez, V.; Sibbett, W.; Dholakia, K. Optical micromanipulation using a bessel light beam. Opt. Commun. 2001, 197, 239–245. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Wang, S.; Zhu, S.; Zhang, X. Broad band focusing and demultiplexing of in-plane propagating surface plasmons. Nano Lett. 2011, 11, 4357–4361. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, S.; Zhao, S.; Xia, D.; Li, L. Generation of the Airy beam based on the truncated asymptotic expression of the Airy function using a transmissive metasurface. Opt. Express 2022, 30, 43842–43851. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, S.N. Plasmonic airy beam generated by in-plane diffraction. Phys. Rev. Lett. 2011, 107, 126804. [Google Scholar] [CrossRef]
- Guan, C.; Ding, M.; Shi, J.; Hua, P.; Wang, P.; Yuan, L.; Brambilla, G. Experimental observation and analysis of all-fiber plasmonic double airy beams. Opt. Express 2014, 22, 18365–18371. [Google Scholar] [CrossRef]
- Epstein, I.; Lilach, Y.; Arie, A. Shaping plasmonic light beams with near-field plasmonic holograms. J. Opt. Soc. Am. B 2014, 31, 1642–1647. [Google Scholar] [CrossRef]
- Epstein, I.; Arie, A. Dynamic generation of plasmonic bottle-beams with controlled shape. Opt. Lett. 2014, 39, 3165–3168. [Google Scholar] [CrossRef]
- Libster-Hershko, A.; Epstein, I.; Arie, A. Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams. Phys. Rev. Lett. 2014, 113, 123902. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.M.; Zhu, S.N. Collimated plasmon beam: Nondiffracting versus linearly focused. Phys. Rev. Lett. 2013, 110, 46807. [Google Scholar] [CrossRef]
- Bekenstein, R.; Liu, H.; Zhu, S.; Segev, M. Wavefront shaping through emulated curved space in waveguide settings. Nat. Commun. 2016, 7, 10747. [Google Scholar] [CrossRef]
- Chong, S.; Hui, L.; Yi, W.; Zhu, S.N.; Genov, D.A. Trapping light by mimicking gravitational lensing. Nat. Photonics 2013, 7, 902–906. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.; Yun, H.; Lee, G.Y.; Lee, B. Interferometric control of plasmonic resonator based on polarization-sensitive excitation of surface plasmon polaritons. Opt. Express 2016, 24, 21861–21868. [Google Scholar] [CrossRef]
- Lee, G.Y.; Lee, S.Y.; Yun, H.; Park, H.; Kim, J.; Lee, K.; Lee, B. Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits. Sci. Rep. 2016, 6, 33317. [Google Scholar] [CrossRef]
- Li, J.; Peng, T.; Wei, L.; Tao, H.; Wang, J.; Wang, Y.; Lin, F.; Fang, Z.; Zhu, X. Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation. Appl. Phys. Lett. 2015, 106, 161106. [Google Scholar] [CrossRef]
- Avayu, O.; Epstein, I.; Eizner, E.; Ellenbogen, T. Polarization controlled coupling and shaping of surface plasmon polaritons by nanoantenna arrays. Opt. Lett. 2015, 40, 1520–1523. [Google Scholar] [CrossRef]
- Chen, L.; Ren, T.; Zhao, Y. Polarization-independent wavefront manipulation of surface plasmons with plasmonic metasurfaces. Adv. Opt. Mater. 2020, 8, 2000868. [Google Scholar] [CrossRef]
- Rechcińska, K.; Król, M.; Mazur, R.; Morawiak, P.; Mirek, R.; Łempicka, K.; Bardyszewski, W.; Matuszewski, M.; Kula, P.; Piecek, W.; et al. Engineering spin-orbit synthetic hamiltonians in liquid-crystal optical cavities. Science 2019, 366, 727–730. [Google Scholar] [CrossRef]
