Diatoms of Gut Content of Crassostrea gasar (Bivalvia: Ostreidae) (Adanson, 1757) Cultivated in an Amazonian Estuary (Emboraí Velho, Northern Brazil)
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Climatology
2.3. Field Procedures
2.3.1. Oyster Collection for Gut Content Studies
2.3.2. Estuarine Diatoms
2.3.3. Hydrological Variables and Phytoplanktonic Biomass (Chlorophyll a)
2.4. Laboratory Procedures
2.4.1. Analysis of the Gut Contents of Oysters
2.4.2. Analysis of the Diatoms of the Estuary
2.4.3. Hydrological Variables and Phytoplanktonic Biomass
2.5. Data Processing
3. Results
3.1. Rainfall
3.2. Biological Variables
3.2.1. Diatom Flora in Oyster Gut Contents
3.2.2. Diatoms of the Emboraí Velho Estuary
3.3. Hydrological Variables and Phytoplankton Biomass (Chlorophyll a)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitra, A.; Flynn, K.J. Modelling mixotrophy in harmful algal blooms: More or less the sum of the parts? J. Mar. Syst. 2010, 83, 158–169. [Google Scholar] [CrossRef]
- Harris, R.; Wiebe, P.; Lenz, J.; Skjoldal, H.R.; Huntley, M. ICES Zooplankton Methodology Manual; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Bere, T. Ecological preferences of benthic diatoms in a tropical river system in São Carlos-SP, Brazil. Trop. Ecol. 2014, 55, 47–61. [Google Scholar]
- Mattei, F.; Buonocore, E.; Franzese, P.P.; Scardi, M. Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models. Ecol. Model. 2021, 45, 109578. [Google Scholar] [CrossRef]
- Sharoni, S.; Halevy, I. Geologic controls on phytoplankton elemental composition. Proc. Natl. Acad. Sci. USA 2021, 119, e2113263118. [Google Scholar] [CrossRef]
- Herrera, J.S.; Fernández, D.R. Uso potencial de microalgas para mitigar los efectos de las emisiones de dióxido de carbono. Rev. Invest. 2017, 10, 153–164. [Google Scholar] [CrossRef]
- Cavan, E.L.; Hill, S.L. Commercial fishery disturbance of the global ocean biological carbo. Glob. Chang. Biol. 2021, 28, 1212–1221. [Google Scholar] [CrossRef]
- Antelo, F.S.; Anschau, A.; Costa, J.A.; Kalil, S.J. Extraction and purification of C-phycocyanin from Spirulina platensis in conventional and integrated aqueous two-phase systems. J. Braz. Chem. Soc. 2010, 21, 921–926. [Google Scholar] [CrossRef]
- Bastos, P.; Vieira, G.C.; dos Reis, I.M.M.; Costa, R.L.; Lopes, G.R. Comportamento alimentar de paralarvas do polvo Octopus vulgaris Tipo II (Cuvier, 1797) alimentadas com artêmia enriquecida com microalgas e suplementada com DHA. Arq. Bras. Med. Vet. Zootec. 2018, 70, 628–632. [Google Scholar] [CrossRef]
- Cardoso, C.; Gomes, R.; Rato, A.; Joaquim, S.; Machado, J.; Gonçalves, J.F.; Afonso, C. Elemental composition and bioaccessibility of farmed oysters (Crassostrea gigas) fed different ratios of dietary seaweed and microalgae during broodstock conditioning. Food Sci. Nutr. 2019, 7, 2495–2504. [Google Scholar] [CrossRef]
- Silva, O.L.L.; Veríssimo, S.M.M.; Rosa, A.M.B.P.; Iguchi, Y.B.; Nunes, E.S.C.L.; Moraes, C.M.; Cordeiro, C.A.M.; Xavier, D.A.; Pinto, A.S.O.; Joele, M.R.S.P.; et al. Effect of environmental factors on microbiological quality of oyster farming in Amazon estuaries. Aquac. Rep. 2020, 18, 100437. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization. The State of World Fisheries and Aquaculture. Sustainability in Action. 2020. Available online: http://www.fao.org/documents/card/en/c/ca9229en/ (accessed on 1 March 2021).
