High Extinction Ratio 4 × 2 Encoder Based on Electro-Optical Graphene Plasma Structure
Abstract
:1. Introduction
2. Design and Modeling
2.1. The Basic Principles of Design
2.2. The Proposed 4 × 2 Encoder
- (1)
- The chemical potential of the input electrodes in the three selective contact regions of the graphene layer can be changed. Each region acts as a switch.
- (2)
- The propagation of SPP in each input waveguide depends on the voltage applied to each switching electrode.
- (3)
- When any one of I1, I2, and I3 is ON, the state of I0 is logic “0”.
- (4)
- When I1 is ON, I2 and I3 are OFF.
- (5)
- When I2 is ON, I1 and I3 are OFF.
- (6)
- When I3 is ON, I1 and I2 are OFF.
- (7)
- When I1, I2, and I3 are OFF, it means I0 is in the logic “1” state.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, T.J.; Gómez, D.E.; Roberts, A. Plasmonic circuits for manipulating optical information. Nanophotonics 2016, 6, 543–559. [Google Scholar] [CrossRef]
- Athale, R.; Psaltis, D. Optical computing: Past and future. Opt. Photonics News 2016, 27, 32. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Z.; Tian, X.; Käll, M.; Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2011, 2, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birr, T.; Zywietz, U.; Chhantyal, P.; Chichkov, B.N.; Reinhardt, C. Ultrafast surface plasmon-polariton logic gates and half-adder. Opt. Express 2015, 23, 31755. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Shamir, J. Optics inspired logic architecture. Opt. Express 2015, 15, 150. [Google Scholar] [CrossRef]
- Cutrona, L.; Leith, E.; Palermo, C.; Porcello, L. Optical data processing and filtering systems. IEEE Trans. Inf. Theory 1960, 6, 386–400. [Google Scholar] [CrossRef]
- Ambs, P. Optical computing: A 60-year adventure. Adv. Opt. Technol. 2010, 2010, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gayen, D.K.; Bhattachryya, A.; Chattopadhyay, T.; Roy, J.N. Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based mach-zehnder interferometer. J. Light. Technol. 2012, 30, 3387–3393. [Google Scholar] [CrossRef]
- Rezaei, M.H.; Zarifkar, A. Subwavelength electro-optical half-subtractor and half-adder based on graphene plasmonic waveguides. Plasmonics 2019, 14, 1939–1947. [Google Scholar] [CrossRef]
- Huang, B.-H.; Lu, W.-B.; Li, X.-B.; Wang, J.; Liu, Z. Waveguide-coupled hybrid plasmonic modulator based on graphene. Appl. Opt. 2019, 55, 5598. [Google Scholar] [CrossRef]
- Bai, C.; Chen, J.; Zhang, Y.; Zhang, D.; Zhan, Q. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Opt. Express 2020, 28, 10320. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Massoud, Y. A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 2006, 14, 11318. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Smolyakov, G.A.; Brueck, S.R.; Malloy, K.J. Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides. Opt. Express 2008, 16, 14902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitrakis, E.P.; Kamalakis, T.; Sphicopoulos, T. Slow light in insulator–metal–insulator plasmonic waveguides. J. Opt. Soc. Am. B 2011, 28, 2159. [Google Scholar] [CrossRef]
- Gupta, R.; Dyer, M.J.; Weimer, W.A. Preparation and characterization of surface plasmon resonance tunable gold and silver films. J. Appl. Phys. 2002, 92, 5264–5271. [Google Scholar] [CrossRef]
- Luo, X.; Qiu, T.; Lu, W.; Ni, Z. Plasmons in graphene: Recent progress and applications. Mater. Sci. Eng. R Rep. 2013, 74, 351–376. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.H.; Zarifkar, A.; Miri, M. Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. Opt. Mater. 2018, 84, 572–578. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A.; Kaźmierczak, A.; Piramidowicz, R. A numerical investigation of a plasmonic sensor based on a metal-insulator-metal waveguide for simultaneous detection of biological analytes and ambient temperature. Nanomaterials 2021, 11, 2551. [Google Scholar] [CrossRef] [PubMed]
