Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lange, O. Zur Diagnose des intraokularen Sarkoms. Klin. Monatsbl. Augenheilkd. 1884, 1888, 410. [Google Scholar]
- Langenhan, F. (Ed.) Ophthalmodiaphanoskopie; Springer: Vienna, Austria, 1920. [Google Scholar]
- Wood, E.H. Study of transillumination of the eye. Arch. Ophthalmol. 1939, 22, 653–666. [Google Scholar] [CrossRef]
- Neubauer, H. Bright Light Operative Localization. Int. Ophthalmol. Clin. 1968, 8, 205–209. [Google Scholar] [CrossRef]
- Pasyechnikova, N.; Naumenko, V.; Korol, A.; Zadorozhnyy, O. Digital imaging of the fundus with long-wave illumination. Klin. Oczna 2009, 111, 18–20. [Google Scholar]
- Laforest, T.; Künzi, M.; Kowalczuk, L.; Carpentras, D.; Behar-Cohen, F.; Moser, C. Transscleral Optical Phase Imaging of the Human Retina. Nat. Photonics 2020, 14, 439–445. [Google Scholar] [CrossRef]
- Osmond, A.H. New electrode transilluminator. Br. J. Ophthalmol. 1954, 38, 757–762. [Google Scholar] [CrossRef]
- Purkinje, J.E. Beobachtungen und Versuche zur Physiologie der Sinne von Johann Purkinje, Doctor und Professor der Medicin zu Breslau. Zweites Bändchen. Neue Beiträge zur Kenntniss des Sehens in Subjectiver Hinsicht; Zweites Bändchen; Reimer: Prague, Czech Republic, 1825. [Google Scholar]
- Schirmer, K.E. Transillumination and Visualization of the Anterior Fundus. Arch. Ophthalmol. 1964, 71, 475–480. [Google Scholar]
- Oshima, Y.; Awh, C.C.; Tano, Y. Self-retaining 27-gauge transconjunctival chandelier endoillumination for panoramic viewing during vitreous surgery. Am. J. Ophthalmol. 2007, 143, 166–167. [Google Scholar] [CrossRef]
- Oshima, Y.; Chow, D.R.; Awh, C.C.; Sakaguchi, H.; Tano, Y. Novel mercury vapor illuminator combined with a 27/29-gauge chandelier light fiber for vitreous surgery. Retina 2008, 28, 171–173. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Oshima, Y. Considering the Illumination Choices in Vitreoretinal Surgery. Retin. Physician 2012, 9, 26–31. [Google Scholar]
- Sakaguchi, H.; Oshima, Y.; Nishida, K.; Awh, C.C. A 29/30-gauge dual-chandelier illumination system for panoramic viewing during microincision vitrectomy surgery. Retina 2011, 31, 1231–1233. [Google Scholar] [CrossRef]
- Medizin&Technik. Licht aus Kleinsten Quellen. Available online: https://medizin-und-technik.industrie.de/technik/entwicklung/auge-licht-aus-kleinsten-quellen/ (accessed on 26 October 2022).
- Geuder, AG. News. Available online: https://www.geuder.de/en/news-events/news/?tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bnews%5D=49&cHash=3d4e96f92d46e488670688213bcfd54f (accessed on 26 October 2022).
- Novack, R.L. The CONSTELLATION® Vision System: Assessing the Improvements in Illumination for Vitreoretinal Surgery. Retinal Physician. 2022. Available online: https://www.retinalphysician.com/supplements/2009/february-2009/special-edition/the-constellation-vision-system-assessing-the-im (accessed on 4 November 2022).
