Polarization-Independent Terahertz Surface Plasmon Resonance Biosensor for Species Identification of Panax and Paeonia
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. THz SPR Biosensor Design
2.2. Theoretical Analysis of THz SPR Biosensor Identification Samples
3. Experimental Procedure
3.1. Materials and Methods
3.2. Experimental Device
3.3. Experiment and Discussion of Biosensors
3.3.1. Polarization-Independent Testing of SPR Biosensor
3.3.2. Polarization-Independent Testing of SPR Biosensor Covering Samples
3.4. Sample Preparation and Measurement
3.5. Data Processing and Analysis
4. Results and Discussion
4.1. THz SPR Biosensor Characterization of Different Medicines
4.2. Method Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, G.; Yang, F.; Wei, F.; Zhang, L.; Gao, Y.; Qian, J.; Chen, Z.; Jia, Z.; Wang, Y.; Su, H.; et al. Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng. J. Ginseng Res. 2020, 44, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Zhao, L.; Zhang, Z.-H.; Tang, Z.-H. Profiling of ginsenosides in the two medicinal Panax herbs based on ultra-performance liquid chromatography-electrospray ionization-mass spectrometry. Springerplus 2016, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Yang, L.; Fan, W.; Long, G.-Q.; Xie, S.-Q.; Meng, Z.-G.; Zhang, G.-H.; Yang, S.-C.; Chen, J.-W. Illumina-based transcriptomic analysis on recalcitrant seeds of Panax notoginseng for the dormancy release during the after-ripening process. Physiol. Plant 2019, 167, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.C.; Yue, L.F.; You, F.T.; Tao, C. Panax notoginseng saponins alleviate osteoporosis and joint destruction in rabbits with antigen-induced arthritis. Exp. Ther. Med. 2021, 22, 1302. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wang, H.; Zhao, L.; Wang, M.; Sun, M. Diversity and structure of the rhizosphere microbial communities of wild and cultivated ginseng. Bmc Microbiol. 2022, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kou, T.; Ye, J.; Wang, J.; Peng, Y.; Wang, Z.; Shi, C.; Wu, X.; Hu, X.; Chen, H.; Zhang, L.; et al. Terahertz Spectroscopy for Accurate Identification of Panax quinquefolium Basing on Nonconjugated 24(R)-Pseudoginsenoside F-11. Plant Phenomics 2021, 2021, 6793457. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Ding, N.; Liu, Y.; Li, N.; Ma, Y.; Zhao, J.; Wang, Z.; Li, X.; Fu, X.; et al. Nucleotide Sequence Variation in Long-Term Tissue Cultures of Chinese Ginseng (Panax ginseng C. A. Mey.). Plants 2022, 11, 79. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Q.; Du, G.; Wang, J.; An, Y.; Liu, J.; Su, J.; Xie, H.; Yin, J. Identification of metabolites in plasma related to different biological activities of Panax ginseng and American ginseng. Rapid Commun. Mass Spectrom. 2022, 36, e9219. [Google Scholar] [CrossRef]
- Peters, J.D.J.; Griscom, H.P. Highlighting an Overlooked Hotspot for American Ginseng (Panax quinquefolius) in Virginia. Nat. Areas J. 2022, 42, 109–119. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, Z.; Yang, W.; Yu, Y.; Wu, X.; Wu, P. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys. Chem. Chem. Phys. 2022, 24, 2527–2533. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Gao, M.J.; Zhu, L.; Feng, G.Q.; Ma, N. Fingerprint identification of panax notoginseng flower, panax ginseng flower and panax quinquefolium fower based on hplc and nirs technology. Basic Clin. Pharmacol. Toxicol. 2019, 125, 4–5. [Google Scholar]