- Khatir, M.; Granpayeh, N. An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides: I. Transversal configuration. Optik 2013, 124, 276–281. [Google Scholar] [CrossRef]
- Thomas, R.; Ikonic, Z.; Kelsall, R.W. Electro-optic metal–insulator–semiconductor–insulator–metal Mach-Zehnder plasmonic modulator. Photonics Nanostruct. Fundam. Appl. 2012, 10, 183–189. [Google Scholar] [CrossRef]
- Heydari, M.B.; Samiei, M.H.V. Analytical study of tm-polarized surface plasmon polaritons in nonlinear multi-layer graphene-based waveguides. Plasmonics 2021, 16, 841–848. [Google Scholar] [CrossRef]
- Ye, L.; Sui, K.; Liu, Y.; Zhang, M.; Liu, Q.H. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation. Opt. Express 2018, 26, 15935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Khan, Z.U.; Wang, C.; Zhang, H.; Sarjoghian, S. Review of graphene modulators from the low to the high figure of merits. J. Phys. D Appl. Phys. 2020, 53, 233002. [Google Scholar] [CrossRef]
- Rezaei, M.H.; Shiri, M. High-performance tunable resonant electro-optical modulator based on suspended graphene waveguides. Opt. Express 2021, 29, 16299. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Li, Z.; Wang, Y.; Chen, W.; Li, Z. All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials. Photonics Res. 2019, 7, 318. [Google Scholar] [CrossRef]
- Ghorbanzadeh, M.; Darbari, S.; Moravvej-Farshi, M.K. Graphene-based plasmonic force switch. Appl. Phys. Lett. 2016, 108, 111105. [Google Scholar] [CrossRef]
- Jiang, Y.; Laurenciu, N.C.; Wang, H.; Cotofana, S.D. Graphene nanoribbon based complementary logic gates and circuits. IEEE Trans. Nanotechnol. 2019, 18, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Tian, J.; Yang, R. A type of all-optical logic gate based on graphene surface plasmon polaritons. Opt. Commun. 2017, 403, 185–192. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Tian, W.; Liu, X.; Yu, W. Research progress of gas sensor based on graphene and its derivatives: A review. Appl. Sci. 2018, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Hadadan, F.; Soroosh, M. A new proposal for 4-to-2 optical encoder using nonlinear photonic crystal ring resonators. Int. J. Opt. Photonics 2019, 13, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Yang, Y.C.; Lin, Y.J.; Lee, W.Y.; Lee, C.C.; Wong, S.H. The designs of 4 × 2 encoder based on photonic crystals. Asia Commun. Photonics Conf. Exhib. 2009, 2009, 1–7. [Google Scholar]
- Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H. Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 2017, 11, 29–35. [Google Scholar] [CrossRef]
- Ouahab, I.; Naoum, R. A novel all optical 4 × 2 encoder switch based on photonic crystal ring resonators. Optik 2016, 127, 7835–7841. [Google Scholar] [CrossRef]
- Naghizade, S.; Khoshsima, H. Low Input Power an All Optical 4 × 2 Encoder based on Triangular Lattice Shape Photonic Crystal. J. Opt. Commun. 2018, 42, 17–24. [Google Scholar] [CrossRef]
- Hassangholizadeh-Kashtiban, M.; Sabbaghi-Nadooshan, R.; Alipour-Banaei, H. A novel all optical reversible 4 × 2 encoder based on photonic crystals. Optik 2015, 126, 2368–2372. [Google Scholar] [CrossRef]
- Seif-Dargahi, H. Ultra-fast all-optical encoder using photonic crystal-based ring resonators. Photonic Netw. Commun. 2018, 36, 272–277. [Google Scholar] [CrossRef]
