Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure
Abstract
1. Introduction
2. Theory
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OAC | Optical absorption coefficient |
RIC | Refractive-index change |
References
- Cao, E.; Lin, W.; Sun, M.-T.; Liang, W.; Song, Y. Exciton-plasmon coupling interactions: From principle to applications. Nanophotonics 2017, 7, 145. [Google Scholar] [CrossRef]
- Szychowski, B.; Pelton, M.; Daniel, M.-C. Preparation and properties of plasmonic-excitonic nanoparticle assemblies. Nanophotonics 2019, 8, 517. [Google Scholar] [CrossRef]
- Yannopapas, V. Enhancement of nonlinear susceptibilities near plasmonic metamaterials. Opt. Commun. 2010, 283, 1647–1649. [Google Scholar] [CrossRef]
- Evangelou, S.; Yannopapas, V.; Paspalakis, E. Modification of Kerr nonlinearity in a four-level quantum system near a plasmonic nanostructure. J. Mod. Opt. 2014, 61, 1458–1464. [Google Scholar] [CrossRef]
- Ren, J.; Chen, H.; Gu, Y.; Zhao, D.-X.; Zhou, H.; Zhang, J.; Gong, Q. Plasmon-enhanced Kerr nonlinearity via subwavelength-confined anisotropic Purcell factors. Nanotechnology 2016, 27, 425205. [Google Scholar] [CrossRef]
- Terzis, A.F.; Kosionis, S.G.; Boviatsis, J.; Paspalakis, E. Nonlinear optical susceptibilities of semiconductor quantum dot–metal nanoparticle hybrids. J. Mod. Opt. 2016, 63, 451–461. [Google Scholar] [CrossRef]
- Evangelou, S. Modifying the linear and nonlinear optical susceptibilities of coupled quantum dot-metallic nanosphere systems with the Purcell effect. J. Appl. Phys. 2018, 124, 233103. [Google Scholar] [CrossRef]
- Kosionis, S.G.; Paspalakis, E. Control of self-Kerr nonlinearity in a driven coupled semiconductor quantum dot–metal nanoparticle structure. J. Phys. Chem. C 2019, 123, 7308–7317. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, K.-D. Slow light in an artificial hybrid nanocrystal complex. J. Phys. B 2009, 42, 015502. [Google Scholar] [CrossRef]
- Li, J.-B.; Kim, N.-C.; Cheng, M.-T.; Zhou, L.; Hao, Z.-H.; Wang, Q.-Q. Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems. Opt. Express 2012, 20, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.R. Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system. Nanotechnology 2013, 24, 125701. [Google Scholar] [CrossRef]
- Evangelou, S. Tailoring second-order nonlinear optical effects in coupled quantum dot-metallic nanosphere structures using the Purcell effect. Microelectr. Eng. 2019, 215, 111019. [Google Scholar] [CrossRef]
- Yang, T.; Guo, K.-X. Enhancement of surface plasmon resonances on the nonlinear optical properties in an elliptical quantum dot. J. Opt. Soc. Am. B 2018, 35, 2251–2258. [Google Scholar] [CrossRef]
- Evangelou, S.; Angelis, C.T. Using the Purcell effect for the modification of third-harmonic generation in a quantum dot near a metallic nanosphere. Opt. Commun. 2019, 447, 36–41. [Google Scholar] [CrossRef]
- Carreno, F.; Anton, M.A.; Paspalakis, E. Nonlinear optical rectification and optical bistability in a coupled asymmetric quantum dot-metal nanoparticle hybrid. J. Appl. Phys. 2018, 124, 113107. [Google Scholar] [CrossRef]
- Evangelou, S. Nonlinear optical rectification of a coupled semiconductor quantum dot—Metallic nanosphere system under a strong electromagnetic field. Physica B 2019, 556, 170–174. [Google Scholar] [CrossRef]
- Domenikou, N.; Thanopulos, I.; Yannopapas, V.; Paspalakis, E. Nonlinear Optical Rectification in an Inversion-Symmetry-Broken Molecule Near a Metallic Nanoparticle. Nanomaterials 2022, 12, 1020. [Google Scholar] [CrossRef]
