Dynamics of a Fractional-Order Within-Host Virus Model with Adaptive Immune Responses and Two Routes of Infection
Abstract
1. Introduction
2. Fractional Model Formulation
2.1. Invariant Region
2.2. Existence and Uniqueness of Solutions
2.3. Ulam–Hyers Stability
- (i.)
- ;
- (ii.)
- .
3. Sensitivity and Fractional Optimal Control Model
3.1. Sensitivity Indices
3.2. Fractional Virus Dynamics with Optimal Control
4. Simulations and Discussion
4.1. Simulations of the Fractional Model Without Optimal Control
4.2. Simulations of the Fractional Optimal Control Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AlShamrani, N.H.; Elaiw, A.; Raezah, A.A.; Hattaf, K. Global Dynamics of a Diffusive Within-Host HTLV/HIV Co-Infection Model with Latency. Mathematics 2023, 11, 1523. [Google Scholar] [CrossRef]
- Alade, T.O. On the generalized Chikungunya virus dynamics model with distributed time delays. Intl. J. Dynam. Control 2021, 9, 1250–1260. [Google Scholar] [CrossRef]
- Adepoju, O.A.; Ibrahim, H.O. An optimal control model for monkeypox transmission dynamics with vaccination and immunity loss following recovery. Healthc. Anal. 2024, 6, 100355. [Google Scholar] [CrossRef]
- Paul, W.E. Fundamental Immunology, 7th ed.; Lippincott Williams & Wilkins Publishers: New York, NY, USA, 2013. [Google Scholar]
- Libbey, J.E.; Fujinami, R.S. Adaptive immune response to viral infections in the central nervous system. Handb. Clin. Neurol. 2014, 123, 225–247. [Google Scholar] [CrossRef] [PubMed]
- Elaiw, A.M.; Almalki, S.E.; Hobiny, A.D. Global dynamics of humoral immunity Chikungunya virus with two routes of infection and Holling type-II. J. Math. Comput. Sci. 2019, 19, 65–73. [Google Scholar] [CrossRef]
- Raezah, A.A.; Elaiw, A.M.; Alofi, B.S. Global properties of latent virus dynamics models with immune impairment and two routes of infection. High-Throughput 2019, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Ghaleb, S.A.; Elaiw, A.M.; Alnegga, M.; Ghandourah, E.; Alade, T.O. Global stability of virus dynamics of an adaptive immune response with two routes of infection and latency. Int. J. Dynam. Control 2023, 11, 1002–1019. [Google Scholar] [CrossRef]
- Olebo, D.F.; Igwe, M.C. Comparative analysis of virology and pathogenesis of SARS-CoV-2 and HIV infections: Implications for public health and treatment strategies. Infect. Drug Resist. 2025, 18, 269–283. [Google Scholar] [CrossRef]
- Branda, F.; Romano, C.; Pavia, G.; Bilotta, V.; Locci, C.; Azzena, I.; Deplano, I.; Pascale, N.; Perra, M.; Giovanetti, M.; et al. Human T-lymphotropic virus (HTLV): Epidemiology, genetic, pathogenesis, and future challenges. Viruses 2025, 17, 664. [Google Scholar] [CrossRef]
- Ahmed, J.M.; Tilahun, G.T.; Degefa, S.T. A Mathematical Model for the Within-Host Dynamics of Malaria Parasite with Adaptive Immune Responses. Int. J. Math. Math. Sci. 2024, 2024, 6667262. [Google Scholar] [CrossRef]
- Boukhouima, A.; Lotfi, E.M.; Mahrouf, M.; Yousfi, N.; Kuniya, T. A general fractional-order viral infection model with cell-to-cell transmission and adaptive immunity. Progr. Fract. Differ. Appl. 2023, 9, 41–63. [Google Scholar] [CrossRef]
- Bhatter, S.; Jangid, K.; Abidemi, A.; Owolabi, K.M.; Purohit, S.D. A new fractional mathematical model to study the impact of vaccination on COVID-19 outbreaks. Decis. Anal. J. 2023, 6, 100156. [Google Scholar] [CrossRef]
- Asamoah, J.K.K.; Addai, E.; Arthur, Y.D.; Okyere, E. A fractional mathematical model for listeriosis infection using two kernels. Decis. Anal. J. 2023, 6, 100191. [Google Scholar] [CrossRef]
- Helikumi, M.; Bisaga, T.; Makau, K.A.; Mhlanga, A. Modeling the impact of human awareness and insecticide use on malaria control: A fractional-order approach. Mathematics 2024, 12, 3607. [Google Scholar] [CrossRef]
