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Abstract: Kernel density estimation is a non-parametric method to estimate the probability density
function of a random quantity from a finite data sample. The estimator consists of a kernel function
and a smoothing parameter called the bandwidth. Despite its undeniable usefulness, the convergence
rate may be slow with the number of realizations and the discontinuity and peaked points of the target
density may not be correctly captured. In this work, we analyze the applicability of a parametric
method based on Monte Carlo simulation for the density estimation of certain random variable
transformations. This approach has important applications in the setting of differential equations
with input random parameters.
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1. Introduction

Given an abstract probability space (Ω,F ,P) and a random variable X : Ω→ R, its probability
density function fX is defined as the Borel measurable and non-negative function that satisfies
P[X ∈ B] =

∫
B fX(x)dx for any Borel set B ⊆ R [1] Ch. 2. In other words, fX(x) = dPX(x)

dx is
the Radon–Nikodym derivative of the probability law PX = P ◦ X−1 with respect to the Lebesgue
measure. When the density function exists, the random variable (its probability law) is said to be
absolutely continuous. Examples of absolutely continuous distributions are Uniform, Triangular,
Normal, Gamma, etc.

When the probability law of X is unknown in explicit form but realizations of X can be
drawn, a kernel estimation may be used to reconstruct the probability density function of X. It
is a non-parametric method that uses a finite data sample from X. If x1, . . . , xM are independent
realizations of X, then the kernel density estimator takes the form f̂ M

X (x) = 1
Mb ∑M

i=1 K
(

x−xi
b

)
, where

K is the kernel function and b is the bandwidth, see [2].
Kernel density estimation may present slow convergence rate with the number of realizations

and may smooth out discontinuity and non-differentiability points of the target density. For certain
random variable transformations X = g(U, V), where U and V are independent random quantities
and g is a deterministic real function, we will see that there is an alternative estimation method of
parametric nature that is based on Monte Carlo simulation. Such approach has been used for certain
random differential equations problems, see [3–7]. However, a detailed comparison with kernel density
estimation, both theoretically and numerically, has not been performed yet. This detailed comparison
is the novelty of the present paper. We will demonstrate that the parametric method is more efficient
and correctly captures density features. Numerical experiments will illustrate these improvements.
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As it shall be seen later (see expression (2)), our approach relies upon the representation of
the probability density via the expectation of a transformation derived through the application of
the so-called Random Variable Transformation (RVT) method [1] (also termed “change of variable
formula”, see [8]). This method depends on the computation of invertible functions with Jacobian
determinant. We point out that, when the number of random model parameters is large, it is convenient
to apply competitive techniques to carry out computations. In this regard, we here highlight recent
contributions that address this important issue in the machine learning setting. In [8], the authors
applied real-valued non-volume preserving (real NVP) transformations to estimate the density when
reconstructing natural images on datasets through sampling, log-likelihood evaluation, and latent
variable manipulations. Recently, in [9], the real NVP was improved by combining the so called
flow-based generative models. In the machine learning context, these are methods based upon the
application of the “change of variable formula”—together with Knothe–Rosenblatt rearrangement.

2. Method

Let X = g(U, V) be a random variable, where U is a random variable, V is a random
variable/vector, and g is a deterministic real function. The aim is to estimate the probability density
function of X.

A kernel density estimator takes the form

f̂ M
X (x) =

1
Mb

M

∑
i=1

K
(

x− g(ui, vi)

b

)
, (1)

where u1, . . . , uM and v1, . . . , vM are independent realizations of U and V, respectively.
Let us see an alternative method when U and V are independent. Suppose that U has an explicit

density function fU . Suppose also that g(·, V) is invertible for all V, where h(·, V) is the inverse. Then,

fX(x) = E [ fU (h(x, V)) |∂1h(x, V)|] , (2)

where ∂1 is the partial derivative with respect to the first variable and E is the expectation operator.
Notice that we are not requiring V to have a probability density.

Indeed, if PV = P ◦V−1 denotes the probability law of V, then the following chain of equalities
holds:

P [g(U, V) ≤ x] =
∫
R
P [g(U, V) ≤ x|V = v]PV(dv)

=
∫
R
P [g(U, v) ≤ x|V = v]PV(dv)

=
∫
R
P [g(U, v) ≤ x]PV(dv)

=
∫
R

∫ x

−∞
fg(U,v)(u)duPV(dv)

=
∫
R

∫ x

−∞
fU(h(u, v))|∂1h(u, v)|duPV(dv)

=
∫ x

−∞

∫
R

fU(h(u, v))|∂1h(u, v)|PV(dv)du

=
∫ x

−∞
E [ fU (h(u, V)) |∂1h(u, V)|] du.

