Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor
Abstract
1. Introduction
2. Theoretical Analysis
3. Experimental
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Porfirev, A.P.; Kuchmizhak, A.A.; Gurbatov, S.O.; Juodkazis, S.; Khonina, S.N.; Kul’chin, Y.N. Phase singularities and optical vortices in photonics. Phys. Uspekhi 2022, 65, 789–811. [Google Scholar] [CrossRef]
- Chen, J.; Wan, C.; Zhan, Q. Engineering photonic angular momentum with structured light: A review. Adv. Photonics 2021, 3, 064001. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Kirilenko, M.S.; Khonina, S.N.; Skidanov, R.V.; Soifer, V.A. Study of propagation of vortex beams in aerosol optical medium. Appl. Opt. 2017, 56, E8–E15. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Karpeev, S.V.; Paranin, V.D. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Opt. Lasers Eng. 2018, 105, 68–74. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, F.; Lan, B.; Tang, A. Mode-dependent crosstalk and detection probability of orbital angular momentum of optical vortex beam through atmospheric turbulence. J. Opt. 2020, 22, 075607. [Google Scholar] [CrossRef]
- Yang, C.; Lan, Y.; Jiang, X.; Long, H.; Hou, J.; Chen, S. Beam-holding property analysis of the perfect optical vortex beam transmitting in atmospheric turbulence. Opt. Commun. 2020, 472, 125879. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Lamperska, W.; Masajada, J.; Drobczyński, V.; Wasylczyk, P. Optical vortex torque measured with optically trapped microbarbells. Appl. Opt. 2020, 59, 4703–4707. [Google Scholar] [CrossRef]
- Bobkova, V.; Stegemann, J.; Droop, R.; Otte, E.; Denz, C. Optical grinder: Sorting of trapped particles by orbital angular momentum. Opt. Express 2021, 29, 12967–12975. [Google Scholar] [CrossRef]
- Skidanov, R.V.; Khonina, S.N.; Kotlyar, V.V. Optical micromanipulation using a binary dynamic light modulator. Comput. Opt. 2008, 32, 361–365. [Google Scholar]
- Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics 2016, 8, 200–227. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V.; Butt, M.A. Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders. Sensors 2021, 21, 2988. [Google Scholar] [CrossRef] [PubMed]
- Fadeyeva, T.A.; Shvedov, V.G.; Izdebskaya, Y.V.; Volyar, A.V.; Brasselet, E.; Neshev, D.N.; Desyatnikov, A.S.; Krolikowski, W.; Kivshar, Y.S. Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt. Express 2010, 18, 10848–10863. [Google Scholar] [CrossRef]
- Khonina, S.N.; Morozov, A.A.; Karpeev, S.V. Effective transformation of a zero-order Bessel beam into a second-order vortex beam using a uniaxial crystal. Laser Phys. 2014, 24, 056101. [Google Scholar] [CrossRef]
- Khonina, S.N.; Porfirev, A.P.; Kazanskiy, N.L. Variable transformation of singular cylindrical vector beams using anisotropic crystal. Sci. Rep. 2020, 10, 5590. [Google Scholar] [CrossRef]
- Piłka, J.; Kwaśny, M.; Filipkowski, A.; Buczyński, R.; Karpierz, M.A.; Laudyn, U.A. A Gaussian to Vector Vortex Beam Generator with a Programmable State of Polarization. Materials 2022, 15, 7794. [Google Scholar] [CrossRef]
- Bazhenov, V.Y.; Vasnetsov, M.; Soskin, M. Laser beams with screw dislocations in their wavefronts. JETP Lett. 1991, 52, 429–431. [Google Scholar]
- Khonina, S.N.; Skidanov, R.V.; Kotlyar, V.V.; Soifer, V.A.; Turunen, J. DOE-generated laser beams with given orbital angular moment: Application for micromanipulation. Proc. SPIE Int. Soc. Opt. Eng. 2005, 5962, 59622W. [Google Scholar]
- Moreno, I.; Davis, J.A.; Pascoguin, B.M.L.; Mitry, M.J.; Cottrell, D.M. Vortex sensing diffraction gratings. Opt. Lett. 2009, 34, 2927. [Google Scholar] [CrossRef]