- Adak, S.; Barman, S.; Jana, S.; Majee, S.; Kar, T.K. Modelling and analysis of a fractional-order epidemic model incorporating genetic algorithm-based optimization. J. Appl. Math. Comput. 2025, 71, 901–925. [Google Scholar] [CrossRef]
- Mohammadaliee, B.; Samei, M.E.; Roomi, V.; Rezapour, S. Optimal control strategies and cost-effectiveness analysis for infectious diseases under fractal-fractional derivative: A case study of Cholera outbreak. J. Appl. Math. Comput. 2025, 71, 4197–4226. [Google Scholar] [CrossRef]
- Owolabi, K.M.; Pindza, E. A nonlinear epidemic model for tuberculosis with Caputo operator and fixed point theory. Healthc. Anal. 2022, 2, 100111. [Google Scholar] [CrossRef]
- Pandey, H.R.; Phaijoo, G.R.; Gurung, D.B. Dengue dynamics in Nepal: A Caputo fractional model with optimal control strategies. Heliyon 2024, 10, e33822. [Google Scholar] [CrossRef]
- Tirfe, T.L.; Obsu, L.L.; Gurmu, E.D. Mathematical modeling of cholera dynamics and analysis using Caputo fractional operator with optimal control. Prog. Fract. Diff. Appl. 2025, 11, 87–117. [Google Scholar] [CrossRef]
- Atangana, A.; Qureshi, S. Mathematical modeling of an autonomous nonlinear dynamical system for malaria transmission using Caputo derivative. In Fractional Order Analysis: Theory, Methods and Applications; Dutta, H., Akdemir, A.O., Atangana, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Farman, M.; Gokbulut, N.; Shehzad, A.; Nisar, K.S.; Hincal, E.; Sambas, A. Fractional order malaria epidemic model: Qualitative and computational study to determine the dynamics for sensitivity prevalence. J. Comput. Sci. 2025, 91, 102656. [Google Scholar] [CrossRef]
- Diethelm, K.; Garrapa, R.; Giusti, A.; Stynes, M. Why fractional derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal. 2020, 23, 610–634. [Google Scholar] [CrossRef]
- Jan, R.; Boulaaras, S.; Alharbi, A.; Abdul Razak, N.N. Fractional-calculus analysis of the dynamics of a vector-borne infection with preventive measures. Fractal Fract. 2024, 8, 691. [Google Scholar] [CrossRef]
- Chitnis, N.; Hyman, J.M.; Cushing, J.M. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 2008, 70, 1272–1296. [Google Scholar] [CrossRef]
- Siddiqua, S.; Chaturvedi, A.; Goswami, N.K. A simple mathematical model of cholera dynamics with sensitivity analysis. AIP Conf. Proc. 2022, 2516, 130002. [Google Scholar] [CrossRef]
- Boukhouima, A.; Lotfi, E.M.; Mahrouf, M.; Rosa, S.; Torres, D.F.M.; Yousfi, N. Stability analysis and optimal control of a fractional HIV-AIDS epidemic model with memory and general incidence rate. Eur. Phys. J. Plus. 2021, 136, 103. [Google Scholar] [CrossRef]
- Kuddus, M.A.; Rahman, A.; Alam, F.; Mohiuddin, M. Analysis of the different interventions scenario for programmatic measles control in Bangledesh: A modelling study. PLoS ONE 2023, 18, e0283082. [Google Scholar] [CrossRef] [PubMed]
- Afful, B.A.; Safo, G.A.; Marri, D.; Okyere, E.; Ohemeng, M.O.; Kessie, J.A. Deterministic optimal control compartmental model for COVID-19 infection. Model. Earth Syst. Environ. 2025, 11, 87. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, C.; Teo, K.L.; Wang, S.; Wu, Y. Numerical solution of free final time fractional optimal control problems. Appl. Math. Comput. 2021, 405, 126270. [Google Scholar] [CrossRef]
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Chacha, G.W.; Siddik, S.B.M.; Fatmawati. Mathematical analysis of the transmission dynamics for malaria in individuals with varying levels of risk. Int. J. Dynam. Control 2025, 13, 88. [Google Scholar] [CrossRef]
- Olaniyi, S.; Falowo, O.D.; Oladipo, A.T.; Gogovi, G.K.; Sangotola, A.O. Stability analysis of Rift Valley fever transmission model with efficient and cost-effective interventions. Sci. Rep. 2025, 15, 14036. [Google Scholar] [CrossRef] [PubMed]
