Recent Strategies for Using Monolithic Materials in Glycoprotein and Glycopeptide Analysis
Abstract
1. Introduction
2. Glycoprotein Analysis
3. Advances in Monolithic Materials for Separations
3.1. Modifying Polymerization Mixture and Optimizing Polymerization Conditions
3.2. Gradient Stationary Phase on Monolithic Columns
3.3. Monoliths in Nano-LC Columns and Microfluidic Platforms
4. Recent Strategies Using Monolithic Materials in the Separation and Enrichment of Glycoproteins and Glycopeptides
4.1. Lectin Affinity-Based Monolithic Materials
4.2. Hydrophilic Interaction Liquid Chromatography (HILIC)
4.3. Boronic Acid Affinity-Based Monolithic Materials
4.4. New Strategies on Separation and Enrichment of Glycans That Use Monolithic Materials
4.5. Additional Strategies for Separation and Enrichment of Glycans and Other Cis-Diol Molecules
5. Immobilized Monolithic Enzyme Reactors (IMERs)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Svec, F.; Lv, Y. Advances and Recent Trends in the Field of Monolithic Columns for Chromatography. Anal. Chem. 2015, 87, 250–273. [Google Scholar] [CrossRef] [PubMed]
- Mould, D.L.; Synge, R.L.M. Electrokinetic ultrafiltration analysis of polysaccharides. A new approach to the chromatography of large molecules. Analyst 1952, 77, 964–969. [Google Scholar] [CrossRef]
- Kubín, M.; Špaček, P.; Chromeček, R. Gel permeation chromatography on porous poly(ethylene glycol methacrylate). Collect. Czechoslov. Chem. Commun. 1967, 32, 3881–3887. [Google Scholar] [CrossRef]
- Ross, W.D.; Jefferson, R.T. In Situ—Formed Open-Pore Polyurethane as Chromatography Supports. J. Chromatogr. Sci. 1970, 8, 386–389. [Google Scholar] [CrossRef]
- Schnecko, H.; Bieber, O. Foam filled columns in gas chromatography. Chromatographia 1971, 4, 109–112. [Google Scholar] [CrossRef]
- Hjertén, S.; Liao, J.-L.; Zhang, R. High-performance liquid chromatography on continuous polymer beds. J. Chromatogr. A 1989, 473, 273–275. [Google Scholar] [CrossRef]
- Svec, F. Monolithic columns: A historical overview. Electrophoresis 2017, 38, 2810–2820. [Google Scholar] [CrossRef]
- Alla, A.J.; Stine, K.J. Development of Monolithic Column Materials for the Separation and Analysis of Glycans. Chromatography 2015, 2, 20–65. [Google Scholar] [CrossRef]
- Lu, G.; Crihfield, C.L.; Gattu, S.; Veltri, L.M.; Holland, L.A. Capillary Electrophoresis Separations of Glycans. Chem. Rev. 2018, 118, 7867–7885. [Google Scholar] [CrossRef]
- Lazar, I.M.; Deng, J.; Ikenishi, F.; Lazar, A.C. Exploring the glycoproteomics landscape with advanced MS technologies. Electrophoresis 2015, 36, 225–237. [Google Scholar] [CrossRef]
- Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1999, 1473, 4–8. [Google Scholar] [CrossRef]
- Zauner, G.; Kozak, R.P.; Garndner, R.A.; Fernandez, D.L.; Deelder, A.M.; Wuhrer, M. Protein O-glycosylation analysis. Biol. Chem. 2012, 393, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Orntoft, T.F.; Vestergaard, E.M. Clinical aspects of altered glycosylation of glycoproteins in cancer. Electrophoresis 1999, 20, 362–371. [Google Scholar] [CrossRef]
- Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol. 2012, 6, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Angel, T.E.; Aryal, U.K.; Hengel, S.M.; Baker, E.S.; Kelly, R.T.; Robinson, E.W.; Smith, R.D. Mass spectrometry-based proteomics: Existing capabilities and future directions. Chem. Soc. Rev. 2012, 41, 3912–3928. [Google Scholar] [CrossRef] [PubMed]
- Kolli, V.; Schumacher, K.N.; Dodds, E.D. Engaging challenges in glycoproteomics: Recent advances in MS-based glycopeptide analysis. Bioanalysis 2015, 7, 113–131. [Google Scholar] [CrossRef]
- Zhu, Z.; Desaire, H. Carbohydrates on Proteins: Site-Specific Glycosylation Analysis by Mass Spectrometry. Ann. Rev. Anal. Chem. 2015, 8, 463–483. [Google Scholar] [CrossRef]
- Wuhrer, M.; Catalina, M.I.; Deelder, A.M.; Hokke, C.H. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 849, 115–128. [Google Scholar] [CrossRef]
- El-Aneed, A.; Cohen, A.; Banoub, J. Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Appl. Spectrosc. Rev. 2009, 44, 210–230. [Google Scholar] [CrossRef]
- Pan, S.; Chen, R.; Aebersold, R.; Brentnall, T.A. Mass spectrometry based glycoproteomics-from a proteomics perspective. Mol. Cell. Proteom. 2011, 10, R110.003251. [Google Scholar] [CrossRef]
- Vékey, K.; Ozohanics, O.; Tóth, E.; Jekő, A.; Revész, Z.; Krenyácz, J.; Drahos, L. Fragmentation characteristics of glycopeptides. Int. J. Mass Spectrom. 2013, 345–347, 71–79. [Google Scholar] [CrossRef]
- Mechref, Y. Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr. Protoc. Prote Sci. 2012, 68, 12.11.1–12.11.11. [Google Scholar] [CrossRef] [PubMed]
- Adamson, J.T.; Håkansson, K. Infrared Multiphoton Dissociation and Electron Capture Dissociation of High-Mannose Type Glycopeptides. J. Proteom. Res. 2006, 5, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Woodin, C.L.; Maxon, M.; Desaire, H. Software for automated interpretation of mass spectrometry data from glycans and glycopeptides. Analyst 2013, 138, 2793–2803. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Strum, J.S.; Nwosu, C.C.; Hua, S.; Kronewitter, S.R.; Seipert, R.R.; Bachelor, R.J.; An, H.J.; Lebrilla, C.B. Automated Assignments of N- and O-Site Specific Glycosylation with Extensive Glycan Heterogeneity of Glycoprotein Mixtures. Anal. Chem. 2013, 85, 5666–5675. [Google Scholar] [CrossRef]
- Svec, F.; Tennikova, T.B.; Deyl, K. Monolithic Materials: Preparation, Properties and Applications; Elsevier Science: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Svec, F. Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. J. Chromatogr. A 2012, 1228, 250–262. [Google Scholar] [CrossRef]
- Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishikuza, N.; Tanaka, N. Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography. Anal. Chem. 1996, 68, 3498–3501. [Google Scholar] [CrossRef]
- Zajickova, Z. Advances in the development and applications of organic-silica hybrid monoliths. J. Sep. Sci. 2017, 40, 25–48. [Google Scholar] [CrossRef]
- Moravcová, D.; Jandera, P.; Urban, J.; Planeta, J. Comparison of monolithic silica and polymethacrylate capillary columns for LC. J. Sep. Sci. 2004, 27, 789–800. [Google Scholar] [CrossRef]
- Causon, T.J.; Nischang, I. Critical differences in chromatographic properties of silica- and polymer-based monoliths. J. Chromatogr. A 2014, 1358, 165–171. [Google Scholar] [CrossRef]
- Vyviurska, O.; Lv, Y.; Mann, B.F.; Svec, F. Comparison of commercial organic polymer-based and silica-based monolithic columns using mixtures of analytes differing in size and chemistry. J. Sep. Sci. 2018, 41, 1558–1566. [Google Scholar] [CrossRef]
- Chen, R.; Lin, C.; Lyu, H.; Lin, X.; Zie, Z. Highly efficient preparation of β-CD-based chiral monolithic column by “one-pot” hydroxymethyl polycondensation for enantioseparation in capillary liquid chromatography. J. Chromatogr. A 2020, 1616, 460781. [Google Scholar] [CrossRef]