- Zhu, W.; Zheng, H.; Zhong, Y.; Yu, J.; Chen, Z. Wave-vector-varying pancharatnam-berry phase photonic spin hall effect. Phys. Rev. Lett. 2021, 126, 83901. [Google Scholar] [CrossRef]
- Jia, W.; Gao, C.; Zhao, Y.; Li, L.; Wen, S.; Wang, S.; Bao, C.; Jiang, C.; Yang, C.; Yang, Y. Intracavity Spatiotemporal Metasurfaces. Adv. Photonics 2023, 5, 26002. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Ke, J.C.; Liang, J.C.; Dai, J.Y.; Cheng, Q.; Cui, T.J. Manipulation of Arbitrary Polarizations and Phases Based on Metasurfaces. Adv. Opt. Mater. 2023, 11, 2202790. [Google Scholar] [CrossRef]
- Valynets, N.I.; Paddubskaya, A.G.; Sysoev, V.I.; Gorodetskiy, D.V.; Bulusheva, L.G.; Okotrub, A.V. Fluorinated graphene grating metasurface for terahertz dark state excitation. Nanotechnology 2023, 34, 185702. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Liu, W.; Li, Z.; Cheng, H.; Tian, J.; Chen, S. Multi-band on-chip photonic spin hall effect and selective excitation of whispering gallery modes with metasurface-integrated microcavity. Opt. Lett. 2021, 46, 3528–3531. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Zhao, M.; Wang, J.; Zi, J. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics 2020, 14, 623–628. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Yan, S.; Xu, X.; Zhu, S. Generation and conversion dynamics of dual bessel beams with a photonic spin-dependent dielectric metasurface. Phys. Rev. Appl. 2021, 15, 14059. [Google Scholar] [CrossRef]
- Chen, C.; Gao, S.; Xiao, X.; Ye, X.; Li, T. High efficient metasurface quarter-wave plate with wavefront engineering. Adv. Photonics Res. 2020, 2, 2000154. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Kan, Q.; Ye, J.; Feng, S.; Sun, W.; Han, P.; Qu, S.; Zhang, Y. Spin-selected focusing and imaging based on metasurface lens. Opt. Express 2015, 23, 26434. [Google Scholar] [CrossRef]
- Xu, H.F.; Zhang, R.; Sheng, Z.Q.; Qu, J. Focus shaping of partially coherent radially polarized vortex beam with tunable topological charge. Opt. Express 2019, 27, 23959–23969. [Google Scholar] [CrossRef]
- Chen, M.; Gao, W.; Liu, H.; Teng, C.; Deng, S.; Deng, H.; Yuan, L. Polarization controllable generation of flat superimposed OAM states based on metasurface. Opt. Express 2019, 27, 20133–20144. [Google Scholar] [CrossRef] [PubMed]
- Sontag, A.; Noyan, M.A.; Kikkawa, J.M. High purity orbital angular momentum of light. Opt. Express 2022, 30, 43513–43521. [Google Scholar] [CrossRef] [PubMed]
- An, X.Q.; Song, H.S.; Zeng, X.Y.; Gu, M.N.; Jiang, Z.S.; He, C.W.; Liu, G.Y.; Cheng, C.F.; Zhang, Y.Q. Arbitrary superposition of plasmonic orbital angular momentum states with nanostructures. Opt. Lett. 2022, 47, 2032–2035. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, Z.; Zhang, Y.; Cheng, H.; Tian, J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 2018, 6, 1800104. [Google Scholar] [CrossRef]
- Tian, K.; Wang, Z. Propagation properties of finite Airy beams on curved surfaces. Opt. Express 2022, 30, 5274–5282. [Google Scholar] [CrossRef]
- Zhang, S.; Huo, P.; Wang, Y.; Li, M.; Zhang, C.; Xu, T. Generation of achromatic auto-focusing airy beam for visible light by an all-dielectric metasurface. J. Appl. Phys. 2022, 131, 43104. [Google Scholar] [CrossRef]
- Li, T.; Li, Z.; Chen, S.; Zhou, L.; Zhang, N.; Wei, X.; Song, G.; Gan, Q.; Zu, Y. Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization. Appl. Phys. Lett. 2019, 114, 21107. [Google Scholar] [CrossRef]