- Andrade, G.J.P.O. Maricultura em Santa Catarina: A cadeia produtiva gerada pelo esforço coordenado de pesquisa, extensão e desenvolvimento tecnológico. Rev. Eletr. Exten. 2016, 13, 204–217. [Google Scholar] [CrossRef]
- Richard, S.F.; Denise, L.B.; Roger, I.E.N.; Kemp, W.M.; Luckenbach, M. Effects of oyster population restoration strategies on phytoplankton biomass in Chesapeake Bay: A flexible modeling approach. Mar. Ecol. Prog. Ser. 2007, 336, 43–67. [Google Scholar]
- Fiddy, S.P.; Priscilla, D.; Laurent, B.; Gastineau, R.; Jacquette, B.; Figiel, A.; Morançais, M.; Tremblay, R.; Mouget, J.-L.; Cognie, B. Cell size-based, passive selection of the blue diatom Haslea ostrearia by the oyster Crassostrea gigas. J. Molluscan Stud. 2017, 83, 145–152. [Google Scholar]
- Porter, E.T.; Franz, H.; Lacouture, R. Impact of Eastern oyster Crassostrea virginica biodeposit resuspension on the seston, nutrient, phytoplankton, and zooplankton dynamics: A mesocosm experiment. Mar. Ecol. Prog. Ser. 2018, 586, 21–40. [Google Scholar] [CrossRef]
- Han, D.Y.; Chen, Y.; Zhang, C.L.; Ren, Y.; Xue, Y.; Wan, R. Evaluating impacts of intensive shellfish aquaculture on a semi-closed marine ecosystem. Ecol. Model. 2017, 359, 193–200. [Google Scholar] [CrossRef]
- Luo, X.; Pan, K.; Wang, L.; Li, M.; Li, T.; Pang, B.; Kang, J.; Fu, J.; Lan, W. Anthropogenic Inputs Affect Phytoplankton Communities in a Subtropical Estuary. Water 2022, 14, 636. [Google Scholar] [CrossRef]
- Espinosa, E.P.; Barillé, L.; Allam, B. Use of encapsulated live microalgae to investigate pre-ingestive selection in the oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 2007, 343, 118–126. [Google Scholar] [CrossRef]
- Sipaúba-Tavares, L.H.; Rocha, O. Production of Plankton (Phytoplankton and Zooplankton) for Feeding Aquatic Organisms; Rima: São Carlos, Brazil, 2003; 106p. [Google Scholar]
- Batista, A.P.; Gouveia, L.; Bandarra, N.M.; Franco, J.M.; Raymundo, A. Comparação de perfis de biomassa microalgal como novo ingrediente funcional para produtos alimentícios. Algal Res. 2013, 2, 164–173. [Google Scholar] [CrossRef]
- Kumar, K.; Dasgupta, C.N.; Das, D. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour. Technol. 2014, 167, 358–366. [Google Scholar] [CrossRef]
- Bennamoun, L.; Afzal, M.T.; Léonard, A. Drying of alga as a source of bioenergy feedstock and food supplement—A review. Renew. Sustain. Energy Rev. 2015, 50, 1203–1212. [Google Scholar] [CrossRef]
- Cheng, P.; Zhou, C.; Chu, R.; Chang, T.; Xu, J.; Ruan, R.; Yan, X. Effect of microalgae diet and culture system on the rearing of bivalve mollusks: Nutritional properties and potential cost improvements. Algal Res. 2020, 51, 102076. [Google Scholar] [CrossRef]
- Christo, S.W.; Ivachuk, C.S.; Veroneze, F.; Ferreira-Jr, A.L.; Absher, T.M. Descrição alimentar e estágio de maturação de Crassostrea brasiliana comercializadas no mercado municipal de Paranaguá, Paraná, Brasil. Braz. J. Aquat. Sci. Technol. 2015, 19, 1–9. [Google Scholar] [CrossRef]
- IBGE, Instituto Brasileiro de Geografia e Estatística. 2020. Available online: https://cidades.ibge.gov.br/brasil/pa/pesquisa/18/16458 (accessed on 15 February 2021).