- Xie, S.; Svec, F.; Fréchet, J.M.J. Preparation of porous hydrophilic monoliths: Effect of the polymerization conditions on the porous properties of poly (acrylamide-co-N,N′-methylenebisacrylamide) monolithic rods. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 1013–1021. [Google Scholar] [CrossRef]
- Liu, Z.; Ou, J.; Zou, H. Click polymerization for preparation of monolithic columns for liquid chromatography. TrAC Trends Anal. Chem. 2016, 82, 89–99. [Google Scholar] [CrossRef]
- Lubbad, S.H.; Buchmeiser, M.R. Fast separation of low molecular weight analytes on structurally optimized polymeric capillary monoliths. J. Chromatogr. A 2010, 1217, 3223–3230. [Google Scholar] [CrossRef]
- Liu, K.; Tolley, H.D.; Lee, M.L. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules. J. Chromatogr. A 2012, 1227, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Kajihara, K. Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. J. Asian Ceram. Soc. 2013, 1, 121–133. [Google Scholar] [CrossRef]
- Siouffi, A.M. Silica gel-based monoliths prepared by the sol–gel method: Facts and figures. J. Chromatogr. A 2003, 1000, 801–818. [Google Scholar] [CrossRef]
- Tanaka, N.; Kobayashi, H.; Ishikuza, N.; Minakuchi, H.; Nakanishi, K.; Hosoya, K.; Ikegami, T. Monolithic silica columns for high-efficiency chromatographic separations. J. Chromatogr. A 2002, 965, 35–49. [Google Scholar] [CrossRef]
- Svec, F. Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J. Chromatogr. A 2010, 1217, 902–924. [Google Scholar] [CrossRef] [PubMed]
- Gharbharan, D.; Britsch, D.; Soto, G.; Weed, A.-M.K.; Svec, F.; Zajickovas, Z. Tuning preparation conditions towards optimized separation performance of thermally polymerized organo-silica monolithic columns in capillary liquid chromatography. J. Chromatogr. A 2015, 1408, 101–107. [Google Scholar] [CrossRef]
- Patrushev, Y.; Yudina, Y.; Sidelnikov, V. Monolithic rod columns for HPLC based on divinylbenzene-styrene copolymer with 1-vinylimidazole and 4-vinylpyridine. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 458–466. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Liu, Z.; Wang, H.; Ou, J.; Ye, M.; Zou, H. Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis. J. Chromatogr. A 2017, 1498, 29–36. [Google Scholar] [CrossRef]
- Hara, T.; Futagami, S.; De Malsche, W.; Eeltink, S.; Terryn, H.; Baron, G.V.; Desmet, G. Chromatographic Properties of Minimal Aspect Ratio Monolithic Silica Columns. Anal. Chem. 2017, 89, 10948–10956. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Desmet, G.; Baron, G.V.; Minakuchi, H.; Eeltink, S. Effect of polyethylene glycol on pore structure and separation efficiency of silica-based monolithic capillary columns. J. Chromatogr. A 2016, 1442, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Izumi, Y.; Hata, K.; Baron, G.V.; Bamba, T.; Desmet, G. Performance of small-domain monolithic silica columns in nano-liquid chromatography and comparison with commercial packed bed columns with 2 µm particles. J. Chromatogr. A 2020, 1616, 460804. [Google Scholar] [CrossRef]
- Alves, F.; Nischang, I. Radical-mediated step-growth: Preparation of hybrid polymer monolithic columns with fine control of nanostructural and chromatographic characteristics. J. Chromatogr. A 2015, 1412, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ou, J.; Liu, Z.; Wang, H.; Wei, Y.; Zou, H. Preparation of Hybrid Monolithic Columns via “One-Pot” Photoinitiated Thiol–Acrylate Polymerization for Retention-Independent Performance in Capillary Liquid Chromatography. Anal. Chem. 2015, 87, 8789–8797. [Google Scholar] [CrossRef]
- Aqel, A. Use of Nanomaterials to Enhance the Separation Efficiency of Monolithic Columns. In Nanomaterials in Chromatography; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 299–322. [Google Scholar]
- Liu, S.; Peng, J.; Zhang, H.; Li, X.; Liu, Z.; Kang, X.; Wu, M.; Wu, R. Preparation of organic-silica hybrid monolithic columns via crosslinking of functionalized mesoporous carbon nanoparticles for capillary liquid chromatography. J. Chromatogr. A 2017, 1498, 64–71. [Google Scholar] [CrossRef]
- Ghanem, A.; Adly, F.G.; Sokerik, Y.; Antwi, N.Y.; Shenashen, M.A.; El-Safty, S.A. Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application. Talanta 2017, 169, 239–248. [Google Scholar] [CrossRef]
- Szente, L. and J. Szemán, Cyclodextrins in Analytical Chemistry: Host–Guest Type Molecular Recognition. Anal. Chem. 2013, 85, 8024–8030. [Google Scholar] [CrossRef]
- Genzer, J.; Bhat, R.R. Surface-Bound Soft Matter Gradients. Langmuir 2008, 24, 2294–2317. [Google Scholar] [CrossRef]
- Dewoolkar, V.C.; Jeong, L.N.; Cook, D.W.; Ashraf, K.M.; Rutan, S.C.; Collinson, M.M. Amine Gradient Stationary Phases on In-House Built Monolithic Columns for Liquid Chromatography. Anal. Chem. 2016, 88, 5941–5949. [Google Scholar] [CrossRef] [PubMed]
- Pucci, V.; Raggi, M.A.; Svec, F.; Fréchet, J.M.J. Monolithic columns with a gradient of functionalities prepared via photoinitiated grafting for separations using capillary electrochromatography. J. Sep. Sci. 2004, 27, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Currivan, S.; Connolly, D.; Paull, B. Stepped gradients on polymeric monolithic columns by photoinitiated grafting. J. Sep. Sci. 2015, 38, 3795–3802. [Google Scholar] [CrossRef]
- Gillespie, E.; Connolly, D.; Paull, B. Using scanning contactless conductivity to optimise photografting procedures and capacity in the production of polymer ion-exchange monoliths. Analyst 2009, 134, 1314–1321. [Google Scholar] [CrossRef]
- Greguš, M.; Kostas, J.C.; Ray, S.; Abbatiello, S.E.; Ivanov, A.R. Improved Sensitivity of Ultralow Flow LC-MS-Based Proteomic Profiling of Limited Samples Using Monolithic Capillary Columns and FAIMS Technology. Anal. Chem. 2020, 92, 14702–14712. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, S.-L.; Kim, J.; Karger, B.L. Ultratrace liquid chromatography/mass spectrometry analysis of large peptides with post-translational modifications using narrow-bore poly(styrene-divinylbenzene) monolithic columns and extended range proteomic analysis. J. Chromatogr. A 2007, 1154, 295–307. [Google Scholar] [CrossRef][Green Version]
- Hebert, A.S.; Prasad, S.; Belford, M.W.; Bailey, D.J.; McAlister, G.C.; Abbatiello, S.E.; Hueget, R.; Wouters, E.R.; Dunyach, J.-J.; Brademan, D.; et al. Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer. Anal. Chem. 2018, 90, 9529–9537. [Google Scholar] [CrossRef]
- Dietze, C.; Schulze, S.; Ohla, S.; Kilmore, K.; Seeberger, P.; Belder, D. Integrated on-chip mass spectrometry reaction monitoring in microfluidc devices containing porous polymer monolithic columns. Analyst 2016, 141, 5412–5416. [Google Scholar] [CrossRef]