- Tao, L.J.; Zhang, Q.; Feng, Y.G.; College, M. Identification of Radix ginseng., Radix panacis quinquefolii., Radix Notoginseng. and Radix ginseng rubra. by Themogravimetric/Differential Thermal Analysis. Ginseng Res. 2019, 31, 5. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, C.; Xu, M.; Kou, T.; Wu, X.; Song, B.; Ma, H.; Guo, S.; Liu, L.; Zhu, Y. Qualitative and Quantitative Identification of Components in Mixture by Terahertz Spectroscopy. Ieee Trans. Terahertz Sci. Technol. 2018, 8, 696–701. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, C.; Wu, X.; Zhu, Y.; Zhuang, S.J. Terahertz Imaging and Spectroscopy in Cancer Diagnostics: A Technical Review. BME Front. 2020, 1, 11. [Google Scholar] [CrossRef]
- da Silva, I.J.G.; Raimundo, I.M.; Mizaikoff, B. Analysis of sugars and sweeteners via terahertz time-domain spectroscopy. Anal. Methods 2022, 14, 2657–2664. [Google Scholar] [CrossRef]
- Tang, Z.M.; Deng, H.; Liu, Q.C.; Guo, J.; Shang, L.P. Quantitative analysis of low-concentration alpha-HMX based on terahertz spectroscopy. Anal. Methods 2020, 12, 5684–5690. [Google Scholar] [CrossRef]
- Kang, C.; Kim, S.; Lee, E.; Ryu, J.; Lee, M.; Kwon, Y. Genetically Encoded Sensor Cells for the Screening of Glucocorticoid Receptor (GR) Effectors in Herbal Extracts. Biosensors 2021, 11, 341. [Google Scholar] [CrossRef]
- Al-Naib, I. Terahertz Asymmetric S-Shaped Complementary Metasurface Biosensor for Glucose Concentration. Biosensors 2022, 12, 609. [Google Scholar] [CrossRef]
- Wei, A.-J.; Zhou, Z.-H.; Liu, S.-J.; Zuo, J.; Zhang, C.-L. Analytical method for studying terahertz vibrations in different ginseng. In Proceedings of the International Conference on Optical Instruments and Technology-IRMMW-THz Technologies and Applications, Beijing, China, 26–28 October 2019. [Google Scholar]
- Shao, Y.; Zhu, D.; Wang, Y.; Zhu, Z.; Tang, W.; Tian, Z.; Peng, Y.; Zhu, Y. Moxa Wool in Different Purities and Different Growing Years Measured by Terahertz Spectroscopy. Plant Phenomics 2022, 2022, 9815143. [Google Scholar] [CrossRef]
- Yang, S.; Zuo, J.; Liu, S.-J.; Zhang, C.-L. Application of Terahertz Spectroscopy in the Detection of Chinese Medicine Processed Drugs of Rhubarb. Spectrosc. Spectr. Anal. 2016, 36, 3870–3874. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, S.; Xie, Y.; Li, F.; Du, L.; Meng, K.; Zhu, L.; Zhou, J. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating. Opt. Lett. 2020, 45, 2335–2338. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zheng, Y.; Luo, Y.; Zhang, J.; Yi, Z.; Wu, X.; Cheng, S.; Yang, W.; Yu, Y.; Wu, P. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys. Chem. Chem. Phys. 2021, 23, 26864–26873. [Google Scholar] [CrossRef] [PubMed]
- Nitika; Kaur, J.; Khanna, R. Novel monkey-wrench-shaped microstrip patch sensor for food evaluation and analysis. J. Sci. Food Agric. 2022, 102, 1443–1456. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Shen, Y.; Liu, B.; Song, Z.; He, X.; Zhang, Q.; Ling, D.; Liu, D.; Wei, D. Terahertz Metamaterial Sensor for Sensitive Detection of Citrate Salt Solutions. Biosensors 2022, 12, 408. [Google Scholar] [CrossRef]
- Chung, J.W.; Kim, S.D.; Bernhardt, R.; Pyun, J.C. Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens. Actuators B Chem. 2005, 111, 416–422. [Google Scholar] [CrossRef]