We have used the independence, the transformed density function [1, Section 6.2.1], and Fubini’s
theorem.
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To estimate the expectation from (2) when the probability law of V is unknown in closed form but
realizations of it can be drawn, Monte Carlo simulation may be conducted. For example, the crude
Monte Carlo method estimates fX(x) by using

f̂ M
X (x) =

1
M

M

∑
i=1

fU (h(x, vi)) |∂1h(x, vi)| , (3)

where v1, . . . , vM are independent realizations of V [10, pp. 53–54].
Notice that the structure and the complexity of this estimator are very similar to a kernel one.

For (1), one needs realizations u1, . . . , uM, v1, . . . , vM, while (3) only uses v1, . . . , vM. Hence, the
complexity of drawing realizations of V affects (1) and (3) in exactly the same way. On the other hand,
(1) evaluates K and g, while (3) evaluates fU and h.

By the central limit theorem, the root mean square error of the Monte Carlo estimate (3) of the
mean is σ/

√
M = O(M−1/2), where σ is the standard deviation of the random quantity within the

expectation (2) (which is assumed to be finite). Variance reduction methods may be applied, such as
antithetic or control variates, see [11]. By contrast, the root mean square error of the kernel estimate (1)
is O(M−r), r < 1/2 [2].

The density estimation of fX(x) thus becomes a parametric problem, as we are estimating the
expectation parameter from a population distribution. This is in contrast to kernel density estimation,
which is non-parametric because it reconstructs a distribution. Moreover, the method presented here
acts pointwise, so discontinuities and non-differentiability points are correctly captured, without
smoothing them out.

3. Some Numerical Experiments

In this section, we compare the new parametric method with kernel density estimation numerically.
We use the software Mathematica® (Wolfram Research, Inc, Mathematica, Version 12.0, Champaign, IL,
USA, 2019).

Example 1. Let X = U + V, where U ∼ Normal(0, 1) and V ∼ Uniform(−1, 1) are independent
random variables. Obviously, the exact density function of X is known via convolution: fX(x) =∫ ∞
−∞ fU(u− v) fV(v)dv. However, this example allows for comparing the new parametric method

with kernel density estimation by calculating exact errors. With g(U, V) = U + V and h(U, V) =

U − V, expression (2) becomes fX(x) = E[ fU(x − V)]. From M realizations, we conduct a
kernel density estimation (Gaussian kernel with Silverman’s rule to determine the bandwidth,
b = 0.9 ×min{σ̂, ˆIQR/1.34} × M−1/5, where σ̂ is the standard deviation of the sample and ˆIQR
is the interquartile range of the sample), crude Monte Carlo simulation on E[ fU(x− V)], antithetic
variates method (M/2 realizations of V and the sample is completed by changing signs), and control
variates method (the control variable here is V). Let f̂ M

X (x) be the density estimate of fX(x). We
consider the error measure δM =

∫ ∞
−∞( fX(x)− f̂ M

X (x))2 dx. Numerically, this integral is computed by
fixing a large interval [−R, R] and performing Gauss–Legendre quadrature on it. As δM is random,
we better consider εM = (E[δM])1/2. This expectation is estimated by repeating the density estimate
several times (we did so 20 times). Figure 1 reports the estimated error ε̂M in log-log scale, for different
orders M growing geometrically. Observe that the parametric approach is more efficient than the
kernel method. Variance reduction methods also allow for lowering the error. The lines corresponding
to the three parametric methods have slope −1/2 approximately, due to the well-known decrease of
the Monte Carlo error.
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Figure 1. Density estimation using a kernel method, parametric crude Monte Carlo (MC) simulation,
antithetic variates and control variates methods. Estimated error ε̂M in log-log scale. This figure
corresponds to Example 1.

For example, to achieve an error εM < 0.01, the kernel density estimation requires about 25, 000
realizations, while the parametric crude Monte Carlo estimation needs 400 realizations. The antithetic
method decreases the number of required realizations to 50–100, and the control variates approach
does so even more, to less than 50.

In Table 1, we present the timings in seconds for achieving root mean square errors less than 0.01
and 0.001. We work at the density location x = 1. Observe that the kernel density estimation is the
least efficient method, especially as we require smaller errors.