- Majee, S.; Kar, T.K.; Jana, S.; Das, D.K.; Nieto, J.J. Complex dynamics and fractional-order optimal control of an epidemi model with saturated treatment and incidence. Int. J. Bifur. Chaos 2023, 33, 2350192. [Google Scholar] [CrossRef]
- Odibat, Z.M.; Momami, S. An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inform. 2008, 26, 15–27. [Google Scholar]
- Boukhouima, A.; Hattaf, K.; Lotfi, E.; Mahrouf, M.; Torres, D.F.M.; Yousfi, N. Lyapunov functions for fractional-order systems in biology: Methods and applications. Chaos Soltions Fractals 2020, 140, 110224. [Google Scholar] [CrossRef]
- Boukhouima, A.; Zine, H.; Lotfi, E.M.; Mahrouf, M.; Torres, D.F.M.; Yousfi, N. Lyapunov function and stability analysis of fractional-order system. Math. Anal. Infect. Dis. 2022, 125–138. [Google Scholar] [CrossRef]
- Yi, X.; Liu, C.; Cheong, H.T.; Teo, K.L.; Wang, S. A third-order numerical method for solving fractional ordinary differential equations. AIMS Math. 2024, 9, 21125–21143. [Google Scholar] [CrossRef]
- Olaniyi, S.; Abimbade, S.F.; Chuma, F.M.; Adepoju, O.A.; Falowo, O.D. A fractional-order tuberculosis model with efficient and cost-effective optimal control interventions. Decis. Anal. J. 2023, 8, 100324. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Al-Mekhlafi, S.M. On the optimal control for fractional multi-strain TB model. Optim. Cont. Appl. Method. 2016, 37, 1355–1374. [Google Scholar] [CrossRef]
- Olaniyi, S.; Alade, T.O.; Chuma, F.M.; Ogunsola, A.W.; Aderele, O.R.; Abimbade, S.F. A fractional-order nonlinear model for a within-host chikungunya virus dynamics with adaptive immunity using Caputo derivative operator. Healthc. Anal. 2023, 4, 100205. [Google Scholar] [CrossRef]
- Liu, C.; Loxton, R.; Teo, K.L.; Wang, S. Optimal state-delay control in nonlinear dynamic systems. Automatica 2022, 135, 109981. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
Generation rate of uninfected or healthy cells | 10 | |
Death rate of uninfected or healthy cells | 0.01 | |
Contact rate of virus-to-cell transmission | 0.006 | |
Contact rate of cell-to-cell transmission | 0.006 | |
Death rate of latently infected cells | 0.5 | |
Transition rate of latently to actively infected cells | 0.1 | |
Death rate of actively infected cells | 0.4 | |
k | Response rate of CTL cells to actively infected cells | 0.1 |
c | Production rate of virus particles | 5.0 |
q | Response rate of B cells to virus particles | 0.2 |
Proliferation rate of B cells | 0.1 | |
Proliferation rate of CTL cells | 0.1 | |
h | Death rate of CTL cells | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alade, T.O.; Chuma, F.M.; Javed, M.; Olaniyi, S.; Sangotola, A.O.; Gogovi, G.K. Dynamics of a Fractional-Order Within-Host Virus Model with Adaptive Immune Responses and Two Routes of Infection. Math. Comput. Appl. 2025, 30, 80. https://doi.org/10.3390/mca30040080
Alade TO, Chuma FM, Javed M, Olaniyi S, Sangotola AO, Gogovi GK. Dynamics of a Fractional-Order Within-Host Virus Model with Adaptive Immune Responses and Two Routes of Infection. Mathematical and Computational Applications. 2025; 30(4):80. https://doi.org/10.3390/mca30040080
Chicago/Turabian StyleAlade, Taofeek O., Furaha M. Chuma, Muhammad Javed, Samson Olaniyi, Adekunle O. Sangotola, and Gideon K. Gogovi. 2025. "Dynamics of a Fractional-Order Within-Host Virus Model with Adaptive Immune Responses and Two Routes of Infection" Mathematical and Computational Applications 30, no. 4: 80. https://doi.org/10.3390/mca30040080
APA StyleAlade, T. O., Chuma, F. M., Javed, M., Olaniyi, S., Sangotola, A. O., & Gogovi, G. K. (2025). Dynamics of a Fractional-Order Within-Host Virus Model with Adaptive Immune Responses and Two Routes of Infection. Mathematical and Computational Applications, 30(4), 80. https://doi.org/10.3390/mca30040080