- Stoyanov, L.; Topuzoski, S.; Stefanov, I.; Janicijevic, L.; Dreischuh, A. Farfield diffraction of an optical vortex beam by a fork-shaped grating. Opt. Commun. 2015, 350, 301. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Karpeev, S.V.; Porfirev, A.P. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron. 2020, 50, 629–635. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, X.; Niu, L.; Wang, K.; Yang, Z.; Liu, J. Generating terahertz perfect optical vortex beams by diffractive elements. Opt. Express 2020, 28, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.; Wen, D.; Xin, J.; Gerardot, B.D.; Li, J.; Chen, X. Vector vortex beam generation with a singleplasmonicmetasurface. ACS Photonics 2016, 3, 1558. [Google Scholar] [CrossRef]
- Degtyarev, S.A.; Volotovsky, S.G.; Khonina, S.N. Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams. J. Opt. Soc. Am. B 2018, 35, 1963–1969. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Gao, J.; Yang, X. Generating focused 3D perfect vortex beams by plasmonicmetasurfaces. Adv. Opt. Mater. 2018, 6, 1701228. [Google Scholar] [CrossRef]
- Ahmed, H.; Rahim, A.A.; Maab, H.; Ali, M.M.; Mahmood, N.; Naureen, S. Phase engineering with all-dielectric metasurfaces for focused-optical-vortex micro-objective (FOV) beams with high cross-polarization efficiency. Opt. Mater. Express 2020, 10, 434–448. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Pu, M.; He, Q.; Jin, J.; Xu, M.; Zhang, X.Y.; Gao, P.; Luo, X. Spin-decoupled metasurface for simultaneous detection of spin and orbitalangular momenta via momentum transformation. Light-Sci. Appl. 2021, 10, 63. [Google Scholar] [CrossRef]
- Ahmed, H.; Rahim, A.A.; Maab, H.; Ali, M.M.; Mahmood, N.; Naureen, S. Highly Efficient PerfectVortex Beams Generation Based on All-Dielectric Metasurface for Ultraviolet Light. Nanomaterials 2022, 12, 3285. [Google Scholar] [CrossRef]
- Fatkhiev, D.M.; Butt, M.A.; Grakhova, E.P.; Kutluyarov, R.V.; Stepanov, I.V.; Kazanskiy, N.L.; Khonina, S.N.; Lyubopytov, V.S.; Sultanov, A.K. Recent advances in generation and detection of orbital angular momentum optical beams—A review. Sensors 2021, 21, 4988. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Lv, H.; Fu, X.; Yang, Y. Vortex beam: Generation and detection of orbital angular momentum. Chin. Opt. Lett. 2022, 20, 012601. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N.; Khorin, P.A.; Ivliev, N.A. Polarization-sensitive direct laser patterning of azopolymer thin films with vortex beams. Opt. Lett. 2022, 47, 5080–5083. [Google Scholar] [CrossRef]
- Porfirev, A.; Khonina, S.; Ivliev, N.; Meshalkin, A.; Achimova, E. Writing and reading with the longitudinal component of light using carbazole-containing azopolymer thin films. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Cazac, V.; Achimova, E.; Abashkin, V.; Prisacar, A.; Loshmanschii, C.; Meshalkin, A.; Egiazarian, K. Polarization holographic recording of vortex diffractive optical elements on azopolymer thin films and 3D analysis via phase-shifting digital holographic microscopy. Opt. Express 2021, 29, 9217–9230. [Google Scholar] [CrossRef] [PubMed]
- Ivliev, N.A.; Podlipnov, V.V.; Khonina, S.N.; Meshalkin, A.Y.; Akimova, E.A. Single- and Double-Beam Optical Formation of Relief-Phase Diffraction Microstructures in Carbazole-Containing Azopolymer Films. Opt. Spectrosc. 2021, 129, 489–494. [Google Scholar] [CrossRef]
- Achimova, E.; Stronski, A.; Abaskin, V.; Meshalkin, A.; Paiuk, A.; Prisacar, A.; Oleksenko, P.; Triduh, G. Direct surface relief formation on As2S3-Se nanomultilayers in dependence on polarization states of recording beams. Opt. Mater. 2015, 47, 566–572. [Google Scholar] [CrossRef]
- Porfirev, A.; Khonina, S.; Meshalkin, A.; Ivliev, N.; Achimova, E.; Abashkin, V.; Prisacar, A.; Podlipnov, V. Two-step maskless fabrication of compound fork-shaped gratings in nanomultilayer structures based on chalcogenide glasses. Opt. Lett. 2021, 46, 3037–3040. [Google Scholar] [CrossRef]
- Abashkin, V.; Achimova, E.; Kryskov Ts Meshalkin, A.; Prisacar, A.; Triduh, G.; Vlcek, M. Investigation of Optical Properties of As2S3–Se Nanomultilayers. In Proceedings of the 2nd International Conference of Nanotechnologies and Biomedical Engineering, Chisinau, Republic of Moldova, 18–20 April 2013; pp. 254–257. [Google Scholar]