- Wei, Z.-H.; Zhang, X.; Zhao, X.; Jiao, Y.-J.; Huang, Y.-P.; Liu, Z.-S. Construction of a microfluidic platform integrating online protein fractionation, denaturation, digestion, and peptide enrichment. Talanta 2021, 224, 121810. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Beirne, S.; Nesterenko, P.N.; Paull, B. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases. Anal. Chem. 2018, 90, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Madera, M.; Mechref, Y.; Novotny, M.V. Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal. Chem. 2005, 77, 4081–4090. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Loo, D.; Dennis, J.W.; O’Leary, C.A.; Hill, M.M. High-throughput lectin magnetic bead array-coupled tandem mass spectrometry for glycoprotein biomarker discovery. Electrophoresis 2011, 32, 3564–3575. [Google Scholar] [CrossRef] [PubMed]
- Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 1990, 499, 177–196. [Google Scholar] [CrossRef]
- Chen, R.; Jiang, X.; Sun, D.; Han, G.; Wang, F.; Ye, M.; Wang, L.; Zou, H. Glycoproteomics Analysis of Human Liver Tissue by Combination of Multiple Enzyme Digestion and Hydrazide Chemistry. J. Proteome Res. 2009, 8, 651–661. [Google Scholar] [CrossRef]
- de Melo Rêgo, M.J.B.; de Lima, L.R.A.; Longo, A.F.P.; Nascimento-Filho, G.A.; de Carvalho Júnior, L.B.; Beltrão, E.A.C. PVA-Glutaraldehyde as support for lectin immobilization and affinity chromatography. Acta Sci. Biol. Sci. 2016, 38, 291–295. [Google Scholar] [CrossRef][Green Version]
- Jonnada, M.; El Rassi, Z. Poly(N-acryloxysuccinimide-co-ethylene glycol dimethacrylate) precursor monolith and its post polymerization modification with alkyl ligands, trypsin and lectins for reversed-phase chromatography, miniaturized enzyme reactors and lectin affinity chromatography, respectively. Electrophoresis 2017, 38, 2870–2879. [Google Scholar]
- Krenkova, J.; Cesla, P.; Foret, F. Macroporous cryogel based spin column with immobilized concanavalin A for isolation of glycoproteins. Electrophoresis 2015, 36, 1344–1348. [Google Scholar] [CrossRef]
- Zhang, C.; Hage, D.S. Development and evaluation of silica-based lectin microcolumns for glycoform analysis of alpha1-acid glycoprotein. Anal. Chim. Acta 2019, 1078, 189–199. [Google Scholar] [CrossRef]
- Kozlik, P.; Goldman, R.; Sanda, M. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal. Bioanal. Chem. 2018, 410, 5001–5008. [Google Scholar] [CrossRef]
- Sajid, M.S.; Jovsevski, B.; Pukala, T.L.; Jabeen, F.; Najam-ul-Haq, M. Fabrication of Piperazine Functionalized Polymeric Monolithic Tip for Rapid Enrichment of Glycopeptides/Glycans. Anal. Chem. 2020, 92, 683–689. [Google Scholar] [CrossRef]
- Ganewatta, N.; El Rassi, Z. Organic polymer monolithic columns with incorporated bare and cyano-modified fumed silica nanoparticles for use in hydrophilic interaction liquid chromatography. J. Anal. Sci. Technol. 2020, 11, 39. [Google Scholar] [CrossRef]
- Totten, S.M.; Feasley, C.L.; Bermudez, A.; Pitteri, S.J. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC. J. Proteome Res. 2017, 16, 1249–1260. [Google Scholar] [CrossRef]
- Li, X.-J.; Jia, M.; Zhao, Y.-X.; Liu, Z.-S.; Aisa, H.A. Preparation of phenylboronate affinity rigid monolith with macromolecular porogen. J. Chromatogr. A 2016, 1438, 171–178. [Google Scholar] [CrossRef]
- Zhou, X.-J.; Mo, C.-E.; Cheng, M.; Huang, Y.-P.; Liu, Z.-S. Improving affinity of boronate capillary monolithic column for microextraction of glycoproteins with hydrophilic macromonomer. J. Chromatogr. A 2018, 1581–1582, 8–15. [Google Scholar] [CrossRef]
- Zhao, H.; Lyu, H.; Qin, W.; Xie, Z. Synthesis of boronate-functionalized organic-inorganic hybrid monolithic column for the separation of cis-diol containing compounds at low pH. Electrophoresis 2018, 39, 924–932. [Google Scholar] [CrossRef]
- Wang, R.; Chen, Z. Boronate affinity monolithic column incorporated with graphene oxide for the in-tube solid-phase microextraction of glycoproteins. J. Sep. Sci. 2018, 41, 2767–2773. [Google Scholar] [CrossRef] [PubMed]
- Aydoğan, C. Boronic acid-fumed silica nanoparticles incorporated large surface area monoliths for protein separation by nano-liquid chromatography. Anal. Bioanal. Chem. 2016, 408, 8457–8466. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Lin, H.; Sui, J.; Yin, J.; Wang, B.; Pavase, T.R.; Cao, L. Preparation of a Boronate-Functionalized Affinity Silica Hybrid Monolith Column for the Specific Capture of Nucleosides. ChemistrySelect 2019, 4, 623–628. [Google Scholar] [CrossRef]
- Shen, Y.-F.; Yuan, F.-F.; Liu, X.-Y.; Huang, Y.-P.; Liu, Z.-S. Synergistic effect of organic-inorganic hybrid monomer and polyhedral oligomeric silsesquioxanes in a boronate affinity monolithic capillary/chip for enrichment of glycoproteins. Microchim. Acta 2019, 186, 812. [Google Scholar] [CrossRef] [PubMed]
- Ektirici, S.; Göktürk, I.; Yılmaz, F.; Denizli, A. Selective recognition of nucleosides by boronate affinity organic-inorganic hybrid monolithic column. J. Chromatogr. B 2020, 1162, 122477. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Lan, Y.-H.; Sun, L.; Chen, X.-Z.; Chi, S.-S.; Zheng, C.; Dong, L.-Y.; Wang, X.-H. Facile Synthesis of Boronate Affinity-Based Molecularly Imprinted Monolith with Reduced Capturing pH Towards Cis-Diol-Containing Compounds. Chromatographia 2019, 82, 1029–1040. [Google Scholar] [CrossRef]
- Espina-Benitez, M.B.; Randon, J.; Demesmay, C.; Dugas, V. Development and application of a new in-line coupling of a miniaturized boronate affinity monolithic column with capillary zone electrophoresis for the selective enrichment and analysis of cis-diol-containing compounds. J. Chromatogr. A 2017, 1494, 65–76. [Google Scholar] [CrossRef]
- Espina-Benitez, M.B.; Randon, J.; Demesmay, C.; Dugas, V. Development of a new in-line coupling of a miniaturized boronate affinity monolithic column with reversed-phase silica monolithic capillary column for analysis of cis-diol-containing nucleoside compounds. J. Chromatogr. A 2019, 1597, 209–213. [Google Scholar] [CrossRef]
- Tikhonov, V.E.; Blagodatskikh, I.V.; Postnikov, V.A.; Klemenkova, Z.S.; Vyshivannaya, O.V.; Khoklov, A.R. New approach to the synthesis of a functional macroporous poly(vinyl alcohol) network and design of boronate affinity sorbent for protein separation. Eur. Polym. J. 2016, 75, 1–12. [Google Scholar] [CrossRef]
- Liu, C.; Deng, Q.; Fang, G.; Huang, X.; Wang, S.; He, J. A Novel Poly(ionic liquid) Interface-Free Two-Dimensional Monolithic Material for the Separation of Multiple Types of Glycoproteins. ACS Appl. Mater. Interfaces 2015, 7, 20430–20437. [Google Scholar] [CrossRef]
- Zheng, H.; Li, X.; Jia, Q. Design of pH-Responsive Polymer Monolith Based on Cyclodextrin Vesicle for Capture and Release of Myoglobin. ACS Appl. Mater. Interfaces 2018, 10, 5909–5917. [Google Scholar] [CrossRef]
- Jing, B.; Chen, X.; Wang, X.; Yang, C.; Xie, Y.; Qiu, H. Self-assembly vesicles made from a cyclodextrin supramolecular complex. Chem. Eur. J. 2007, 13, 9137–9142. [Google Scholar] [CrossRef]