- Herbert, R.J.; Humphreys, J.; Davies, C.J.; Roberts, C.; Fletcher, S.; Crowe, T.P. Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe. Biodivers. Conserv. 2016, 25, 2835–2865. [Google Scholar] [CrossRef]
- Horodesky, A.; Castilho-Westphal, G.G.; Cozer, N.; Rossi, V.G.; Ostrensky, A. Effects of salinity on the survival and histology of oysters Crassostrea gasar (Adanson, 1757). Biosci. J. 2019, 35, 586–597. [Google Scholar] [CrossRef]
- Carrasco, M.F.; Venerus, L.A.; Weiler, N.E.; Barón, P.J. Effects of different intertidal hard substrates on the recruitment of Crassostrea gigas. Hydrobiologia 2019, 827, 263–275. [Google Scholar] [CrossRef]
- Macedo, A.R.G.; Sühnel, S.; Cordeiro, C.A.M.; Nunes, E.S.C.L.; Sousa, N.C.; Couto, M.V.S.; Fujimoto, R.Y. Growth and survival of the native oyster Crassostrea gasar cultured under different stocking densities in two grow-out systems in tropical climate. Arq. Bras. Med. Veterinária Zootecnia 2021, 73, 893–901. [Google Scholar] [CrossRef]
- Silva, O.L.L.; Macedo, A.R.G.; Nunes, E.S.C.L.; Campos, K.D.; Araújo, L.C.C.; Tiburço, X.; Pinto, A.S.O.; Joele, M.R.S.P.; Ferreira, M.S.; Silva, A.C.R.; et al. Effect of environmental factors on the fatty acid profiles and physicochemical composition of oysters (Crassostrea gasar) in Amazon estuarine farming. Aquac. Res. 2020, 51, 2336–2348. [Google Scholar] [CrossRef]
- Varela, E.S.; Beasley, C.R.; Schneider, H.; Sampaio, I.; Marques-Silva, N.D.S.; Tagliaro, C.H. Molecular phylogeny of mangrove oysters (Crassostrea) from Brazil. J. Molluscan Stud. 2007, 73, 229–234. [Google Scholar] [CrossRef]
- Melo, A.G.C.; de Varela, E.S.; Beasley, C.R.; Schneider, H.; Sampaio, I.; Gaffney, P.M.; Tagliaro, C.H. Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea). Genet. Mol. Biol. 2010, 33, 564–572. [Google Scholar] [CrossRef]
- Galvão, M.N.; Pereira, O.M.; Machado, I.C.; Henriques, M.B. Estuário de Cananéia, SP (25 S; 48 W). Bol. Inst. Pesca 2000, 26, 147–162. [Google Scholar]
- Andrade, M.P.; Magalhães, A.; Pereira, L.C.C.; Flores-Montes, M.J.; Pardal, E.C.; Andrade, T.P.; Costa, R.M. Effects of a La Niña event on hydrological patterns and copepod community structure in a shallow tropical estuary (Taperaçu, Northern Brazil). J. Mar. Syst. 2016, 164, 128–143. [Google Scholar] [CrossRef]
- Barros, F.A.L.; Andrade, M.P.; Silva, T.R.C.; Pereira, L.C.C.; Costa, R.M. Composição e mudanças espaciais e temporais da diversidade e densidade do mesozooplâncton em um estuário amazônico (Emboraí Velho, Pará, Brasil). Bol. Mus. Para. Emílio Goeldi Sér. Ciênc. Nat. 2019, 14, 307–330. [Google Scholar] [CrossRef]
- Santos, A.S.D.; Sousa, P.H.C.; Melo, N.F.A.C.D.; Mesquita, K.F.C.; Pereira, J.A.R.; Santos, M.D.L.S. Distribuição espaçotemporal dos parâmetros abióticos e bióticos em um Estuário Amazônico (Brasil). Arqu. Ciênc. Mar. 2020, 53, 82–97. [Google Scholar] [CrossRef]