- Meshalkin, A.; Losmanschii, C.; Prisacar, A.; Achimova, E.; Abashkin, V.; Pogrebnoi, S.; Macaev, F. Carbazole-based azopolymers as media for polarization holographic recording. Adv. Phys. Res. 2019, 1, 86–98. [Google Scholar]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A Math. Phys. Sci. 1959, 253, 358–379. [Google Scholar]
- Khonina, S.N.; Ustinov, A.V. Focusing of shifted vortex beams of arbitrary order with differentpolarization. Opt. Commun. 2018, 426, 359–365. [Google Scholar] [CrossRef]
- Wong, V.; Ratner, M.A. Explicit computation of gradient and nongradient contributions to optical forces in the discretedipole approximation. J. Opt. Soc. A B 2006, 23, 1801–1814. [Google Scholar] [CrossRef]
- Wong, V.; Ratner, M.A. Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles. Phys. Rev. B 2006, 73, 075416. [Google Scholar] [CrossRef]
- Bian, S.; Williams, J.M.; Kim, D.Y.; Li, L.; Balasubramanian, S.; Kumar, J.; Tripathy, S. Photoinduced surface deformations on azobenzene polymer films. J. Appl. Phys. 1999, 86, 4498–4508. [Google Scholar] [CrossRef]
- Ambrosio, A.; Marrucci, L.; Borbone, F.; Roviello, A.; Maddalena, P. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat. Commun. 2012, 3, 989. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Volotovskiy, S.G.; Ivliev, N.A.; Podlipnov, V.V. Influence of optical forces induced by paraxial vortex Gaussian beams on the formation of a microrelief on carbazole-containing azopolymerfilms. Appl. Opt. 2020, 59, 9185–9194. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Allen, L.; Van der Veen HE, L.O.; Woerdman, J.P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 1993, 96, 123–132. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt. 2017, 56, 4095–4104. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N. Astigmatic transformation of optical vortex beams with high-order cylindrical polarization. J. Opt. Soc. Am. B 2019, 36, 2193–2201. [Google Scholar] [CrossRef]
- Khorin, P.A.; Khonina, S.N.; Porfirev, A.P.; Kazanskiy, N.L. Simplifying the experimental detection of the vortex topological charge based on the simultaneous astigmatic transformation of several types and levels in the same focal plane. Sensors 2022, 22, 7365. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Gao, J. Generation of polarization singularities with geometric metasurfaces. Sci. Rep. 2019, 9, 19656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, X.; Gao, J. Generation of nondiffracting vector beams with ring-shaped plasmonic metasurfaces. Phys. Rev. Appl. 2019, 11, 064059. [Google Scholar] [CrossRef]
- Lin, A.; Wang, J.; Chen, Y.; Qi, P.; Huang, Z.; Tan, X. Reconstruction characters of conventional holography using polarization-sensitive material. Appl. Opt. 2022, 61, 3134–3140. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Lu, L.; Yaroshchuk, O.; Bos, P. Closer look at transmissive polarization volume holograms: Geometry, physics, and experimental validation. Appl. Opt. 2021, 60, 580–592. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivliev, N.A.; Khonina, S.N.; Podlipnov, V.V.; Karpeev, S.V. Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor. Photonics 2023, 10, 125. https://doi.org/10.3390/photonics10020125
Ivliev NA, Khonina SN, Podlipnov VV, Karpeev SV. Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor. Photonics. 2023; 10(2):125. https://doi.org/10.3390/photonics10020125
Chicago/Turabian StyleIvliev, Nikolay A., Svetlana N. Khonina, Vladimir V. Podlipnov, and Sergey V. Karpeev. 2023. "Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor" Photonics 10, no. 2: 125. https://doi.org/10.3390/photonics10020125
APA StyleIvliev, N. A., Khonina, S. N., Podlipnov, V. V., & Karpeev, S. V. (2023). Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor. Photonics, 10(2), 125. https://doi.org/10.3390/photonics10020125