- Gao, Y.J.; Xiong, X.; Wang, Z.; Chen, F.; Wang, M. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation. Phys. Rev. X 2020, 10, 31035. [Google Scholar] [CrossRef]
- Li, H.; Hao, W.; Yin, X.; Chen, S.; Chen, L. Broadband generation of airy beams with hyperbolic metamaterials. Adv. Opt. Mater. 2019, 7, 1900493. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Li, Z.; Cheng, H.; Tian, J. Metasurface-Empowered Optical Multiplexing and Multifunction. Adv. Mater. 2020, 32, 1805912. [Google Scholar] [CrossRef]
- You, O.; Bai, B.; Wu, X.; Zhu, Z.; Wang, Q. A simple method for generating unidirectional surface plasmon polariton beams with arbitrary profiles. Opt. Lett. 2015, 40, 5486–5489. [Google Scholar] [CrossRef]
- Wang, W.P.; Dong, H.; Shi, Z.Y.; Leng, Y.X.; Li, R.X.; Xu, Z.Z. Collimated particle acceleration by vortex laser-induced self-structured “plasma lens”. Appl. Phys. Lett. 2022, 121, 214102. [Google Scholar] [CrossRef]
- Zhang, F.; Zeng, Q.; Pu, M.; Wang, Y.; Guo, Y.; Li, X.; Ma, X.; Luo, X. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces. Nanophotonics 2020, 9, 2829–2837. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, Y.; Li, X.; Pu, M.; Gao, P.; Jin, J.J.; Ma, X.; Luo, X. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface. Adv. Opt. Mater. 2019, 7, 1900503. [Google Scholar] [CrossRef]
- Fan, Q.; Zhu, W.; Liang, Y.; Huo, P.; Zhang, C.; Agrawal, A.; Huang, K.; Luo, X.; Lu, Y.; Qiu, C.; et al. Broadband Generation of Photonic Spin-Controlled Arbitrary Accelerating Light Beams in the Visible. Nano Lett. 2019, 19, 1158–1165. [Google Scholar] [CrossRef]
- Ma, X.; Guo, Y.; Pu, M.; Jin, J.J.; Luo, X. Tunable optical hooks in the visible band based on ultramilhin metalenses. Ann. Der Phys. 2019, 532, 1900396. [Google Scholar] [CrossRef]
- Epstein, I.; Remez, R.; Tsur, Y.; Arie, A. Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media. Optica 2016, 3, 15–19. [Google Scholar] [CrossRef]
- Li, H.; Qu, Y.; Ullah, H.; Zhang, B.; Zhang, Z. Controllable multiple plasmonic bending beams via polarization of incident waves. Opt. Express 2017, 25, 29659–29666. [Google Scholar] [CrossRef]
- Wang, Y.K.; Qin, Y.; Zhang, Z.Y. Broadband Extraordinary Optical Transmission Through Gold Diamond-Shaped Nanohole Arrays. IEEE. Photonics J. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Yang, H.; Jin, G. Manipulating surface plasmon polaritons with m-shaped nanoslit array via polarized incident waves. EPL 2019, 127, 25001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, L.; Li, X.; Li, X.; Li, H. Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength. Photonics 2023, 10, 758. https://doi.org/10.3390/photonics10070758
Zhang H, Wang L, Li X, Li X, Li H. Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength. Photonics. 2023; 10(7):758. https://doi.org/10.3390/photonics10070758
Chicago/Turabian StyleZhang, Hang, Liang Wang, Xueli Li, Xiaoming Li, and Hui Li. 2023. "Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength" Photonics 10, no. 7: 758. https://doi.org/10.3390/photonics10070758
APA StyleZhang, H., Wang, L., Li, X., Li, X., & Li, H. (2023). Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength. Photonics, 10(7), 758. https://doi.org/10.3390/photonics10070758