- Sampaio, D.S.; Tagliaro, C.H.; Schneider, H.; Beasley, C.R. Oyster culture on the Amazon mangrove coast: Asymmetries and advances in an emerging sector. Rev. Aquac. 2019, 11, 88–104. [Google Scholar] [CrossRef]
- Macedo, A.R.G.; Silva, A.D.S.; Sousa, N.D.C.; Silva, F.D.; Barros, F.A.L.; Suhnel, S.; Silva, O.L.L.; Nunes, E.S.C.L.; Cordeiro, C.A.M.; Fujimoto, R.Y. Crescimento e viabilidade econômica da ostra nativa Crassostrea gasar (Adanson, 1757) cultivadas em dois sistemas. Custos Agrone. Online 2020, 16, 282–312. [Google Scholar]
- Reis, R.D.S.C.; Brabo, M.F.; Rodrigues, R.P.; Campelo, D.A.V.; Veras, G.C.; Santos, M.A.S.; Bezerra, A.S. Aspectos socioeconômicos e produtivos de um empreendimento comunitário de ostreicultura em uma reserva extrativista marinha no litoral amazônico, Pará, Brasil. Int. J. Dev. Res. 2020, 10, 35072–35077. [Google Scholar]
- Reis, R.D.S.C.; Silva Costa, A.T.; Rodrigues, R.P.; Campelo, D.A.V.; Veras, G.C.; Brabo, M.F. Aspectos tecnológicos de um empreendimento de ostreicultura em uma reserva extrativista marinha na Amazônia. Rev. Agro. Meio Amb. 2020, 13, 1263–1279. [Google Scholar] [CrossRef]
- Sousa, J.A.; Cunha, K.N.; Nunes, Z.M.P. Influence of seasonal factors on the quality of a tidal creek on the Amazon coast of Brazil. J. Coast. Res. 2013, 65, 129–134. [Google Scholar] [CrossRef]
- MMA—Ministério do Meio Ambiente. 2019. Available online: https://www.gov.br/mma/pt-br (accessed on 5 July 2019).
- Barbosa, I.C.C.; Müller, R.C.S.; Alves, C.N.; Berrêdo, J.F.; Souza Filho, P.W. Composição Química de Sedimento de Manguezal do Estuário Bragantino (PA)-Brasil. Rev. Virtual Quim. 2015, 7, 1087–1101. [Google Scholar] [CrossRef]
- Christensen, T. Alger i Naturen og i Laboratoriet; Københavns Universitets, Institut for Sporeplanter: København, Denmark, 1988; 137p. [Google Scholar]
- Hasle, R.; Fryxell, G.A. Diatoms: Cleaning and mounting for light and electron microscopy. Trans. Am. Micros. Soc. 1970, 89, 469–474. [Google Scholar] [CrossRef]
- Simonsen, R. The Diatom Plankton of the Indian Ocean Expedition of R/V “Meteor” 1964–1965. Meteor Forsc. Reihe D Biol. 1974, 19, 1–107. [Google Scholar]
- Müller-Melchers, F.C.; Ferrando, H.J. Técnica para el estudio de las diatomeas. Bol. Inst. Oceanográfico 1956, 7, 151–160. [Google Scholar] [CrossRef]
- Utermöhl, H. Zur Vervollkommung der Quantitativen Phytoplankton-Methodik; Schweizerbart: Stuttgart, Germany, 1958; 38p. [Google Scholar]
- Round, F.E.; Crawford, R.M.; Mann, D.G. The Diatoms: Biology and Morphology of the Genera; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Hasle, G.R.; Syvertsen, E.E.; Steidinger, K.; Tangen, K.; Tomas, C. Identificação de Diatomáceas e Dinoflagelados Marinhos; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Tomas, C.R. Identifying Marine Phytoplankton; Elsevier: Cambridge, MA, USA; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Cupp, E.E. Marine plankton diatoms of the west coast of North America. In Bulletin of the Scripps Institution of Oceanography; University of California Press: Berkeley, CA, USA, 1943. [Google Scholar]