- Funano, S.-i.; Ota, N.; Tanaka, Y. A simple and reversible glass-glass bonding method to construct a microfluidic device and its application for cell recovery. Lab A Chip 2021, 21, 2244–2254. [Google Scholar] [CrossRef]
- Tang, C.; Yang, J.; Wang, Y.; Cheng, J.; Li, X.; Chang, C.; Hu, J.; Lu, J. Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid beta aggregates in liquids. Sens. Actuators B Chem. 2021, 329, 129113. [Google Scholar] [CrossRef]
- Wang, D.; Yi, Z.; Ma, G.; Dai, B.; Yang, J.; Zhang, J.; Yu, Y.; Liu, C.; Wu, X.; Bian, Q. Two-channel photonic crystal fiber based on surface plasmon resonance for magnetic field and temperature dual-parameter sensing. Phys. Chem. Chem. Phys. 2022, 24, 21233–21241. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Wu, X.; Wang, S.; Yi, Y.; Wu, P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef]
- Gu, H.; Shi, C.; Wu, X.; Peng, Y. Molecular methylation detection based on terahertz metamaterial technology. Analyst 2020, 145, 6705–6712. [Google Scholar] [CrossRef]
- Yan, P.; Wanqing, C.; Yiming, Z. Identification of biomarker (L-2HG) in real human brain glioma by terahertz spectroscopy. In Proceedings of the 2018 Conference on Lasers and Electro-Optics (CLEO 2018), San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Yang, N.; Wang, Y.; Li, L.; Ren, Y.; He, Z.; Cui, W.; Yang, Z.; Lu, S.; Wu, X.; Bai, L. Multiple poles resonances coupling with high sensitivity sensing for multiple bulging black phosphorus-based metasurface. N. J. Phys. 2023, 25, 013034. [Google Scholar] [CrossRef]
- Weng, X.; Mao, Z.; Fu, H.-M.; Chen, Y.-P.; Guo, J.-S.; Fang, F.; Xu, X.-W.; Yan, P. Biofilm formation during wastewater treatment: Motility and physiological response of aerobic denitrifying bacteria under ammonia stress based on surface plasmon resonance imaging. Bioresour. Technol. 2022, 361, 127712. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. Rsc Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef] [PubMed]
y0 | A | R0 | |
---|---|---|---|
Notoginseng | 0.028 ± 0.002 | 0.028 ± 0.002 | −0.040 ± 0.007 |
Ginseng | 0.020 ± 0.001 | 0.020 ± 0.001 | −0.043 ± 0.004 |
American ginseng | 0.033 ± 0.001 | 0.033 ± 0.001 | −0.052 ± 0.004 |
y0 | A | R0 | |
---|---|---|---|
White peony | 0.027 ± 0.001 | −0.027 ± 0.001 | −0.055 ± 0.005 |
Red peony | 0.037 ± 0.002 | 0.038 ± 0.002 | −0.060 ± 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Sun, C.; Wu, X.; Peng, Y. Polarization-Independent Terahertz Surface Plasmon Resonance Biosensor for Species Identification of Panax and Paeonia. Photonics 2023, 10, 250. https://doi.org/10.3390/photonics10030250
Hu S, Sun C, Wu X, Peng Y. Polarization-Independent Terahertz Surface Plasmon Resonance Biosensor for Species Identification of Panax and Paeonia. Photonics. 2023; 10(3):250. https://doi.org/10.3390/photonics10030250
Chicago/Turabian StyleHu, Songyan, Can Sun, Xu Wu, and Yan Peng. 2023. "Polarization-Independent Terahertz Surface Plasmon Resonance Biosensor for Species Identification of Panax and Paeonia" Photonics 10, no. 3: 250. https://doi.org/10.3390/photonics10030250
APA StyleHu, S., Sun, C., Wu, X., & Peng, Y. (2023). Polarization-Independent Terahertz Surface Plasmon Resonance Biosensor for Species Identification of Panax and Paeonia. Photonics, 10(3), 250. https://doi.org/10.3390/photonics10030250