- Sadeghi, S.M. Gain without inversion in hybrid quantum dot–metallic nanoparticle systems. Nanotechnology 2010, 21, 455401. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.M. Ultrafast plasmonic field oscillations and optics of molecular resonances caused by coherent exciton-plasmon coupling. Phys. Rev. A 2013, 88, 013831. [Google Scholar] [CrossRef]
- Anton, M.A.; Carreno, F.; Calderon, O.G.; Melle, S.; Cabrera, E. Radiation emission from an asymmetric quantum dot coupled to a plasmonic nanostructure. J. Opt. 2016, 18, 025001. [Google Scholar] [CrossRef]
- Carreno, F.; Anton, M.A.; Yannopapas, V.; Paspalakis, E. Control of the absorption of a four-level quantum system near a plasmonic nanostructure. Phys. Rev. B 2017, 95, 195410. [Google Scholar] [CrossRef]
- Kosionis, S.G.; Paspalakis, E. Pump-probe optical response of semiconductor quantum dot–metal nanoparticle hybrids. J. Appl. Phys. 2018, 124, 223104. [Google Scholar] [CrossRef]
- Kosionis, S.G.; Paspalakis, E. Controlling the pump-probe optical response in asymmetric tunneling-controlled double quantum dot molecule—Metal nanoparticle hybrids. Appl. Sci. 2021, 11, 11714. [Google Scholar] [CrossRef]
- Karabulut, E.Ö.; Karabulut, I. Pump-probe optical response of a semiconductor quantum dot-metallic nanosphere hybrid system. Europ. Phys. J. Plus 2022, 137, 799. [Google Scholar] [CrossRef]
- Paspalakis, E.; Evangelou, S.; Kosionis, S.G.; Terzis, A.F. Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system. J. Appl. Phys. 2014, 115, 083106. [Google Scholar] [CrossRef]
- Singh, S.K.; Abak, M.K.; Tasgin, M.E. Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths. Phys. Rev. B 2016, 93, 035410. [Google Scholar] [CrossRef]
- Hatef, A.; Singh, M.R. Plasmonic effect on quantum coherence and interference in metallic photonic crystals doped with quantum dots. Phys. Rev. A 2010, 81, 063816. [Google Scholar] [CrossRef]
- Hatef, A.; Sadeghi, S.M.; Singh, M.R. Plasmonic electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems. Nanotechnology 2012, 23, 065701. [Google Scholar] [CrossRef]
- Evangelou, S.; Yannopapas, V.; Paspalakis, E. Transparency and slow light in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 2012, 86, 053811. [Google Scholar] [CrossRef]
- Paspalakis, E.; Evangelou, S.; Yannopapas, V.; Terzis, A.F. Phase-dependent optical effects in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 2013, 88, 053832. [Google Scholar] [CrossRef]
- Wang, L.; Gu, Y.; Chen, H.; Zhang, J.-Y.; Cui, Y.; Gerardot, B.-D.; Gong, Q.-H. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity. Sci. Rep. 2019, 3, 2879. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Yu, B.-L. Plasmonic control of refractive index without absorption in metallic photonic crystals doped with quantum dots. Plasmonics 2019, 13, 567–574. [Google Scholar] [CrossRef]
- Unlu, S.; Karabulut, I.; Safak, H. Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Physica E 2006, 33, 319–324. [Google Scholar] [CrossRef]
- Xie, W.-F. Nonlinear optical properties of a hydrogenic donor quantum dot. Phys. Lett. A 2008, 372, 5498–5500. [Google Scholar] [CrossRef]
- Karabulut, I.; Safak, H.; Tomak, M. Excitonic effects on the nonlinear optical properties of small quantum dots. J. Phys. D Appl. Phys. 2008, 41, 155104. [Google Scholar] [CrossRef]
- Sahin, M. Third-order nonlinear optical properties of a one- and two-electron spherical quantum dot with and without a hydrogenic impurity. J. Appl. Phys. 2009, 106, 063710. [Google Scholar] [CrossRef]
- Zeng, Z.; Garoufalis, C.; Terzis, A.F.; Baskoutas, S. Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thickness, impurity, and dielectric environment. J. Appl. Phys. 2013, 114, 023510. [Google Scholar] [CrossRef]