- Silva-Cunha, M.G.G.; Eskinazi-Leça, E. Catálogo das Diatomáceas (Bacillariophyceae) da Plataforma Continental de Pernambuco; SUDENE: Recife, Brazil, 1990. [Google Scholar]
- Moreira Filho, H.; Valente-Moreira, I.M.; Souza-Mosimann, R.M.D.; Cunha, J.A. Avaliação florística e ecológica das diatomáceas (Chrysophyta, Bacillariophyceae) marinhas e estuarinas nos Estados do Paraná, Santa Catarina e Rio Grande do Sul. Estu. Biol. 1990, 25, 5–48. [Google Scholar]
- Moreira, I.M.V.; Filho, H.M.; Cunha, J.A. Diatomáceas (Chrysophyta, Bacillariophyceae) em biótopo de manguezal do rio Perequê, em Pontal do Sul, Paranaguá, Estado do Paraná, Brasil. Acta Biol. Paran. 1994, 23, 55–72. [Google Scholar]
- Souza-Mosimann, R.M.; Laudares-Silva, R.; Roos-Oliveira, A.M. Diatomáceas (Bacillariophyta) da Baía Sul, Florianópolis, Santa Catarina, Brasil, uma nova contribuição. INSULA Rev. Botân. 2001, 30, 75–106. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication. National University of Ireland, Galway. 2021. Available online: http://www.algaebase.org (accessed on 3 April 2021).
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis; Bulletin Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972; pp. 1–211. [Google Scholar]
- Grasshoff, K.; Ehrhardt, M.; Kremling, K. Methods of Seawater Analysis. Second, Revised and Extended Edition; Verlag Chemie: Weinheim, Germany, 1983. [Google Scholar]
- Parsons, T.R.; Strickland, J.D.H. Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J. Mar. Res. 1963, 21, 155–163. [Google Scholar]
- UNESCO. Determination of Photosynthetic Pigments in Sea-Water; Imprimerie Rolland: Paris, France, 1966.
- Koening, M.L.; Lira, C.G.D. O gênero Ceratium Schrank (Dinophyta) na plataforma continental e águas oceânicas do Estado de Pernambuco, Brasil. Acta Bot. Bras. 2005, 19, 391–397. [Google Scholar] [CrossRef]
- Matteucci, S.D.; Colma, A. Metodología para el Estudio de la Vegetación; Secretaria General de la Organización de los Estados Americanos: Washington, DC, USA, 1982. [Google Scholar]
- Conover, W.J. Estatística não Paramétrica Prática; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Underwood, A.J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Pearson: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation; Plymouth Marine Laboratory: Plymouth, UK, 1994. [Google Scholar]
- NOAA National Data Buoy Center. Station 41041 Historical Data. 2023. Available online: https://www.ndbc.noaa.gov/station_history.php?station=41041 (accessed on 6 March 2023).