Table 1. Time in seconds to achieve root mean square error less than 0.01 and 0.001. We employ a
kernel method, parametric crude Monte Carlo (MC) simulation, antithetic variates and control variates
methods. This table corresponds to Example 1.

Time Kernel Crude MC Antithetic Variates Control Variates

error 0.01 0.063 0.00089 0.00023 0.00015
error 0.001 4.2 0.13 0.012 0.0057

Example 2. Let X = UV, where U ∼ Normal(0, 1) and V = P + ∑12
i=1 Qi, being P ∼ Poisson(1)

and Qi ∼ Triangular(0.1, 0.105). All of the random variables are assumed to be independent. With
g(U, V) = UV and h(U, V) = U/V, expression (2) is fX(x) = E[ fU(

x
V ) 1

V ]. Notice that, despite V
being discrete, X has a density. This expectation cannot be computed via quadratures, due to the
large dimension of the random space. We employ our parametric method using crude Monte Carlo
simulation. In Figure 2, first panel, we depict the estimated density function f̂ M

X (x) using M realizations.
For M = 10, 000 and M = 30, 000, we perceive good agreement between the approximations. This
is in contrast to the second panel of Figure 2, where the kernel density estimation does not show
convergence yet.
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Figure 2. Density estimation f̂ M
X (x) using parametric crude Monte Carlo simulation (first panel) and

kernel density estimation (second panel) with M realizations. This figure corresponds to Example 2.

Example 3. Consider the same setting of Example 2 but U ∼ Uniform(−1, 1) (now fU is not
continuous on R). In Figure 3, first plot, we show the estimated density function f̂ M

X (x) by the
parametric crude Monte Carlo method using M realizations. The discontinuity points of the target
density fX are correctly captured. Indeed, the method acts pointwise in x, so any feature of fX will be
correctly identified, no matter how rare it is. By contrast, the kernel density estimation smooths out
the discontinuities, see the second panel of the figure.
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Figure 3. Density estimation f̂ M
X (x) using parametric crude Monte Carlo simulation (first panel) and

kernel density estimation (second panel) with M realizations. This figure corresponds to Example 3.

4. Application to Random Differential Equations

A random differential equation problem considers some of the terms in the system (input
coefficients, forcing term, initial conditions, etc.) as random variables or stochastic processes [1].
This is due to errors in measurements of data when trying to model a physical phenomenon, which
introduces a variability in the parameters estimation. The solution to the system is then a stochastic
process. Its deterministic trajectories are not the main concern. Instead, the study of the statistical
content of the solution is the main goal. An important aim is to compute its probability density function.
The key idea is that the solution is a transformation of the input random parameters; therefore, the
probability density may be estimated as described in this paper whenever the solution is given in
closed form. In the notation used in this paper, U and V would denote the input random parameters
of the system, and g would be the transformation mapping that relates the output with the inputs. A
specific input parameter is selected as U, with respect to which the mapping g is easily invertible to
obtain h.
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We consider the Ricatti random differential equation{
Ẋ(t) = −AX(t)2, t ∈ [0, ∞),

X(0) = X0,
(4)

where A > 0 and X0 are independent random variables. The solution to (4) is given by

X(t) =
X0

1 + AX0t
.

By taking U = X0, the density function of X(t) is given by

fX(t)(x) = E
[

fX0

(
x

1− Axt

)
1

(1− Axt)2

]
.

From M realizations of A, say A(1), . . . , A(M), the expectation is estimated via crude Monte Carlo
simulation:

fX(t)(x) ≈ 1
M

M

∑
i=1

fX0

(
x

1− A(i)xt

)
1

(1− A(i)xt)2
. (5)

As seen in the previous sections, this procedure is more efficient and certain than kernel density
estimation, expressed as

fX(t)(x) ≈ 1
Mb

M

∑
i=1

K

(
x− X(i)

0 /(1 + A(i)X(i)
0 t)

b

)
,

where the superscript i denotes the i-th realization, i = 1, . . . , M.
For a specific numerical example, let us fix A ∼ Uniform(−1, 1) and X0 ∼ Uniform(0.1, 0.13).

