Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy
Abstract
1. Introduction
2. Background and Related Work
2.1. Deconvolution
2.2. Multivariate Curve Resolution
3. Materials and Methods
3.1. Experimental Setup
3.2. Samples
3.3. Image Recording and Pre-Processing
- : image of the sample for plane m (sample measurement);
- : image of the empty slide for plane m (reference measurement).
3.4. Z-Scanning Brightfield Microscopy Images as MCR Data Set
4. Results
4.1. Multiplane Image Restoration of 3D Objects
4.2. Comparison with 3D Deconvolution
4.3. Influence of the z-Step Value
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Conchello, J.A.; Lichtman, J.W. Optical sectioning microscopy. Nat. Methods 2005, 2, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Sarder, P.; Nehorai, A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 2006, 23, 32–45. [Google Scholar] [CrossRef]
- Biggs, D.S.C. 3D Deconvolution Microscopy. Curr. Protoc. Cytom. 2010, 52, 12.19.1–12.19.20. [Google Scholar] [CrossRef]
- Dan, D.; Yao, B.; Lei, M. Structured illumination microscopy for super-resolution and optical sectioning. Chin. Sci. Bull. 2014, 59, 1291–1307. [Google Scholar] [CrossRef]
- Paddock, S.W. Principles and practices of laser scanning confocal microscopy. Mol. Biotechnol. 2000, 16, 127–149. [Google Scholar] [CrossRef]
- Patel, D.V.; McGhee, C.N. Quantitative analysis of in vivo confocal microscopy images: A review. Surv. Ophthalmol. 2013, 58, 466–475. [Google Scholar] [CrossRef]
- König, K. Multiphoton microscopy in life sciences. J. Microsc. 2001, 200, 83–104. [Google Scholar] [CrossRef]
- Langhorst, M.F.; Schaffer, J.; Goetze, B. Structure brings clarity: Structured illumination microscopy in cell biology. Biotechnol. J. 2009, 4, 858–865. [Google Scholar] [CrossRef]
- Jost, A.; Heintzmann, R. Superresolution Multidimensional Imaging with Structured Illumination Microscopy. Annu. Rev. Mater. Res. 2013, 43, 261–282. [Google Scholar] [CrossRef]
- Saxena, M.; Eluru, G.; Gorthi, S.S. Structured illumination microscopy. Adv. Opt. Photonics 2015, 7, 241–275. [Google Scholar] [CrossRef]
- Sanderson, J. Light Sheet Microscopy. In Understanding Light Microscopy, 1st ed.; Sanderson, J., Ed.; Wiley: Hoboken, NJ, USA, 2019; pp. 483–506. [Google Scholar] [CrossRef]
- Wan, Y.; McDole, K.; Keller, P.J. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu. Rev. Cell Dev. Biol. 2019, 35, 655–681. [Google Scholar] [CrossRef]
- Tadrous, P.J. A method of PSF generation for 3D brightfield deconvolution. J. Microsc. 2010, 237, 192–199. [Google Scholar] [CrossRef]
- Yao, S.; Mills, J.K.; Ajamieh, I.A.; Li, H.; Zhan, X. Automatic three-dimensional imaging for blastomere identification in early-stage embryos based on brightfield microscopy. Opt. Lasers Eng. 2020, 130, 106093. [Google Scholar] [CrossRef]
- McNally, J.G.; Karpova, T.; Cooper, J.; Conchello, J.A. Three-Dimensional Imaging by Deconvolution Microscopy. Methods 1999, 19, 373–385. [Google Scholar] [CrossRef]
- Icha, J.; Weber, M.; Waters, J.C.; Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays 2017, 39, 1700003. [Google Scholar] [CrossRef]
- Lac, A.; Le Lam, A.; Heit, B. Optimizing Long-Term Live Cell Imaging. In Fluorescent Microscopy; Heit, B., Ed.; Humana: New York, NY, USA, 2022; Volume 2440, pp. 57–73. [Google Scholar] [CrossRef]