- Souza, E.R.O.; Abrunhosa, F.A.; Martinelli-Lemos, J.M. Distribuição da densidade larval do caranguejo Petrolisthes armatus (Gibbes, 1850) (Decapoda: Porcellanidae) no estuário de Curuçá, Amazônia brasileira. Bio. Amaz. 2019, 9, 27–31. [Google Scholar]
- Oliveira, A.R.G.; Odebrecht, C.; Pereira, L.C.C.P.; Costa, R.M. Phytoplankton variation in an Amazon estuary with emphasis on the diatoms of the Order Eupodiscales. Ecohydrol. Hydrobi. 2022, 22, 55–74. [Google Scholar] [CrossRef]
- Magalhães, A.; Nobre, D.S.B.; Bessa, R.S.C.; Pereira, L.C.C.; Costa, R.M. Diel variation in the productivity of Acartia lilljeborgii and Acartia tonsa (Copepoda: Calanoida) in a tropical estuary (Taperaçu, Northern Brazil). J. Coast. Res. 2013, 65, 1164–1169. [Google Scholar] [CrossRef]
- Abreu, C.H.M.D.; Cunha, A.C. Qualidade da água e índice trófico em rio de ecossistema tropical sob impacto ambiental. Eng. Sanit. Ambient. 2016, 22, 45–56. [Google Scholar] [CrossRef]
- Costa, K.G.; Azevedo, S.S.; Pereira, L.C.C.; Costa, R.M. Variabilidade temporal do zooplâncton no sistema estuarino do Rio Paracauari (Ilha do Marajó, Pará). Trop. Oceanogr. 2018, 46, 53–69. [Google Scholar] [CrossRef]
- Jones, A.B.; Perston, N.P.; Dennison, W.C. The efficiency and condition of oysters and macroalgae used as biological filters of shrimp pond effluent. Aquac. Res. 2002, 33, 1–19. [Google Scholar] [CrossRef]
- Adite, A.; Sonon1, S.P.; Gbedjissi, G.L. Feeding ecology of the mangrove oyster, Crassostrea gasar (Dautzenberg, 1891) in traditional farming at the coastal zone of Benin, West Africa. Nat. Sci. 2013, 5, 1238–1248. [Google Scholar] [CrossRef]
- Costa, L.C.O.; Silva PLHda Abreu, P.C. Biofloc removal by the oyster Crassostrea gasar as a candidate species to an Integrated Multi-Trophic Aquaculture (IMTA) system with the marine shrimp Litopenaeus vannamei. Aquaculture 2021, 540, 736731. [Google Scholar] [CrossRef]
- Fritz, L.W.; Lutz, R.A.; Foote, M.A.; van Dover, C.L.; Ewart, J.W. Selective feeding and grazing rates of oyster (Crassostrea virginica) larvae on natural phytoplankton assemblages. Estuaries 1984, 7, 513–518. [Google Scholar] [CrossRef]
- Dupuy, C.; Vaquer, A.; Lam-Höai, T.; Rougier, C.; Mazouni, N.; Lautier, J.; Collos, Y.; Le Gall, S. Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon. Mar. Ecol. Prog. Ser. 2000, 205, 171–184. [Google Scholar] [CrossRef]
- Weissberg, E.; Glibert, P. Diet of the eastern oyster, Crassostrea virginica, growing in a eutrophic tributary of Chesapeake Bay, Maryland, USA. Aquac. Rep. 2021, 20, 100655. [Google Scholar] [CrossRef]
- Cognie, B.; Barillé, L.; Rincé, Y. Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries 2001, 24, 126–134. [Google Scholar] [CrossRef]
- Pan, K.; Lan, W.; Li, T.; Hong, M.; Peng, X.; Xu, Z.; Lio, W.; Jiang, H. Control of phytoplankton by oysters and the consequent impact on nitrogen cycling in a subtropical bay. Sci. Total Environ. 2021, 796, 149007. [Google Scholar] [CrossRef]
- Pomeroy, L.R.; D’elia, C.F.; Schaffner, L.C. Limits to top-down control of phytoplankton by oysters in Chesapeake Bay. Mar. Ecol. Prog. Ser. 2006, 325, 301–309. [Google Scholar] [CrossRef]
- Li, Y.; Meseck, S.L.; Dixon, M.S.; Rivara, K.; Wikfors, G.H. Temporal Variability in Phytoplankton Removal by a Commercial, Suspended Eastern Oyster Nursery and Effects on Local Plankton Dynamics. J. Shellfish Res. 2012, 31, 1077–1089. [Google Scholar] [CrossRef]