- Zheng, H.; Li, X.; Jia, Q. Self-Assembling Glutamate-Functionalized Cyclodextrin Molecular Tube for Specific Enrichment of N-Linked Glycopeptides. ACS Appl. Mater. Interfaces 2018, 10, 19914–19921. [Google Scholar] [CrossRef]
- Kobayashi, H.; Okada, K.; Tokuda, S.; Kanao, E.; Masuda, Y.; Takaya, H.; Yan, M.; Kubo, T.; Otsuka, K. Separation of saccharides using fullerene-bonded silica monolithic columns via π interactions in liquid chromatography. Sci. Rep. 2020, 10, 13850. [Google Scholar] [CrossRef]
- Vidic, U.; Trbojević-Akmačić, I.; Černigoj, U.; Albers, M.; Gašperšič, J.; Pučić-Baković, M.; Vidič, J.; Štrancar, A.; Lauc, G. Semi-high-throughput isolation andN-glycan analysis of human fibrinogen using monolithic supports bearing monoclonal anti-human fibrinogen antibodies. Electrophoresis 2017, 38, 2922–2930. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Liu, L.; Zhou, P. Amorphous titania modified with boric acid for selective capture of glycoproteins. Mikrochim. Acta 2018, 185, 308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Song, N.; Zeng, H.; Feng, W.; Qia, J. Cobalt Phthalocyanine Tetracarboxylic Acid Functionalized Polymer Monolith for Selective Enrichment of Glycopeptides and Glycans. Proteomics 2018, 18, 1700399. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, L.; Fu, L.; Jia, Q. Selective enrichment of glycopeptides based on copper tetra(N-carbonylacrylic) aminephthalocyanine and iminodiacetic acid functionalized polymer monolith. J. Sep. Sci. 2019, 42, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, L.; Wang, D.; Jia, Q. Preparation of copper tetra(N-carbonylacrylic) aminephthalocyanine functionalized zwitterionic-polymer monolith for highly specific capture of glycopeptides. Anal. Bioanal. Chem. 2018, 410, 6653–6661. [Google Scholar] [CrossRef] [PubMed]
- Flodrová, D.; Bobálová, J.; Laštovičková, M. Cereal n-glycoproteins Enrichment by Lectin Affinity Monolithic Chromatography. Cereal Res. Comm. 2016, 44, 286–297. [Google Scholar] [CrossRef][Green Version]
- Gama, M.R.; da Costa Silva, R.G.; Collins, C.H.; Bottoli, C.B.G. Hydrophilic interaction chromatography. TrAC Trends Anal. Chem. 2012, 37, 48–60. [Google Scholar] [CrossRef]
- Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—A powerful separation technique. Anal. Bioanal. Chem. 2011, 402, 231–247. [Google Scholar] [CrossRef]
- Holdšvendová, P.; Suchánková, J.; Bunček, M.; Bačkovská, V.; Coufal, P. Hydroxymethyl methacrylate-based monolithic columns designed for separation of oligonucleotides in hydrophilic-interaction capillary liquid chromatography. J. Biochem. Biophys. Methods 2007, 70, 23–29. [Google Scholar] [CrossRef]
- Alagesan, K.; Khilji, S.K.; Kolarich, D. It is all about the solvent: On the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal. Bioanal. Chem. 2017, 409, 529–538. [Google Scholar] [CrossRef]
- Keser, T.; Pavić, T.; Lauc, G.; Gornik, O. Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis. Front. Chem. 2018, 6, 324. [Google Scholar] [CrossRef]
- Hioki, M.; Kobayashi, H.; Kinoshita, M.; Yamamoto, S.; Suzuki, S. Chromatographic Performance of an Amine/amino-bonded Column and a Monolithic Reversed-Phase Column for the Separation of Fluorescently Labeled Glycoprotein Glycans. Chromatography 2021, 42, 99–107. [Google Scholar] [CrossRef]
- Gunasena, D.N.; El Rassi, Z. Neutral, charged and stratified polar monoliths for hydrophilic interaction capillary electrochromatography. J. Chromatogr. A 2013, 1317, 77–84. [Google Scholar] [CrossRef]
- Lv, Y.; Lin, Z.; Svec, F. “Thiol–ene” click chemistry: A facile and versatile route for the functionalization of porous polymer monoliths. Analyst 2012, 137, 4114–4118. [Google Scholar] [CrossRef]
- Aydoğan, C.; El Rassi, Z. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with “covalently” incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography. J. Chromatogr. A 2016, 1445, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Potter, O.G.; Breadmore, M.C.; Hilder, E.F. Boronate functionalised polymer monoliths for microscale affinity chromatography. Analyst 2006, 131, 1094–1096. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Liu, Z. Restricted access boronate affinity porous monolith as a protein A mimetic for the specific capture of immunoglobulin G. Chem. Sci. 2012, 3, 1467–1471. [Google Scholar] [CrossRef]
- Li, D.; Li, Q.; Wang, S.; Ye, J.; Nie, H.; Liu, Z. Pyridinylboronic acid-functionalized organic–silica hybrid monolithic capillary for the selective enrichment and separation of cis-diol-containing biomolecules at acidic pH. J. Chromatogr. A 2014, 1339, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, Y.; Liu, Z. Boronate affinity materials for separation and molecular recognition: Structure, properties and applications. Chem. Soc. Rev. 2015, 44, 8097–8123. [Google Scholar] [CrossRef]
- Martínez, Á.; Ortiz Mellet, C.; García Fernández, J.M. Cyclodextrin-based multivalent glycodisplays: Covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chem. Soc. Rev. 2013, 42, 4746–4773. [Google Scholar] [CrossRef]
- Harada, A.; Li, J.; Kamachi, M. Synthesis of a tubular polymer from threaded cyclodextrins. Nature 1993, 364, 516–518. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, D.; Zhou, P. Synthesis of a SiO2/TiO2 hybrid boronate affinity monolithic column for specific capture of glycoproteins under neutral conditions. Analyst 2014, 139, 987–991. [Google Scholar] [CrossRef]
- Wang, S.-T.; Chen, D.; Ding, J.; Yuan, B.-F.; Feng, Y.-Q. Borated Titania, a New Option for the Selective Enrichment of cis-Diol Biomolecules. Chem. Eur. J. 2013, 19, 606–612. [Google Scholar] [CrossRef]
- Masini, J.C.; Svec, F. Porous monoliths for on-line sample preparation: A review. Anal. Chim. Acta 2017, 964, 24–44. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Jie, J.; Yang, B. A facile and cheap synthesis of zwitterion coatings of the CS@PGMA@IDA nanomaterial for highly specific enrichment of glycopeptides. Chem. Commun. 2016, 52, 3251–3253. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; He, M.; Wang, C.; Wei, Y. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules. Anal. Chim. Acta 2015, 886, 66–74. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, W.; Smeekens, J.M.; Wu, R. An enrichment method based on synergistic and reversible covalent interactions for large-scale analysis of glycoproteins. Nat. Commun. 2018, 9, 1692. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Feng, M.; Luo, K.; Yang, J.; Zhang, B. Novel boronate material affords efficient enrichment of glycopeptides by synergized hydrophilic and affinity interactions. Anal. Bioanal. Chem. 2017, 409, 519–528. [Google Scholar] [CrossRef]
- Li, S.; Qin, Y.; Zhong, Q.; Cai, C.; Chen, X.; Chen, C. Highly Efficient Separation of Glycoprotein by Dual-Functional Magnetic Metal-Organic Framework with Hydrophilicity and Boronic Acid Affinity. ACS Appl. Mater. Interfaces 2018, 10, 27612–27620. [Google Scholar] [CrossRef]
