Diffraction Characteristics of a Digital Micromirror Device for Computer Holography Based on an Accurate Three-Dimensional Phase Model
Abstract
:1. Introduction
2. Diffraction Characteristics Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benton, S.A.; Bove Jr, V.M. Holographic Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Zhang, H.; Zhao, Y.; Cao, L.; Jin, G. Three-dimensional display technologies in wave and ray optics: A review. Chin. Opt. Lett. 2014, 12, 060002. [Google Scholar] [CrossRef] [Green Version]
- Blinder, D.; Birnbaum, T.; Ito, T.; Shimobaba, T. The state-of-the-art in computer generated holography for 3D display. Light Adv. Manuf. 2022, 3, 572–600. [Google Scholar] [CrossRef]
- Sun, B.; Salter, P.S.; Roider, C.; Jesacher, A.; Strauss, J.; Heberle, J.; Schmidt, M.; Booth, M.J. Four-dimensional light shaping: Manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl. 2018, 7, 17117. [Google Scholar] [CrossRef] [Green Version]
- Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.V.; Dennis, M.R.; Andrews, D.L.; Mansuripur, M.; Denz, C.; Alpmann, C.; Banzer, P.; Bauer, T.; et al. Roadmap on structured light. J. Opt. 2017, 19, 013001. [Google Scholar] [CrossRef]
- Fang, Z.-X.; Zhao, H.-Z.; Chen, Y.; Lu, R.-D.; He, L.-Q.; Wang, P. Accelerating polygon beam with peculiar features. Sci. Rep. 2018, 8, 8593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chlipala, M.; Kozacki, T. Color LED DMD holographic display with high resolution across large depth. Opt. Lett. 2019, 44, 4255–4258. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Cao, L.; Jin, G. Generalized single-sideband three-dimensional computer-generated holography. Opt. Express 2019, 27, 2612–2620. [Google Scholar] [CrossRef]
- Lee, B.; Yoo, D.; Jeong, J.; Lee, S.; Lee, D.; Lee, B. Wide-angle speckleless DMD holographic display using structured illumination with temporal multiplexing. Opt. Lett. 2020, 45, 2148–2151. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Fan, X.; Jiao, B.; Li, T.; Shang, C.; Zeng, C.; Deng, L.; Xiong, W.; Xia, J.; et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci. Adv. 2020, 6, eaba8595. [Google Scholar] [CrossRef]
- Li, J.; Smithwick, Q.; Chu, D. Holobricks: Modular coarse integral holographic displays. Light: Sci. Appl. 2022, 11, 57. [Google Scholar] [CrossRef]
- Bartlett, T.A.; McDonald, W.C.; Hall, J.N. Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator. In Proceedings of the Emerging Digital Micromirror Device Based Systems and Applications XI, San Francisco, CA, USA, 4 March 2019. [Google Scholar]
- Bartlett, T.A.; McDonald, W.C.; Hall, J.N.; Oden, P.I.; Doane, D.; Ketchum, R.S.; Byrum, T. Recent advances in the development of the Texas Instruments phase-only microelectromechanical systems (MEMS) spatial light modulator. In Proceedings of the Emerging Digital Micromirror Device Based Systems and Applications XIII, Online, 9 March 2021. [Google Scholar]
- Ketchum, R.S.; Blanche, P.-A. Diffraction Efficiency Characteristics for MEMS-Based Phase-Only Spatial Light Modulator with Nonlinear Phase Distribution. Photonics 2021, 8, 62. [Google Scholar] [CrossRef]
- Douglass, M.R.; Hall, J.N.; Oden, P.I.; Byrum, T.M. Reliability assessment of the Texas Instruments phase light modulator. In Proceedings of the Emerging Digital Micromirror Device Based Systems and Applications XIV, San Francisco, CA, USA, 1 March 2022. [Google Scholar]
- Choi, S.; Gopakumar, M.; Peng, Y.; Kim, J.; O’Toole, M.; Wetzstein, G. Time-multiplexed Neural Holography: A Flexible Framework for Holographic Near-eye Displays with Fast Heavily-quantized Spatial Light Modulators. In Proceedings of the ACM SIGGRAPH 2022 Conference Proceedings, Vancouver, BC, Canada, 7–11 August 2022. [Google Scholar]
- Hornbeck, L. Deformable-Mirror Spatial Light Modulators; SPIE: Philadelphia, PA, USA, 1990; Volume 1150. [Google Scholar]
- Brennesholtz, M.S.; Stupp, E.H. Projection Displays; Wiley Publishing: Indianapolis, IN, USA, 2008. [Google Scholar]
- Son, J.-Y.; Lee, B.-R.; Chernyshov, O.O.; Moon, K.-A.; Lee, H. Holographic display based on a spatial DMD array. Opt. Lett. 2013, 38, 3173–3176. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-C.; Lee, B.-R.; Son, J.-Y.; Chernyshov, O. Properties of DMDs for holographic displays Properties of DMDs for holographic displays. J. Mod. Opt. 2015, 62, 1600–1607. [Google Scholar] [CrossRef]