- Matos, J.B.; Sodré, D.K.L.; Costa, K.G.; Pereira, L.C.C.; Costa, R.M. Spatial and temporal variation in the composition and biomass of phytoplankton in an Amazonian estuary. J. Coast. Res. 2011, SI64, 1525–1529. [Google Scholar]
- Matos, J.B.; Silva, N.I.S.D.; Pereira, L.C.C.; Costa, R.M.D. Caracterização quali-quantitativa do fitoplâncton da zona de arrebentação de uma praia amazônica. Acta Bot. Bras. 2012, 26, 979–990. [Google Scholar] [CrossRef]
- Matos, J.B.; Oliveira, S.M.D.; Pereira, L.C.C.; Costa, R.M. Structure and temporal variation of the phytoplankton of a macrotidal beach from the Amazon coastal zone. An. Acad. Bras. Cienc. 2016, 88, 1325–1339. [Google Scholar] [CrossRef]
- Cavalcanti, L.F.; Azevedo-Cutrim, A.C.G.; Oliveira, A.L.L.; Furtado, J.A.; Araújo, B.D.O.; Sá, A.K.D.D.S.; Cutrim, M.V.J. Structure of microphytoplankton community and environmental variables in a macrotidal estuarine complex, São Marcos Bay, Maranhão-Brazil. Braz. J. Oceanogr. 2018, 66, 283–300. [Google Scholar] [CrossRef]
- Oliveira, A.R.G.; Queiroz, J.B.M.; Pardal, E.E.; Pereira, L.C.C.P.; Costa, R.M. How does the phytoplankton community respond to the effects of La Niña and post-drought events in a tide-dominated Amazon estuary? Aquat. Sci. 2023, 85, 9. [Google Scholar] [CrossRef]
- Muñetón-Gómez, M.D.S.; Villalejo-Fuerte, M.; Gárate-Lizarraga, I. Gut content analysis of Anadara tuberculosa (Sowerby, 1833) through histological sections. CICIMAR Oceánides 2010, 25, 143–148. [Google Scholar] [CrossRef]
- Dué, A.; Costa, S.M.M.; Silva Filho, E.A.; Guedes, É.A.C. Itens alimentares de Crassostrea rhizophorae (Guilding, 1828) (Bivalvia: Ostreidae) cultivadas em um estuário tropical, no Nordeste do Brasil. Bioikos—Título Não-Corrente 2012, 24, 83–93. [Google Scholar]
- Estrada-Gutiérrez, K.M.; Siqueiros-Beltrones, D.A.; Hernández-Almeida, O.U. New records of benthic diatoms (Bacillariophyceae) for Mexico in the Nayarit littoral found in gut contents of Crassostrea corteziensis (Mollusca: Bivalvia). Rev. Mex. Biodiver. 2017, 88, 985–987. [Google Scholar] [CrossRef]
- Huang, H.; Chen, S.; Xu, Z.; Wu, Y.; Mei, L.; Pan, Y.; Yan, X.; Zhou, C. Comparative metabarcoding analysis of phytoplankton community composition and diversity in aquaculture water and the stomach contents of Tegillarca granosa during months of growth. Mar. Pollut. Bull. 2023, 187, 114556. [Google Scholar] [CrossRef]
- Garcia, M. Taxonomia, morfologia e distribuição de Cymatosiraceae (Bacillariophyceae) nos litorais de Santa Catarina e Rio Grande do Sul. Biot. Neotrop. 2016, 16, e20150139. [Google Scholar]
- Affe, H.M.J.; Santana, R.M.C. Fitoplâncton em Áreas de Cultivo de Ostras na Baía de Camamu, Brasil: Investigação da Ocorrência de Microalgas Potencialmente Nocivas; Novas Edições Acadêmicas: London, UK, 2016. [Google Scholar]
- Belcher, J.H.; Swale, E.M.F. English freshwater records of Actinocyclus normanii (Greg.) Hustedt (Bacillariophyceae). Br. Phycol. J. 1979, 14, 225–229. [Google Scholar] [CrossRef]
- Idei, M.; Osada, K.; Sato, S.; Toyoda, K.; Nagumo, T.; Mann, D.G. Gametogenesis and auxospore development in Actinocyclus (Bacillariophyta). PLoS ONE 2012, 7, e41890. [Google Scholar] [CrossRef]
- World Register of Marine Species (WoRMS). An Authoritative Classification and Catalogue of Marine Names. 2020. Available online: https://www.marinespecies.org (accessed on 8 April 2020).