- Streibl, N. Three-dimensional imaging by a microscope. J. Opt. Soc. Am. A 1985, 2, 121–127. [Google Scholar] [CrossRef]
- Maa, X.; Zhanga, Z.; Yaoa, M.; Penga, J.; Zhonga, J. Spatially-incoherent annular illumination microscopy for bright-field optical sectioning. Ultramicroscopy 2018, 195, 74–84. [Google Scholar] [CrossRef]
- Candia, C.N.H.; Gutiérrez-Medina, B. Direct Imaging of Phase Objects Enables Conventional Deconvolution in Bright Field Light Microscopy. PLoS ONE 2014, 9, e89106. [Google Scholar] [CrossRef]
- Holmes, T.J.; O’Connor, N.J. Blind deconvolution of 3D transmitted light brightfield micrographs. J. Microsc. 2000, 200, 114–127. [Google Scholar] [CrossRef]
- Agnero, M.A.; Konan, K.; Tokou, Z.G.C.S.; Kossonou, Y.T.A.; Dion, B.S.; Kaduki, K.A.; Zoueu, J.T. Malaria-Infected Red Blood Cell Analysis through Optical and Biochemical Parameters Using the Transport of Intensity Equation and the Microscope’s Optical Properties. Sensors 2019, 19, 3045. [Google Scholar] [CrossRef]
- Aguet, F.; Van de Ville, D.; Unser, M. Model-based 2.5-D deconvolution for extended depth of field in brightfield microscopy. IEEE Trans. Image Process. 2008, 17, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Praveen, P.A.; Arockiaraj, F.G.; Gopinath, S.; Smith, D.; Kahro, T.; Valdma, S.-M.; Bleahu, A.; Ng, S.H.; Reddy, A.N.K.; Katkus, T.; et al. Deep Deconvolution of Object Information Modulated by a Refractive Lens Using Lucy-Richardson-Rosen Algorithm. Photonics 2022, 9, 625. [Google Scholar] [CrossRef]
- Gutiérrez-Medina, B. Optical sectioning of unlabeled samples using brightfield microscopy. Proc. Natl. Acad. Sci. USA 2022, 119, e2122937119. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.; Breckon, T. Image restoration. In Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab; Solomon, C., Breckon, T., Eds.; Wiley-Blackwell: Hoboken, NJ, USA; Oxford, UK, 2011; pp. 141–167. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Image restoration. In Digital Image Processing, 2nd ed.; Gonzalez, R.C., Woods, R.E., Eds.; Prentice Hall: Hoboken, NJ, USA, 2002; pp. 220–281. [Google Scholar]
- Holmes, T.J.; Bhattacharyya, S.; Cooper, J.A.; Hanzel, D.; Krishnamurthi, V.; Lin, W.; Roysam, B.; Szarowski, D.H.; Turner, J.N. Light Microscopic Images Reconstructed by Maximum likelihood Deconvolution. In Handbook of Biological Confocal Microscopy; Pawley, J.B., Ed.; Springer: Boston, MA, USA, 1995; pp. 389–402. [Google Scholar] [CrossRef]
- Law, N.F.; Lane, R.G. Blind deconvolution using least squares minimisation. Opt. Commun. 1996, 128, 341–352. [Google Scholar] [CrossRef]
- Biggs, D.S.C.; Andrews, M. Acceleration of iterative image restoration algorithms. Appl. Opt. 1997, 36, 1766–1775. [Google Scholar] [CrossRef]
- Aguet, F.; Van De Ville, D.; Unser, M. An accurate PSF model with few parameters for axially shift-variant deconvolution. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; pp. 157–160. [Google Scholar] [CrossRef]
- Gibson, S.F.; Lanni, F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J. Opt. Soc. Am. A 1991, 8, 1601–1613. [Google Scholar] [CrossRef]
- Offroy, M. Développement de la Super-Résolution Appliquée à L'imagerie des Spectroscopies Vibrationnelles. Ph.D. Thesis, Université de Lille 1, Lille, France, 17 January 2012. Available online: https://tel.archives-ouvertes.fr/tel-00687944 (accessed on 9 January 2023).