Figure 4, first panel, plots (5) for a certain number of realizations M for A, for time t = 0.3. A
comparison is conducted with kernel density estimation with a Gaussian kernel (second panel). It must
be appreciated that the parametric Monte Carlo method (5) correctly captures the non-differentiability
points of the target density.
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Figure 4. First panel: Estimated density function fX(0.3)(x) with parametric Monte Carlo for M =

10, 000 and M = 30, 000. Second panel: Kernel density estimate with Gaussian kernel for M = 105 and
M = 106.

For another example, let us consider the damped pendulum differential equation with
uncertainties: 

Ẍ(t) + 2ω0ξẊ(t) + ω2
0X(t) = Y(t), t ∈ [0, T],

X(0) = X0,

Ẋ(0) = X1,

(6)
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where T > 0, w0 6= 0, ξ 6= 0 and ξ2 < 1 (underdamped case) are constant, the initial position X0 and
the initial velocity X1 are random variables, and the source/forcing term Y(t) is a stochastic process [1,
Example 7.2]. The solution is given by

X(t) =

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0 +

e−ω0ξt sin(ω1t)
ω1

X1 +
∫ t

0
p(t− s)Y(s)ds, (7)

where ω1 = ω0
√

1− ξ2 6= 0 and p(t) = 1
ω1

e−ξω0t sin(ω1t). In [4], the density function of the response
X(t) is expressed in terms of an expectation (2), which is estimated by means of parametric crude
Monte Carlo simulation due to the large dimension of the random space. By taking U = X0, one of the
formulas derived is

fX(t)(x)=E

fX0

x− e−ω0ξt sin(ω1t)
ω1

X1 −
∫ t

0 p(t− s)Y(s)ds
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)


 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

∣∣∣∣
≈ 1

M

M

∑
i=1

fX0

x− e−ω0ξt sin(ω1t)
ω1

X(i)
1 −

∫ t
0 p(t− s)Y(i)(s)ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)
∣∣∣∣ , (8)

where the superscript i denotes the i-th realization, i = 1, . . . , M. Compare (8) with a kernel density
estimation

fX(t)(x)≈ 1
Mb

M

∑
i=1

K

 x−
(

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)
)

X(i)
0 −

e−ω0ξt sin(ω1t)
ω1

X(i)
1 −

∫ t
0 p(t− s)Y(i)(s)ds

b

 .

The expressions and their complexities are very similar, but the convergence of (8) is faster with M, as
justified in the previous sections.

Let us see a numerical example. We take the upper time T = 1, the damping ratio ξ = 1/2
and the natural frequency ω0 = π/2. Consider X0 ∼ Exponential(3), X1 ∼ Binomial(7, 0.31) and
Y(t) = ∑∞

j=1

√
2

jπ sin(tjπ)ξ j. The series is understood in L2([0, 1] ×Ω) and {ξ j}∞
j=1 is a sequence of

independent random variables with Uniform(−
√

3,
√

3) distribution. This is a Karhunen–Loève
expansion [10, p. 47]. It is assumed that X0, X1, and Y are independent. By applying (8) with the sum
of Y(t) truncated to a finite-term series, we estimate the density function of X(t). For example, in
Figure 5, first panel, fX(0.5)(x) is plotted for orders of truncation N = 4, 5, and 6. Overlapping of the
graphs is clearly appreciated. The strong oscillations of the density are perfectly captured because the
method acts pointwise. In the second panel of the figure, the kernel density estimate with Gaussian
kernel is plotted, with 106 realizations. Although there is apparent agreement between both panels,
our parametric Monte Carlo method captures all the peaks while the kernel method smooths them out.
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Figure 5. First panel: Estimated density function fX(0.5)(x) with parametric Monte Carlo for orders of
truncation N = 4, 5 and 6 (see [4]). Second panel: Kernel density estimate with Gaussian kernel for
N = 6.

Further applications of the methodology for random differential equations may be consulted in
[3–7]. The present paper forms the theoretical and computational foundations of the methodology
used in those recent contributions.

5. Conclusions

In this paper, we have been concerned with the density estimation of random variables. We have
proposed an alternative to kernel density estimation for certain random variable transformations. The
alternative is based on the estimation of an expectation parameter via Monte Carlo methods; therefore,
it is of parametric nature and improves kernel methods in terms of efficiency. Furthermore, the method
captures density features and does not smooth out discontinuity and non-differentiability points of the
target density.

As shown here, the solution to some random differential equation problems is an explicit
transformation of the input random parameters. The methodology proposed in this paper may
be employed to estimate the density function of the closed-form stochastic solution parametrically,
instead of relying on kernel estimation.
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