- Hessling, M.; Kölbl, P.S.; Lingenfelder, C.; Koch, F.H.J. Kleinste LED-Illuminatoren für die Netzhautchirurgie. BioPhotonik 2015, 1, 32–35. [Google Scholar]
- Hessling, M.; Koelbl, P.S.; Lingenfelder, C.; Koch, F. Miniature LED Endoilluminators for Vitreoretinal Surgery. In Proceedings of the European Conferences on Biomedical Optics, Munich, Germany, 21–25 June 2015; p. 95421A. [Google Scholar]
- Lingenfelder, C.; Koch, F.; Koelbl, P.; Klante, P.; Hessling, M. Transscleral LED illumination pen. Biomed. Eng. Lett. 2017, 7, 311–315. [Google Scholar] [CrossRef]
- Behar-Cohen, F.; Martinsons, C.; Viénot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D. Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Prog. Retin. Eye Res. 2011, 30, 239–257. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Kamenskikh, T.G.; Tuchin, V.V. Optical Clearing of Human Eye Sclera. In Proceedings of the SPIE BiOS: Biomedical Optics, San Jose, CA, USA, 24–29 January 2009; p. 71631R. [Google Scholar]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human sclera in spectral range 370–2500 nm. Opt. Spectrosc. 2010, 109, 197–204. [Google Scholar] [CrossRef]
- Koelbl, P.S.; Sieber, N.; Lingenfelder, C.; Koch, F.H.J.; Deuchler, S.; Hessling, M. Pressure dependent direct transtissue transmission of eyewall, sclera and vitreous body in the range of 350-1050nm. Z. Med. Phys. 2020, 30, 201–210. [Google Scholar] [CrossRef]
- Fehler, N.; Lingenfelder, C.; Kupferschmid, S.; Hessling, M. Intraocular reflectance of the ocular fundus and its impact on increased retinal hazard. Z. Med. Phys. 2022, 32, 453–465. [Google Scholar] [CrossRef]
- Chandler, M.J.; Smith, P.J.; Samuelson, D.A.; MacKay, E.O. Photoreceptor density of the domestic pig retina. Vet. Ophthalmol. 1999, 2, 179–184. [Google Scholar] [CrossRef]
- De Schaepdrijver, L.; Simoens, P.; Pollet, L.; Lauwers, H.; De Laey, J.-J. Morphologic and clinical study of the retinal circulation in the miniature pig. B: Fluorescein angiography of the retina. Exp. Eye Res. 1992, 54, 975–985. [Google Scholar] [CrossRef]
- Nicoli, S.; Ferrari, G.; Quarta, M.; Macakuso, C.; Govoni, P.; Dallatana, D.; Santi, P. Porcine sclera as a model of human sclera for in vitro transport experiments histology, SEM, and comparative permeability. Mol. Vis. 2009, 15, 259–266. [Google Scholar]
- Menon, I.A.; Wakeham, D.C.; Persad, S.D.; Avaria, M.; Trope, G.E.; Basu, P.K. Quantitative determination of the melanin contents in ocular tissues from human blue and brown eyes. J. Ocul. Pharmacol. Ther. 1992, 8, 35–42. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Hu, D.-N.; McCormick, S.A.; Ito, S. Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Melanoma Res. 2008, 21, 97–105. [Google Scholar] [CrossRef]
- Weiter, J.J.; Delori, F.C.; Wing, G.L.; Fitch, K.A. Relationship of Senile Macular Degeneration to Ocular Pigmentation. Am. J. Ophthalmol. 1985, 99, 185–187. [Google Scholar] [CrossRef]
- Fehler, N.; Lingenfelder, C.; Kupferschmid, S.; Hessling, M. Determination of the intraocular irradiance and potential retinal hazards at various positions in the eye during transscleral equatorial illumination for different applied pressures. Z. Med. Phys. 2022; in press. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Yan, Y.; Cai, H. Capturing Luminous Flux Entering Human Eyes with a Camera, Part 2: A Field Verification Experiment. LEUKOS 2023, 1–27. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Yan, Y.; Cai, H. Capturing Luminous Flux Entering Human Eyes with a Camera, Part 1: Fundamentals. LEUKOS 2022, 1–19. [Google Scholar] [CrossRef]
- DIN EN ISO 15004-2:2007; Ophthalmic Instruments—Fundamental Requirements and Test Methods—Part 2: Light Hazard Protection (ISO 15004-2:2007); German Version EN ISO 15004-2:2007. Beuth Verlag GmbH: Berlin, Germany, 2007.