- Son, J.-Y.; Son, W.-H.; Kim, J.-H.; Choo, H. Image reconstruction in an electro-holographic display. J. Opt. 2017, 19, 055604. [Google Scholar] [CrossRef]
- Cheremkhin, P.A.; Kurbatova, E.A. Comparative appraisal of global and local thresholding methods for binarisation of off-axis digital holograms. Opt. Lasers Eng. 2019, 115, 119–130. [Google Scholar] [CrossRef]
- Kreis, T.; Aswendt, P.; Hoefling, R. Hologram reconstruction using a digital micromirror device. OPTICE 2001, 40, 926–933. [Google Scholar]
- Wang, D.; Wei, S. Characterization of a Digital Micromirror Device for Computer Generated Video Holography. In Proceedings of the Fourth International Conference on Image and Graphics (ICIG 2007), Chengdu, China, 22–24 August 2007; pp. 855–862. [Google Scholar]
- Scholes, S.; Kara, R.; Pinnell, J.; Rodríguez-Fajardo, V.; Forbes, A. Structured light with digital micromirror devices: A guide to best practice. OPTICE 2019, 59, 041202. [Google Scholar] [CrossRef]
- Chen, X.; Yan, B.-b.; Song, F.-j.; Wang, Y.-q.; Xiao, F.; Alameh, K. Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers. Appl. Opt. 2012, 51, 7214–7220. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Liu, H.; Tan, X.; Lu, Z.; Li, C.; Song, L.; Wang, Z. Diffraction analysis of digital micromirror device in maskless photolithography system. J. Micro/Nanolithogr. MEMS MOEMS 2014, 13, 043016. [Google Scholar] [CrossRef]
- Ren, Y.-X.; Lu, R.-D.; Gong, L. Tailoring light with a digital micromirror device. Ann. Der Phys. 2015, 527, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Zhang, J.; Wang, J.; Sun, Q. Diffraction analysis for DMD-based scene projectors in the long-wave infrared. Appl. Opt. 2016, 55, 8016–8021. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Shi, Y.; Xiao, X.; Zhang, Q.; Chen, F.; Sun, X.; Yuan, W.; Yu, Y. Non-paraxial diffraction analysis for developing DMD-based optical systems. Opt. Lett. 2022, 47, 4758–4761. [Google Scholar] [CrossRef] [PubMed]
- Casini, R.; Nelson, P.G. On the intensity distribution function of blazed reflective diffraction gratings. J. Opt. Soc. Am. A 2014, 31, 2179–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molodtsov, D.Y.; Rodin, V. Object recognition in non-coherent optical correlator based on DMD-modulator. In Proceedings of the Asia-Pacific Conference on Fundamental Problems of Opto-and Microelectronics, Khabarovsk, Russia, 14 December 2016. [Google Scholar]
- Stsepuro, N.; Kovalev, M.; Zlokazov, E.; Kudryashov, S. Wavelength-Independent Correlation Detection of Aberrations Based on a Single Spatial Light Modulator. Photonics 2022, 9, 909. [Google Scholar] [CrossRef]
- Molodtsov, D.Y.; Cheremkhin, P.A.; Krasnov, V.V.; Rodin, V.G. Impact of DMD-SLMs errors on reconstructed Fourier holograms quality. J. Phys. Conf. Ser. 2016, 737, 012074. [Google Scholar] [CrossRef]
Order (Center Positions) | 3D Phase Model /Fourier Model (°) | 3D Phase Model/ Fourier Model (mm) | Theory (°) | Theory (mm) |
---|---|---|---|---|
6th | 2.96 | 25.84 | 2.96 | 25.84 |
7th | −0.43 | −3.79 | −0.43 | −3.79 |
8th | −3.83 | −33.46 | −3.83 | −33.46 |
3D Phase Model (Rad) | Fourier Model (Rad) | Theory (Rad) | |
---|---|---|---|
6th | 8765.00 | 8765.00 | 8766.38 |
7th | −1286.52 | −1286.52 | −1286.72 |
8th | −11,337.98 | −11,337.97 | −11,339.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, H. Diffraction Characteristics of a Digital Micromirror Device for Computer Holography Based on an Accurate Three-Dimensional Phase Model. Photonics 2023, 10, 130. https://doi.org/10.3390/photonics10020130
Wang X, Zhang H. Diffraction Characteristics of a Digital Micromirror Device for Computer Holography Based on an Accurate Three-Dimensional Phase Model. Photonics. 2023; 10(2):130. https://doi.org/10.3390/photonics10020130
Chicago/Turabian StyleWang, Xiaoyu, and Hao Zhang. 2023. "Diffraction Characteristics of a Digital Micromirror Device for Computer Holography Based on an Accurate Three-Dimensional Phase Model" Photonics 10, no. 2: 130. https://doi.org/10.3390/photonics10020130
APA StyleWang, X., & Zhang, H. (2023). Diffraction Characteristics of a Digital Micromirror Device for Computer Holography Based on an Accurate Three-Dimensional Phase Model. Photonics, 10(2), 130. https://doi.org/10.3390/photonics10020130