- Moniem, T.A. All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 2015, 63, 735–741. [Google Scholar] [CrossRef]
- Gholamnejad, S.; Zavvari, M. Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Opt. Quantum Electron. 2017, 49, 302. [Google Scholar] [CrossRef]
- Naghizade, S.; Saghaei, H. A novel design of all-optical 4 to 2 encoder with multiple defects in silica-based photonic crystal fiber. Optik 2020, 222, 165419. [Google Scholar] [CrossRef]
- Parandin, F. High contrast ratio all-optical 4 × 2 encoder based on two-dimensional photonic crystals. Opt. Laser Technol. 2019, 113, 447–452. [Google Scholar] [CrossRef]
- Alipour-Banaei, H.; Rabati, M.G.; Abdollahzadeh-Badelbou, P.; Mehdizadeh, F. Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 75, 77–85. [Google Scholar] [CrossRef]
- Zhang, D.; You, G. Miniaturization design of all-optical encoder based on surface design and radiation source control. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 127, 114469. [Google Scholar] [CrossRef]
- Latha, K.; Arunkumar, R.; Prabha, K.R.; Robinson, S. Performance Analysis of all Optical 4*2 and 8*3 Encoder Using Two Dimensional Photonic Crystals Waveguides. Silicon 2021, 14, 3245–3258. [Google Scholar] [CrossRef]
- Haddadan, F.; Soroosh, M.; Alaei-Sheini, N. Designing an electro-optical encoder based on photonic crystals using the graphene–Al2O3 stacks. Appl. Opt. 2020, 59, 2179. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, R.R.; Mohammad, A.M. Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 2013, 50, 97–101. [Google Scholar]
- Mohammad, R.R.; Mohammad, A.M. High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuators B Chem. 2017, 249, 168–176. [Google Scholar]
- Haddadan, F.; Soroosh, M.; Alaei-Sheini, N. Cross-talk reduction in a graphene-based ultra-compact plasmonic encoder using an Au nano-ridge on a silicon substrate. Appl. Opt. 2022, 61, 3209. [Google Scholar] [CrossRef]
- Fei, Z.; Rodin, A.S.; Andreev, G.O.; Bao, W.; McLeod, A.S.; Wagner, M.; Zhang, L.M.; Zhao, Z.; Thiemens, M.; Dominguez, G.; et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 487, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Koppens, F.H.L.; Chang, D.E.; García de Abajo, F.J. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 2011, 11, 3370–3377. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.H.; Zarifkar, A. High-extinction ratio and ultra-compact two-bit comparators based on graphene-plasmonic waveguides. Appl. Opt. 2019, 58, 9829. [Google Scholar] [CrossRef] [PubMed]
- Farmani, A.; Zarifkar, A.; Sheikhi, M.H.; Miri, M. Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 2017, 112, 404–414. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.H.; Zarifkar, A. Transmission characteristics of a graphene-based plasmonic decoder for thz applications. In Proceedings of the 2018 9th International Symposium on Telecommunications (IST), Tehran, Iran, 17–19 December 2018; p. 12. [Google Scholar]
- Rezaei, M.H.; Zarifkar, A. Realization of electro-optical decoder, half-adder, and half-subtractor using graphene plasmonic waveguides. Opt. Quantum Electron. 2021, 53, 297. [Google Scholar] [CrossRef]
- Gutruf, P.; Walia, S.; Nur Ali, M.; Sriram, S.; Bhaskaran, M. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation. Appl. Phys. Lett. 2014, 104, 021908. [Google Scholar] [CrossRef]
- Caironi, M.; Noh, Y.-Y. Large Area and Flexible Electronics; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Li, P.; Chen, C.; Zhang, J.; Li, S.; Sun, B.; Bao, Q. Graphene-Based transparent electrodes for hybrid solar cells. Front. Mater. 2014, 1, 26. [Google Scholar] [CrossRef]