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). ICNIRP Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 microM). International Commission on Non-Ionizing Radiation Protection. Health Phys. 1997, 73, 539–554. [Google Scholar]
- Sliney, D.; Aron-Rosa, D.; DeLori, F.; Fankhauser, F.; Landry, R.; Mainster, M.; Marshall, J.; Rassow, B.; Stuck, B.; Trokel, S.; et al. Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: Statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Appl. Opt. 2005, 44, 2162–2176. [Google Scholar] [CrossRef]
- Ham, W.T.; Mueller, H.A.; Ruffolo, J.J.; Guerry, D.; Guerry, R.K. Action Spectrum for Retinal Injury from Near-Ultraviolet Radiation in the Aphakic Monkey. Am. J. Ophthalmol. 1982, 93, 299–306. [Google Scholar] [CrossRef]
- Ham, W.T.; Mueller, H.A.; Sliney, D.H. Retinal sensitivity to damage from short wavelength light. Nature 1976, 260, 153–155. [Google Scholar] [CrossRef]
- Feinwerkoptik Zünd AG. Fallstudie: “Der Kronleuchter”. Available online: https://www.feinwerkoptik-zuend.ch/fallstudie-der-kronleuchter/ (accessed on 14 July 2022).
# Fiber | ⌀ Fiber (G) | I (%) | Light Source | Manufacturer of Fiber | Additional Information |
---|---|---|---|---|---|
1 | 20 | 100 | halogen | Peregrine (New Britain, PA, USA) | light pipe, endoilluminator |
2 | 20 | 100 | halogen | Peregrine (New Britain, PA, USA) | wide-angle, endoilluminator |
3 | 23 | 100 | halogen | D.O.R.C. (Zuidland, The Netherlands) | TotalView Endoillumination Probe, without scleral depressor |
4 | 23 | 100 | halogen | unknown | endoilluminator |
5 | 23 | 100 | halogen | Alcon Laboratories, Inc. (Fort Worth, TX, USA) | endoilluminator |
6 | 23 | 100 | halogen | Aktive S.r.l. (Roma, Italy) | chandelier |
7 | 23 | 100 | halogen | D.O.R.C. (Zuidland, The Netherlands) | Shielded Total Endoillumination Probe, without scleral depressor |
8 | 25 | 100 | halogen | Alcon Laboratories, Inc. (Fort Worth, TX, USA) | chandelier |
9 | 25 | 100 | halogen | Alcon Laboratories, Inc. (Fort Worth, TX, USA) | MLS Torpedo Mini-Light, chandelier |
10 | 27 | 100 | halogen | D.O.R.C. (Zuidland, The Netherlands) | disposable Eckardt Twinlight Chandelier |
11 | 23 | 50 | xenon | D.O.R.C. (Zuidland, The Netherlands) | TotalView Endoillumination Probe, without scleral depressor |
12 | 23 | 50 | xenon | unknown | endoilluminator |
13 | 23 | 80 | xenon | D.O.R.C. (Zuidland, The Netherlands) | Shielded Total Endoillumination Probe, without scleral depressor |
14 | 27 | 100 | xenon | D.O.R.C. (Zuidland, The Netherlands) | disposable Eckardt Twinlight Chandelier |
Halogen Lamp (Fiber #3) | Xenon Lamp (Fiber #11) | |||
---|---|---|---|---|
(lm) | 1.53 ± 5.2 × | 2.49 ± 6.5 × | ||
blue eyes | brown eyes | blue eyes | brown eyes | |
(lm) | 1.70 ± 2.2 × | 1.62 ± 0.7 × | 2.75 ± 3.4 × | 2.63 ± 1.1 × |
(lm) | 0.09 ± 0.5 × | 0.05 ± 0.6 × | 0.14 ± 0.7 × | 0.08 ± 1.0 × |
(lm) | 0.10 ± 0.5 × | 0.05 ± 0.7 × | 0.16 ± 0.8 × | 0.08 ± 1.1 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fehler, N.; Heßling, M. Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall. Photonics 2023, 10, 362. https://doi.org/10.3390/photonics10040362
Fehler N, Heßling M. Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall. Photonics. 2023; 10(4):362. https://doi.org/10.3390/photonics10040362
Chicago/Turabian StyleFehler, Nicole, and Martin Heßling. 2023. "Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall" Photonics 10, no. 4: 362. https://doi.org/10.3390/photonics10040362
APA StyleFehler, N., & Heßling, M. (2023). Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall. Photonics, 10(4), 362. https://doi.org/10.3390/photonics10040362