- Luo, J.; Huang, J.; Cong, J.; Wei, W.; Liu, X. Double Recognition and Selective Extraction of Glycoprotein Based on the Molecular Imprinted Graphene Oxide and Boronate Affinity. ACS Appl. Mater. Interfaces 2017, 9, 7735–7744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; He, X.; Chen, L.; Zhang, Y. Tailor-Made Boronic Acid Functionalized Magnetic Nanoparticles with a Tunable Polymer Shell-Assisted for the Selective Enrichment of Glycoproteins/Glycopeptides. ACS Appl. Mater. Interfaces 2015, 7, 24576–24584. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Gao, M.; Zhang, X.; Yang, P. Multilayer Hydrophilic Poly(phenol-formaldehyde resin)-Coated Magnetic Graphene for Boronic Acid Immobilization as a Novel Matrix for Glycoproteome Analysis. ACS Appl. Mater. Interfaces 2015, 7, 16011–16017. [Google Scholar] [CrossRef]
- Gao, C.; Bai, J.; He, Y.; Zheng, Q.; Ma, W.; Lin, Z. Post-Synthetic Modification of Phenylboronic Acid-Functionalized Magnetic Covalent Organic Frameworks for Specific Enrichment of N-Linked Glycopeptides. ACS Sustain. Chem. Eng. 2019, 7, 18926–18934. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Y.; Qing, G.; Jiang, G.; Li, X.; Sun, T.; Liang, X. Bioinspired Saccharide–Saccharide Interaction and Smart Polymer for Specific Enrichment of Sialylated Glycopeptides. ACS Appl. Mater. Interfaces 2016, 8, 13294–13302. [Google Scholar] [CrossRef]
- Qing, G.; Li, X.; Xiong, P.; Cheng, C.; Zhan, M.; Liang, X.; Sun, T. Dipeptide-Based Carbohydrate Receptors and Polymers for Glycopeptide Enrichment and Glycan Discrimination. ACS Appl. Mater. Interfaces 2016, 8, 22084–22092. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Messing, M.E.; Ye, L. Temperature and pH Dual-Responsive Core-Brush Nanocomposite for Enrichment of Glycoproteins. ACS Appl. Mater. Interfaces 2017, 9, 8985–8995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qi, L.; Zheng, W.-T.; Tian, Y.-L.; Chi, A.-P.; Zhang, Z.-Q. Novel functionalized poly(glycidyl methacrylate-co-ethylene dimethacrylate) microspheres for the solid-phase extraction of glycopeptides/glycoproteins. J. Sep. Sci. 2017, 40, 1107–1114. [Google Scholar] [CrossRef]
- Deng, Y.N.; Gao, Q.; Ma, J.; Wang, C.; Wei, Y. Preparation of a boronate affinity material with ultrahigh binding capacity for cis-diols by grafting polymer brush from polydopamine-coated magnetized graphene oxide. Microchim. Acta 2018, 185, 189. [Google Scholar] [CrossRef]
- Li, H.; Zhu, S.; Cheng, T.; Wang, S.; Zhu, B.; Liu, X.; Zhang, X. Binary boronic acid-functionalized attapulgite with high adsorption capacity for selective capture of nucleosides at acidic pH values. Microchim. Acta 2016, 183, 1779–1786. [Google Scholar] [CrossRef]
- Chen, C.; El Khoury, G.; Zhang, P.; Rudd, P.M.; Lowe, C.R. A carbohydrate-binding affinity ligand for the specific enrichment of glycoproteins. J. Chromatogr. A 2016, 1444, 8–20. [Google Scholar] [CrossRef]
- Li, L.; Xia, Z.; Pawliszyn, J. Selective extraction and enrichment of glycoproteins based on boronate affinity SPME and determination by CIEF-WCID. Anal. Chim. Acta 2015, 886, 83–90. [Google Scholar] [CrossRef]
- Gao, W.; Li, H.; Liu, Y.; Feng, X.; Liu, B.-F.; Liu, X. Rapid and sensitive analysis of N-glycans by MALDI-MS using permanent charge derivatization and methylamidation. Talanta 2016, 161, 554–559. [Google Scholar] [CrossRef]
- Tayi, V.S.; Butler, M. Isolation and quantification of N-glycans from immunoglobulin G antibodies for quantitative glycosylation analysis. J. Biol. Methods 2015, 2, e19. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Y. Dendritic Mesoporous Silica Nanospheres: Toward the Ultimate Minimum Particle Size for Ultraefficient Liquid Chromatographic Separation. ACS Appl. Mater. Interfaces 2021, 13, 22970–22977. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Ling, Y.; Chen, Z.; Gao, M.; Zhang, X.; Zhou, Y. Unprecedented highly efficient capture of glycopeptides by Fe3O4@Mg-MOF-74 core–shell nanoparticles. Chem. Commun. 2017, 53, 4018–4021. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Yang, Q.; Zhu, Y.; Luo, B.; Lan, F.; Wu, Y.; Gu, Z. pH-Responsive magnetic metal–organic framework nanocomposites for selective capture and release of glycoproteins. Nanoscale 2017, 9, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Bagán, H.; Kamra, T.; Zhou, T.; Ye, L. Nanohybrid polymer brushes on silica for bioseparation. J. Mater. Chem. B 2016, 4, 3247–3256. [Google Scholar] [CrossRef]
- Adamczyk-Woźniak, A.; Cyrański, M.K.; Żubrowska, A.; Sporzyński, A. Benzoxaboroles–Old compounds with new applications. J. Organomet. Chem. 2009, 694, 3533–3541. [Google Scholar] [CrossRef]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2009–2010. Mass Spectrom. Rev. 2015, 34, 268–422. [Google Scholar] [CrossRef]
- Bigge, J.C.; Patel, T.P.; Bruce, J.A.; Goulding, P.A.; Charles, S.M.; Parekh, R.B. Nonselective and Efficient Fluorescent Labeling of Glycans Using 2-Amino Benzamide and Anthranilic Acid. Anal. Biochem. 1995, 230, 229–238. [Google Scholar] [CrossRef]
- Rebecchi, K.R.; Go, E.P.; Xu, L.; Woodin, C.L.; Mure, M.; Desaire, H. A general protease digestion procedure for optimal protein sequence coverage and post-translational modifications analysis of recombinant glycoproteins: Application to the characterization of human lysyl oxidase-like 2 glycosylation. Anal. Chem. 2011, 83, 8484–8491. [Google Scholar] [CrossRef]
- Mann, A.C.; Self, C.H.; Turner, G.A. A general method for the complete deglycosylation of a wide variety of serum glycoproteins using peptide-N-glycosidase-F. Glycosylation Dis. 1994, 1, 253–261. [Google Scholar] [CrossRef]
- Mao, Y.; Fan, R.; Li, R.; Ye, X.; Kulozik, U. Flow-through enzymatic reactors using polymer monoliths: From motivation to application. Electrophoresis 2021, 42, 2599–2614. [Google Scholar] [CrossRef]
- Gattu, S.; Crihfield, C.L.; Lu, G.; Bwanali, L.; Veltri, M.L.; Holland, L.A. Advances in Enzyme Substrate Analysis with Capillary Electrophoresis. Methods 2018, 146, 93–106. [Google Scholar] [CrossRef]
- Han, X.; Xie, Y.; Wu, Q.; Wu, S. The Effect of Monolith Properties on the Digestion Performance of Monolith-Based Immobilized Enzyme Microreactor. J. Chromatogr. Sci. 2018, 57, 116–121. [Google Scholar] [CrossRef]
- Han, W.; Yamauchi, M.; Hasegawa, U.; Noda, M.; Fukui, K.; van der Vlies, A.J.; Uchiyama, S.; Uyama, H. Pepsin immobilization on an aldehyde-modified polymethacrylate monolith and its application for protein analysis. J. Biosci. Bioeng. 2015, 119, 505–510. [Google Scholar] [CrossRef]
- Wang, B.; Shanguan, L.; Wang, S.; Zhang, L.; Zhang, W.; Liu, F. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes. J. Chromatogr. A 2016, 1477, 22–29. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Z.; Li, L. A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies. J. Chromatogr. A 2015, 1412, 75–81. [Google Scholar] [CrossRef]