- Montagna, P.; Palmer, T.A.; Pollack, J.B. Hydrological Changes and Estuarine Dynamics; Springer: New York, NY, USA, 2012. [Google Scholar]
- Kasim, M.; Mukai, H. Food sources of the oyster (Crassostrea gigas) and the clam (Ruditapes philippinarum) in the Akkeshi-ko estuary. Plankton Benthos Res. 2009, 4, 104–114. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Ren, J.S.; Ross, A.H.; Schiel, D.R. Functional descriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand. Mar. Ecol. Prog. Ser. 2000, 208, 119–130. [Google Scholar] [CrossRef]
- Garibotti, I.A.; Ferrario, M.E.; Almandoz, G.O.; Castaños, C. Ciclo sazonal de diatomáceas na Baía de Anegada, sistema estuarino de El Rincón, Argentina. Diatom Res. 2011, 26, 227–241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Fátima Oliveira da Silva, B.; de Oliveira, A.R.G.; de Moraes Souza Pinheiro, J.V.; da Silva, B.R.P.; da Costa Pereira, R.L.M.; Pereira, L.C.C.; da Costa, R.M. Diatoms of Gut Content of Crassostrea gasar (Bivalvia: Ostreidae) (Adanson, 1757) Cultivated in an Amazonian Estuary (Emboraí Velho, Northern Brazil). Limnol. Rev. 2025, 25, 18. https://doi.org/10.3390/limnolrev25020018
de Fátima Oliveira da Silva B, de Oliveira ARG, de Moraes Souza Pinheiro JV, da Silva BRP, da Costa Pereira RLM, Pereira LCC, da Costa RM. Diatoms of Gut Content of Crassostrea gasar (Bivalvia: Ostreidae) (Adanson, 1757) Cultivated in an Amazonian Estuary (Emboraí Velho, Northern Brazil). Limnological Review. 2025; 25(2):18. https://doi.org/10.3390/limnolrev25020018
Chicago/Turabian Stylede Fátima Oliveira da Silva, Barbara, Antonio Rafael Gomes de Oliveira, João Victor de Moraes Souza Pinheiro, Brenda Ribeiro Padilha da Silva, Remo Luan Marinho da Costa Pereira, Luci Cajueiro Carneiro Pereira, and Rauquírio Marinho da Costa. 2025. "Diatoms of Gut Content of Crassostrea gasar (Bivalvia: Ostreidae) (Adanson, 1757) Cultivated in an Amazonian Estuary (Emboraí Velho, Northern Brazil)" Limnological Review 25, no. 2: 18. https://doi.org/10.3390/limnolrev25020018
APA Stylede Fátima Oliveira da Silva, B., de Oliveira, A. R. G., de Moraes Souza Pinheiro, J. V., da Silva, B. R. P., da Costa Pereira, R. L. M., Pereira, L. C. C., & da Costa, R. M. (2025). Diatoms of Gut Content of Crassostrea gasar (Bivalvia: Ostreidae) (Adanson, 1757) Cultivated in an Amazonian Estuary (Emboraí Velho, Northern Brazil). Limnological Review, 25(2), 18. https://doi.org/10.3390/limnolrev25020018