- Paspalakis, E. Comment on “From fast light to slow light in resonantly driven quantum dot systems” [Opt. Commun. 298–299 (2013) 176–179]. Opt. Commun. 2015, 357, 195–197. [Google Scholar] [CrossRef]
- Niculescu, E.C.; Bejan, D. Nonlinear optical properties of GaAs pyramidal quantum dots. Physica E 2015, 74, 51–58. [Google Scholar] [CrossRef]
- Bejan, D.; Niculescu, E.C. Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field. Eur. Phys. J. B 2016, 89, 138. [Google Scholar] [CrossRef]
- Arif, S.M.; Bera, A.; Ghosh, M. Exploring the nonlinear optical properties of impurity doped quantum dots in the light of noise-binding energy interplay. Results Phys. 2019, 13, 102139. [Google Scholar] [CrossRef]
- Baira, M.; Salem, B.; Madhar, N.A.; Ilahi, B. Linear and Nonlinear Intersubband Optical Properties of Direct Band Gap GeSn Quantum Dots. Nanomaterials 2019, 9, 124. [Google Scholar] [CrossRef]
- Kilic, D.G.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I. Impurity-modulated optical response of a disc-shaped quantum dot subjected to laser radiation. Photon. Nanostr. Fund. Appl. 2020, 38, 100748. [Google Scholar] [CrossRef]
- Jiang, X.; Guo, K.-X.; Liu, G.; Yang, T.; Yang, Y.-L. Enhancement of surface plasmon resonances on the nonlinear optical properties in a GaAs quantum dot. Superlatt. Microstruct. 2017, 105, 56–64. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Guo, K.-X.; Yang, T.; Lia, K.; Zhai, W.-J. Enhancement of linear and nonlinear optical absorption coefficients in spherical dome semiconductor nanoshells by surface plasmon resonances. Physica B 2019, 556, 158–162. [Google Scholar] [CrossRef]
- Su, Y.; Guo, K.-X.; Liu, G.-H.; Yang, T.; Yu, Q.-C.; Hu, M.-L.; Yang, Y.-L. Nonlinear optical properties of semiconductor double quantum wires coupled to a quantum-sized metal nanoparticle. Opt. Lett. 2020, 45, 479–482. [Google Scholar] [CrossRef]
- Vladimirova, Y.V.; Klimov, V.V.; Pastukhov, V.M.; Zadkov, V.N. Modification of two-level-atom resonance fluorescence near a plasmonic nanostructure. Phys. Rev. A 2012, 85, 053408. [Google Scholar] [CrossRef]
- Vladimirova, Y.V.; Zadkov, V.N. Quantum optics in nanostructures. Nanomaterials 2021, 11, 1919. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; Chapter 12. [Google Scholar]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: San Diego, CA, USA, 2008; Paragraph 6.3. [Google Scholar]
- Zeng, Z.; Paspalakis, E.; Garoufalis, C.; Terzis, A.F.; Baskoutas, S. Optical susceptibilities in singly charged ZnO colloidal quantum dots embedded in different dielectric matrices. J. Appl. Phys. 2013, 113, 054303. [Google Scholar] [CrossRef]
- Paspalakis, E.; Boviatsis, J.; Baskoutas, S. Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots. J. Appl. Phys. 2013, 114, 153107. [Google Scholar] [CrossRef]
- Kosionis, S.G.; Terzis, A.F.; Yannopapas, V.; Paspalakis, E. Nonlocal effects in energy absorption of coupled quantum dot–metal nanoparticle systems. J. Phys. Chem. C 2012, 116, 23663–23670. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evangelou, S. Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure. Photonics 2023, 10, 124. https://doi.org/10.3390/photonics10020124
Evangelou S. Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure. Photonics. 2023; 10(2):124. https://doi.org/10.3390/photonics10020124
Chicago/Turabian StyleEvangelou, Sofia. 2023. "Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure" Photonics 10, no. 2: 124. https://doi.org/10.3390/photonics10020124
APA StyleEvangelou, S. (2023). Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure. Photonics, 10(2), 124. https://doi.org/10.3390/photonics10020124