- Foo, H.C.; Smith, N.W.; Stanley, S.M. Fabrication of an on-line enzyme micro-reactor coupled to liquid chromatography-tandem mass spectrometry for the digestion of recombinant human erythropoietin. Talanta 2015, 135, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Lafleur, J.P.; Senkbeil, S.; Novotny, J.; Nys, G.; Bogelund, N.; Rand, K.D.; Foret, F.; Kutter, J.P. Rapid and simple preparation of thiol–ene emulsion-templated monoliths and their application as enzymatic microreactors. Lab Chip 2015, 15, 2162–2172. [Google Scholar] [CrossRef] [PubMed]
- Perchepied, S.; Eskenazi, N.; Giangrande, C.; Camperi, J.; Fournier, T.; Vinh, J.; Delauny, N.; Pichon, V. Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein. Talanta 2020, 206, 120171. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yan, G.; Zhang, X. Applying multiple proteases to direct digestion of hundred-scale cell samples for proteome analysis. Rapid Commun. Mass Spectrom. 2015, 29, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Glatter, T.; Ludwig, C.; Ahrné, E.; Aebersold, R.; Heck, A.J.R.; Schmidt, A. Large-Scale Quantitative Assessment of Different In-Solution Protein Digestion Protocols Reveals Superior Cleavage Efficiency of Tandem Lys-C/Trypsin Proteolysis over Trypsin Digestion. J. Proteome Res. 2012, 11, 5145–5156. [Google Scholar] [CrossRef]
- Lafleur, J.P.; Kapiszewski, R.; Jensen, T.G.; Kutter, J.P. Rapid photochemical surface patterning of proteins in thiol–ene based microfluidic devices. Analyst 2013, 138, 845–849. [Google Scholar] [CrossRef]
Strategies | Monolithic Materials | New Application to Separations from the Work | Ref/Year |
---|---|---|---|
Lectin affinity-based monolithic materials | |||
Use of an organic support polyvinyl alcohol (PVA-GA) that can participate in many reactions favoring their activation | Concanavalin A (ConA) on PVA-GA monolithic column | Addition to the list of supports for lectin immobilization. Eluted by a minimum concentration of 0.6 M glucose solution | [69] 2016 |
Functionalization with succinimide groups on monolith surface for grafting of lectins via lysine amino groups. | Lens culinaris agglutinin (LCA), Con A, and Ricinus Communis Agglutinin (RCA) on N-acryloxysuccinimide monolith (NASM) column | A method to immobilize multiple lectins that could capture a wide range of glycoproteins/glycoforms in human serum for analysis via LC-MS/MS | [70] 2017 |
Spin columns for spin column lectin chromatography using a highly hydrophilic (meth)acrylate-based monolithic cryogel | Con A on poly(HEMA-co-PEGDA) monolithic cryogel | Good efficiency and selectivity of lectin-modified cryogel towards glycoprotein mixture using MALDI-MS analysis. Spin column was good to use up to the fifth time with no observable loss of affinity. | [71] 2015 |
Lectin microcolumns for high-performance affinity chromatography (HPAC). | Con A and Aleuria Aurantia lectin (AAL) on HPLC-grade porous silica (NUCLEOSIL®) | Low non-specific binding and fast analysis time. Can integrate with on-line detectors or with other columns to create multi-dimensional systems. | [72] 2019 |
HILIC-based monolithic materials | |||
Using HALO® penta-HILIC column that contains five OH groups in tandem with mass spectrometric detection | HALO® penta-HILIC column with five OH groups on the bonded ligand | Different selectivity, i.e., retention of glycopeptides increases with the number of monosaccharide units in the glycan moiety | [73] 2018 |
Tip technology using commercially available extraction tips (StageTip by Thermo Scientific) | Piperazine-modified polymeric monolithic tip | Low cost, yet rapid separation (2 min) due to high selectivity, strong hydrophilicity, high sensitivity, good recovery, and batch-to-batch reproducibility | [74] 2020 |
Incorporation of fumed silica nanoparticle (FSNPs) and cyano-modified FNSPs (CN-FSNPs) as “stationary phases” onto monolith | Cyano-modified-FSNPs-poly(GMM-co-EDMA) monolith | High selectivity and increased retention. Rapid, low cost, requiring smaller quantities of sample. Microscale analysis of complex biological fluids done efficiently. | [75] 2020 |
Electrostatic repulsion hydrophilic interaction liquid chromatography using strong anion exchange solid-phase extraction (SAX-ERLIC) | SOLA SAX SPE cartridges (ThermoFisher Scientific) | Identified unique glycopeptides using an LTQ-Orbitrap Elite mass spectrometer that yielded 191 unique glycoforms across 72 glycosylation sites from 48 glycoproteins | [76] 2017 |
Boronic acid affinity-based monolithic materials | |||
Use of linear macromolecule porogen (polystyrene) | Poly(VPBA-co-EDMA) monolithic column | Avoided the coarsening of monolithic structure that could result in heterogeneous microporous structures consisting of micron size globular particles; separation of cis-diol flavonoid glycosides isomers—isoquercitrin (ISO) and hyperoside (HYP) | [77] 2016 |
Use of hydrophilic macromonomer oligo (ethylene glycol) methyl ether methacrylate (OEG) was mixed with 3-(acrylamido)-phenylboronic acid (AAPBA) as functional monomer | Poly(AAPBA-co-OEG-co-EDMA) monolithic column | Improved affinity and so improved recovery of HRP (97.51%) and OVA (93.97%) in polymer monolith microextraction (PMME) using the prepared OEG boronate monolith as compared to OEG-free boronate monolith (increase of 30%) | [78] 2018 |
Use of hydrophilic 4-vinylphenylboronic acid in preparation of hybrid monolith via a simple and convenient “one-pot” | VBPA-silica hybrid monolithic column | Produced mixed-interaction monolith—hydrophilic, cation exchange, and boronic acid affinity; binding pH was as low as pH 7.5. | [79] 2018 |
Incorporation of nanomaterial graphene oxide into monolithic column | Poly(VPBA-EDGMA-GO) monolith in a PEEK tube | Increased the effective surface area and so improved the extraction efficiency for HRP in an online SPME-HPLC system | [80] 2018 |
Incorporation of fumed silica nanoparticles (FSNPs) into hybrid monolithic column | Poly(HPMA-Cl-MFSNP-EDMA) monolithic column | Ready access to various functionalities; large surface area. Good separation of alkylbenzenes in nano-liquid chromatography. | [81] 2016 |
Use of boronic acid functional ligand with lower pKa (3,5-difluoro-4-formyl-phenylboronic acid, pKa = 6.5) | Boronate-silica affinity monolith with 3,5- Difluoro-4-formyl-phenylboronic acid | Higher binding affinity; able to bind to cis-diol nucleoside at physiological condition (pH = 6.5) | [82] 2019 |
Use of organic-inorganic hybrid monomers, such as 3-aminopropyltriethoxysilane-methacrylic acid (APTES-MAA) and polyhedral oligomeric silsesquioxanes (POSS) | APTES-MAA/POSS-boronate affinity monolith | Good affinity and selectivity for glycoproteins (OVA, transferrin (Trf), HRP), good solvent resistance and pH stability, greater rigidity, and binds to glycoproteins at wide range of pH (5–8). | [83] 2019 |
Use of organic-inorganic hybrid polyhedral oligomeric silsesquioxane-methacryloyl histidine (POSS-MAH) | (POSS-MAH-PBA) monolithic column | 6-fold to 7-fold increase in adsorption capacity; 4.25 times more selective for adenosine and 48.9-fold higher enrichment factor than POSS-MAH free | [84] 2021 |