- Lin, I.T.; Lai, Y.P.; Wu, K.H.; Liu, J.M. Terahertz optoelectronic property of graphene: Substrate-induced effects on plasmonic characteristics. Appl. Sci. 2014, 4, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, A.Y.; Guinea, F.; García-Vidal, F.J.; Martín-Moreno, L. Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 2011, 84, 161407. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Yan, W.; Mortensen, N.A.; Xiao, S. Bends and splitters in graphene nanoribbon waveguides. Opt. Express 2013, 21, 3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahariq, I.; Kuzuoğlu, M.; Tarman, I.H.; Kurt, H. Photonic Nanojet Analysis by Spectral Element Method. IEEE Photonics J. 2014, 6, 1–14. [Google Scholar] [CrossRef]
- Safinezhad, A.; Babaei Ghoushji, H.; Shiri, M.; Rezaei, M.H. High-performance and ultrafast configurable all-optical photonic crystal logic gates based on interference effects. Opt. Quantum Electron. 2021, 53, 259. [Google Scholar] [CrossRef]
- Yarahmadi, M.; Moravvej-Farshi, M.K.; Yousefi, L. Subwavelength graphene-based plasmonic thz switches and logic gates. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 725–731. [Google Scholar] [CrossRef]
- Rahm, M.; Li, J.S.; Padilla, W.J. THz wave modulators: A brief review on different modulation techniques. J. Infrared Millim. Terahertz Waves 2012, 34, 1–27. [Google Scholar] [CrossRef]
W1 | W2 | W3 | L1 | L2 | L3 | L4 | L5 |
---|---|---|---|---|---|---|---|
100 | 45 | 20 | 205 | 157 | 210 | 125 | 157 |
Input | Output | ||||
---|---|---|---|---|---|
I0 | I1 | I2 | I3 | Y0 | Y1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 |
Input | Output | ||||
---|---|---|---|---|---|
I0 | I1 | I2 | I3 | Y0 | Y1 |
1 | 0 | 0 | 0 | 2.69389 × 10−5 | 2.69155 × 10−5 |
0 | 1 | 0 | 0 | 0.483541 | 0.00436279 |
0 | 0 | 1 | 0 | 0.00436611 | 0.483586 |
0 | 0 | 0 | 1 | 0.176601 | 0.176639 |
Input | Minimum ER (dB) | Maximum MD (%) | |||
---|---|---|---|---|---|
I0 | I1 | I2 | I3 | ||
1 | 0 | 0 | 0 | ~ | ~ |
0 | 1 | 0 | 0 | 47.0726 | 99.99 |
0 | 0 | 1 | 0 | 47.0736 | 99.99 |
0 | 0 | 0 | 1 | 37.0002 | 99.98 |
Description | ER (dB) | MD (%) | Area (μm2) | Ref |
---|---|---|---|---|
Nonlinear PhC | 16.33 | 98.04 | 612 | [33] |
PhC | 7.32 | 94.90 | 880 | [34] |
PhC | 12.92 | 91.38 | ~ | [35] |
PhC ring resonators | 9.54 | ~ | 757 | [36] |
Triangular lattice shape PhC | 11.76 | 96.84 | 723 | [37] |
PhC | 9.03 | ~ | 200 | [38] |
PhC ring resonators | 9.24 | 89.94 | 792 | [39] |
2D PhC ring resonators | ~ | 99.49 | 1225 | [40] |
PhC | 17.78 | ~ | 744 | [41] |
Silica-based PhC fiber | 13.76 | 97.78 | 150 | [42] |
2D PhC | 16.53 | 97.80 | 132.7 | [43] |
PhC using the graphene–Al2O3 stacks | 7.6 | 91 | 127 | [45] |
Graphene-based plasmonic using Au nano-ridge | 14.44 | ~ | 0.36 | [48] |
Graphene plasmonic waveguides | 37 | 99.99 | 0.8 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, A.; Bu, P.; Hu, C.; Niu, J.; Mahapatra, R. High Extinction Ratio 4 × 2 Encoder Based on Electro-Optical Graphene Plasma Structure. Photonics 2023, 10, 216. https://doi.org/10.3390/photonics10020216
Zhu A, Bu P, Hu C, Niu J, Mahapatra R. High Extinction Ratio 4 × 2 Encoder Based on Electro-Optical Graphene Plasma Structure. Photonics. 2023; 10(2):216. https://doi.org/10.3390/photonics10020216
Chicago/Turabian StyleZhu, Aijun, Pengcheng Bu, Cong Hu, Junhao Niu, and Rabi Mahapatra. 2023. "High Extinction Ratio 4 × 2 Encoder Based on Electro-Optical Graphene Plasma Structure" Photonics 10, no. 2: 216. https://doi.org/10.3390/photonics10020216
APA StyleZhu, A., Bu, P., Hu, C., Niu, J., & Mahapatra, R. (2023). High Extinction Ratio 4 × 2 Encoder Based on Electro-Optical Graphene Plasma Structure. Photonics, 10(2), 216. https://doi.org/10.3390/photonics10020216