- de Juan, A.; Jaumot, J.; Tauler, R. Multivariate Curve Resolution (MCR). Solving the mixture analysis problem. Anal. Methods 2014, 6, 4964–4976. [Google Scholar] [CrossRef]
- Rutan, S.C.; de Juan, A.; Tauler, R. Introduction to Multivariate Curve Resolution. In Comprehensive Chemometrics; Brown, S.D., Tauler, R., Walczak, R., Eds.; Elsevier: Oxford, UK, 2009; pp. 249–259. [Google Scholar]
- de Juan, A.; Tauler, R. Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications. Crit. Rev. Anal. Chem. 2007, 36, 163–176. [Google Scholar] [CrossRef]
- Hamilton, J.C.; Gemperline, P.J. Mixture analysis using factor analysis. II: Self-modeling curve resolution. J. Chemom. 1990, 4, 1–13. [Google Scholar] [CrossRef]
- de Juan, A.; Tauler, R. Chemometrics applied to unravel multicomponent processes and mixtures: Revisiting latest trends in multivariate resolution. Anal. Chim. Acta 2003, 500, 195–210. [Google Scholar] [CrossRef]
- Duponchel, L.; Elmi-Rayaleh, W.; Ruckebusch, C.; Huvenne, J.P. Multivariate Curve Resolution Methods in Imaging Spectroscopy: Influence of Extraction Methods and Instrumental Perturbations. J. Chem. Inf. Comput. Sci. 2003, 43, 2057–2067. [Google Scholar] [CrossRef]
- Windig, W.; Guilment, J. Interactive self-modeling mixture analysis. Anal. Chem. 1991, 63, 1425–1432. [Google Scholar] [CrossRef]
- Van Benthem, M.H.; Keenan, M.R. Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems. J. Chemom. 2004, 18, 441–450. [Google Scholar] [CrossRef]
- Van Benthem, M.H.; Keenan, M.R.; Haaland, D.M. Applications on equality constraints on variables during alterning least squares procedures. J. Chemom. 2002, 16, 613–622. [Google Scholar] [CrossRef]
- Golshana, A.; Abdollahia, H.; Maederb, M. The reduction of rotational ambiguity in soft-modeling by introducing hard models. Anal. Chim. Acta 2012, 709, 32–40. [Google Scholar] [CrossRef]
- Hugeliera, S.; Devosa, O.; Ruckebuscha, C. On the implementation of spatial constraints in multivariate curve resolution alternating least squares for hyperspectral image analysis. J. Chemom. 2015, 29, 557–561. [Google Scholar] [CrossRef]
- Hugelier, S.; Piqueras, S.; Bedia, C.; de Juan, A.; Ruckebusch, C. Application of a sparseness constraint in multivariate curve resolution—Alternating least squares. Anal. Chim. Acta 2018, 1000, 100–108. [Google Scholar] [CrossRef]
- de Juan, A.; Maeder, M.; Hancewicz, T.; Tauler, R. Use of local rank-based spatial information for resolution of spectroscopic images. J. Chemom. 2008, 22, 291–298. [Google Scholar] [CrossRef]
- Omucheni, D.L.; Kaduki, K.A.; Bulimo, W.D.; Angeyo, H.K. Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics. Malar. J. 2014, 13, 485. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Hovenier, J.W.; Mackowski, D.W. Single scattering by a small volume element. J. Opt. Soc. Am. A 2004, 21, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, M.I.; Liu, L.; Videen, G. Conditions of applicability of the single scattering approximation. Opt. Express 2007, 15, 7522–7527. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhai, J.; Wang, C. Investigation of the single scattering approximation through direct electromagnetic scattering simulation. OSA Contin. 2021, 4, 2496–2509. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.I. Ballistic Imaging and Microscopy. In Biomedical Optics: Principles and Imaging; Wang, L.V., Wu, H.I., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 153–179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dion, S.B.; Agre, D.J.F.U.; Agnero, A.M.; Zoueu, J.T. Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy. Photonics 2023, 10, 163. https://doi.org/10.3390/photonics10020163
Dion SB, Agre DJFU, Agnero AM, Zoueu JT. Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy. Photonics. 2023; 10(2):163. https://doi.org/10.3390/photonics10020163
Chicago/Turabian StyleDion, Sylvere Bienvenue, Don Jean François Ulrich Agre, Akpa Marcel Agnero, and Jérémie Thouakesseh Zoueu. 2023. "Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy" Photonics 10, no. 2: 163. https://doi.org/10.3390/photonics10020163
APA StyleDion, S. B., Agre, D. J. F. U., Agnero, A. M., & Zoueu, J. T. (2023). Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy. Photonics, 10(2), 163. https://doi.org/10.3390/photonics10020163