Use of molecularly imprinting polymers (MIPs) technology with pseudo-template and surface imprinting to avoid template leakage | Boronate affinity-based surface molecularly imprinted monolith (BA-SMIM) | Homogeneous and excellent imprinted recognition sites that could bind two cis-diols; reduced the capturing pH due to nanoconfinement effect of imprinting cavity | [85] 2019 |
Miniaturization of boronate affinity monolithic column and in-line coupling with capillary zone electrophoresis | AAPBA-functionalized silica monolith | Allowed fully automated system that includes in-line preconcentration/purification, separation, and detection for analysis of cis-diols in complex sample; required low sample volume (less than 2 µL) and improved limits of detection (LOD) | [86] 2017 |
In-line coupling with nano-LC reversed-phase separation | AAPBA-functionalized silica monolith | 4-fold increase in the number of phenylboronate sites. Allowed integration of preconcentration and separation steps | [87] 2019 |
Using a crosslinked polyvinyl alcohol to decorate boronic acid into a microporous polymer structure | Macroporous polymer with polyvinyl alcohol as crosslinker (MP-VPA) matrix | Created hydrophilic boronate affinity matrix that is non-swellable and highly crosslinked | [88] 2016 |
Incorporating boronic acid monolith in an interface-free multidimensional separation system | Coupled thiol graphene (TG) doped poly(ionic liquid (ViOcIm+Cl−)) boronate affinity monolith to poly(guanidinium ionic liquid) monolith | Interface-free multidimensional separation system avoids dead volume along the coupled materials. High separation efficiency was attained using CEC in isolating glycoproteins from other non-glycoproteins. | [89] 2015 |
New strategies for separation and enrichment of glycans that use monolithic materials | |||
Use of β-Cyclodextrin vesicles (CDVs) to create a pH-responsive monolith | Mesoporous poly(glycidyl methacrylate-pentaerythritol triacrylate) (poly- (GMA−PETA)) monolith grafted with CDVs | 15 glycopeptides from Myo digest were captured via controllable enrichment combined with MALDI-MS with limit of detection of 0.1 fmol. 166 intact glycopeptides from 130 glycoproteins in human blood samples were identified. | [90,91] 2018 |
Use of cyclodextrin molecular tube functionalized with glutamate (gluCDMT) | Poly(HEMA-PETA-gluCDMT) | High binding capacity (~50 mg g−1) and captured glycopeptides (23 HRP glycopeptides and 28 IgG glycopeptides). Good selectivity in HRP/BSA mixture (1:10,000) | [92] 2018 |
Use of fullerenes bound silica monolithic capillary and a thermo-reactive agent, perfluorophenyl azide | C60- and C70-fullerene bonded columns | Separate 2-aminobenzamide-labeled glucose homopolymers from non-labeled glucose homopolymers by LC under aqueous conditions. Retention rates of disaccharides, such as maltose, trehalose, and sucrose, were determined using C60 column | [93] 2020 |
Use of monoclonal anti-human fibrinogen antibodies to prepare customized chromatographic monolithic column | Convective interaction media (CIM) monolithic support with immobilized monoclonal anti-human fibrinogen antibodies | Fast and simple immunoaffinity purification of fibrinogen (FIB) from human blood samples | [94] 2017 |
Use of amorphous TiO2 modified with boric acid | Monolithic borated titania | Enhanced hydrophilicity and therefore selectivity of towards glycoproteins; binding capacities were 9.3, 26.0, and 53.0 mg g−1 for ribonuclease B, HRP, and OVA, respectively | [95] 2018 |
Use of cobalt phthalocyanine tetracarboxylic acid (CoPcTc) | Poly(GMA-EDMA) monolith grafted with CoPcTc via condensation acylation of carboxyl groups with amine groups | 28 IgG and 17 HRP glycopeptides were identified in polymer monolithic microextraction (PMME) coupled with MALDI–TOF MS with high enrichment selectivity | [96] 2018 |
Use of copper tetra(N-carbonylacrylic) aminephthalocyanine (CuMPc) and iminodiacetic acid (IDA) | Poly(GMA-EDMA-CuMPc-IDA) monolith | Captured and identified a total of 24 IgG glycopeptides and with a detection limit of 5 fmol; high selectivity in a mixture of IgG digest and BSA (1:100 m/m) | [97] 2019 |
Use of copper tetra(N-carbonylacrylic) aminephthalocyanine (CuMPc) and iminodiacetic acid (IDA) | Poly(GMA-EDMA-CuMPc-IDA) monolith | Captured and identified a total of 20 HRP glycopeptides and with a detection limit of 0.5 fmol μL−1; high selectivity in a mixture of BSA and HRP digests (200:1, m/m) | [98] 2018 |
Strategies | Application to Separations | Ref/Year |
---|---|---|
Grafting of boronic acid ligands on silica by surface-initiated atom transfer radical polymerization (SI-ATRP) to create silica-pAAPBA-PBA adsorbent | Excellent selectivity and a higher binding capacity for catechol (513.6 mmol g−1) and for fructose (736.8 mmol g−1) | [119] 2015 |
Grafting benzoboroxole to dendrimer beads to create synergistic benzoboroxole–glycan interactions with multiple monosaccharides in which one sugar bears several OH groups | Increased enrichment efficiency for glycopeptides; identified over 1000 N-glycosylation sites in yeast, 4195 sites on 1608 N-glycoproteins in mouse brain tissues, and 4691 sites on 1906 N-glycoproteins in human cells | [120] 2018 |
Phenylboronic acid (PBA) introduced to SiO2 microspheres by a thiol-ene click chemistry method | High selectivity for both neutral and acidic glycopeptides due to synergistic effects of affinity interaction and hydrophilic interactions | [121] 2017 |
Grafting phenylboronic acid onto the surface of MOF UiO-66-NH2 nanoparticles through amidation reaction to create dual-functionalized magnetic MOFs nanoparticles with abundant amino groups and grafted phenylboronic acid | High binding capacities toward glycoproteins (OVA—327.28 mg/g, Trf—241.17 mg/g, HRP—530.79 mg/g) was observed under physiological state (pH 7.4) due to both hydrophilicity and boronic acid affinity | [122] 2018 |
Double recognition due to boronic acid-functionalized graphene oxide and molecularly imprinted spatial matched cavities for OVA | High binding capacity (278 mg/g) and fast adsorption/elution rate (within 40 min) for OVA | [123] 2017 |
Immobilization of boronic acid ligands on magnetic Fe3O4 nanoparticles using distillation precipitation polymerization (DPP) to create core-shell structured Fe3O4@P(AAPBA) (poly 3-acrylaminophenylboronic acid) and Fe3O4@P(AAPBA-comonomer) hydrophilic magnetic nanoparticles | Enhanced binding strength and selectivity towards glycoproteins due to plentiful boronic acid and its synergistic effect with hydrophilic monomers | [124] 2015 |
Boronic-acid-functionalized magnetic graphene (graphene@phenolic-formaldehyde (magG@PF@APB)) resin multilayer composites | Large specific surface area, strong magnetic responsiveness, biocompatible, and enhanced affinity; low detection limit (1 fmol) and good selectivity (1:100) | [125] 2015 |
Using magnetite colloid nanocrystal clusters (MCNCs) as the “core” and the phenylboronic acid-modified covalent organic frameworks (COFs) as the “shell” (MCNCs@COF@PBA) | Outstanding selectivity (HRP:BSA = 1:600), good sensitivity (100 amol), high enrichment recovery (~93% ± 3%), and rapid magnetic separation (~1 min) | [126] 2019 |
Grafting allose units into a polyacrylamide chain to create a saccharide-based sialylated glycopeptides (SGs) receptor | High-performance enrichment capacity towards SGs; identified 180 SGSs that are much higher than those identified by SA-binding lectins, such as WGA (18 SGSs) and SNA (22 SGSs) | [127] 2016 |
Use of oligopeptides (with optimal dipeptide sequences) screened out using a hydropathy-index-based strategy | Excellent glycopeptide enrichment, i.e., selectivity up to ~70% for real biosamples; can discriminate isomeric glycosidic linkages | [128] 2016 |
Grafting random copolymer brushes on silica nanoparticles to create Si@pNIPAm-b-pBA nanohybrid material | High binding capacities for OVA (98.0 mg g−1) and HRP (26.8 mg g−1) were achieved with a low steric hindrance | [129] 2017 |
Creating boronic acid brushes on the microsphere surfaces resulting to APBA@PGMA/EDMA microspheres | Excellent adsorption selectivity and high extraction efficiency for glycoproteins | [130] 2017 |
Grafting polymer brush using Poly(3-acrylamidophenylboronic acid) (PAAPBA) via surface-initiated atom transfer radical polymerization (SI-ATRP) | Successfully used in enrichment of catecholamines from real urine samples | [131] 2018 |
Use of attapulgite (a fibrous aluminum-magnesium silicate) grafted with a 1,3,5-triazine-containing binary boronic acid | Able to bind to cis-diols at lower pH (5.0); high adsorption capacity (19.5 ± 1.1 mg⋅g−1) for adenosine; high selectivity for cis-diols (1:1000) | [132] 2016 |
Use of Ugi ligand, A21C11I8, that is comprised of benzoboroxole (cylic boronic acid derivative) on aldehyde-functionalized SepharoseTM | Able to purify Gox from spiked E. coli supernatants at neural pH with 98% purity; able to resolve sialylated and neutral glycoforms | [133] 2016 |
Coating the surface of thin-film stainless steel blades with boronate functionalized particles of phenylboronic acid (PBA) and 3-aminophenyl-boronic acid (3-aPBA) to create affinity solid-phase microextraction (BA-SPME) | Selectively extract and enrich glycoproteins (asialofetuin and lactoferrin); extraction and elution process can be easily controlled by adjusting the pH | [134] 2015 |
Use of N-succinimidyloxycarbonylmethyltris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP-Ac-OSu) to label N-glycans after rapid deglycosylation | Over a 50-fold enhancement in the sensitivity for neutral glycans from RNase B as compared to their underivatized counterparts | [135] 2016 |
Use of readily available Protein-A column as mini affinity chromatography to IgG antibodies | N-glycans from monoclonal antibodies (mAbs) were isolated directly from cell culture supernatant in a method with high yield and non-invasive | [136] 2015 |
N-octyl-modified monodispersed dendritic mesoporous silica nanospheres (DMSNs) with small diameter (~170 nm), appropriate pore size (5.6 nm), and packed into capillaries (12-cm long) | Increase in the permeability of packed capillaries with ultrahigh efficiency up to 3,500,000 plates/m as evaluated in CEC mode; applied to glycan profiling of cancerous and normal cells | [137] 2021 |
Strategies | Monolithic Solid Support | Enhanced Features of IMERs | Ref/Year |
---|---|---|---|
Use of monolith with better penetrability and pore distribution | Poly (tetraethoxy-silane-co-3-aminopropyl-triethoxysilane) (poly (TEOS-co-APTES)) monolith | More efficient digestion performance than an IMER with higher amount of immobilized trypsin | [149] 2018 |
Preparation of monolith via thermally induced phase separation (TIPS), resulting in monolith with uniform porosity and high surface area even without using templates and porogens | Poly(glycidyl methacrylate-co-methyl methacrylate) (PGM) monolith | The immobilized pepsin showed better pH and thermal stability compared with free pepsin. Used in online digestion liquid chromatography-mass spectrometry LC-MS and LC-MS/MS systems; larger number of peptides were reproducibly identified compared to those by polystyrene/ divinylbenzene particle (POROS)-based online pepsin column | [150] 2015 |
Immobilized two enzymes (trypsin and chymotrypsin) for consecutive digestion of proteins | Hybrid monolithic column with SBA-15-NH2 nanoparticles | Identified 1091 proteins and 5071 peptides in digesting rat liver proteins. Shortened digestion time compared with solution-based consecutive digestion (from 24 h to 94 s) | [151] 2016 |
Immobilized multiple proteases—trypsin/Lys-C mixture and Lys-N | N-acryloxy-succinimide-co-acrylamide-co-N,N’-methylenebisacrylamide (NAS-AAm-Bis) monolith | Comparable MS signal and protein sequence with in-solution digestion of protein mixture but significantly shortened reaction time (<1 h) and sample loading amount | [152] 2015 |
Online configuration LC–ESI–MS/MS with serially connected trypsin and PNGase F micro-reactors | Dextran-coated fused silica capillaries | Better sensitivity, efficiency, and speed with reduced potential contamination than with an off-line (in solution) enzyme digestion; greater yield of tryptic peptides produced than in-solution digestion. | [153] 2015 |
Use of thiol-ene (TE) polymers that have a large excess of functional groups for enzyme immobilization | In-chip thiol-ene (TE) monoliths (anchored in microfluidic channels) | Reversible or covalent irreversible immobilization of PNGase F enzyme, both with good enzymatic activity in deglycosylation of ribonuclease B | [154] 2015 |
Use of trypsin IMER in glycosylation mapping of a highly glycosylated protein | Enzyme-coupled Sepharose | Identified 42 out of 45 common glycans identified by in-solution digestion; identified more glycans than using pepsin IMER, 2 out of 4 N-glycosylation sites of hCG were identified complementary to pepsin IMER | [155] 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alla, A.J.; Stine, K.J. Recent Strategies for Using Monolithic Materials in Glycoprotein and Glycopeptide Analysis. Separations 2022, 9, 44. https://doi.org/10.3390/separations9020044
Alla AJ, Stine KJ. Recent Strategies for Using Monolithic Materials in Glycoprotein and Glycopeptide Analysis. Separations. 2022; 9(2):44. https://doi.org/10.3390/separations9020044
Chicago/Turabian StyleAlla, Allan J., and Keith J. Stine. 2022. "Recent Strategies for Using Monolithic Materials in Glycoprotein and Glycopeptide Analysis" Separations 9, no. 2: 44. https://doi.org/10.3390/separations9020044
APA StyleAlla, A. J., & Stine, K. J. (2022). Recent Strategies for Using Monolithic Materials in Glycoprotein and Glycopeptide Analysis. Separations, 9(2), 44. https://doi.org/10.3390/separations9020044