Development of an HPLC-DAD Method for the Extraction and Quantification of 5-Fluorouracil, Uracil, and 5-Fluorodeoxyuridin Monophosphate in Cells and Culture Media of Lactococcus lactis
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Standard Preparation
2.3. Sample Preparation
2.4. Sample Analysis Using HPLC-DAD
2.5. Peak Identification
2.6. Photodegradation Assay
2.7. FU Administration
3. Results and Discussion
3.1. Optimization of Sample Preparation
3.2. Method Validation
3.3. Photodegradation of 5-FU
3.4. 5-FU Administration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeVita, V.T., Jr.; Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653. [Google Scholar] [CrossRef] [PubMed]
- Dushinsky, R.; Pleven, E.; Heidelberger, C. The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc. 1957, 79, 4559–4560. [Google Scholar] [CrossRef]
- Shirasaka, T. Development history and concept of an oral anticancer agent S-1 (TS-1): Its clinical usefulness and future vistas. Jpn. J. Clin. Oncol. 2009, 39, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Cho, Y.H.; Ro, E.J.; Yoon, J.S.; Mizutani, T.; Kang, D.W.; Park, J.C.; Kim, T.I.; Clevers, H.; Choi, K.Y. 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat. Commun. 2020, 11, 5321. [Google Scholar] [CrossRef]
- Houghton, J.A.; Harwood, F.G.; Tillman, D.M. Thymineless death in colon carcinoma cells is mediated via fas signaling. Proc. Natl. Acad. Sci. USA 1997, 94, 8144–8149. [Google Scholar] [CrossRef]
- Diasio, R.B.; Harris, B.E. Clinical Pharmacology of 5-Fluorouracil. Clin. Pharmacokinet. 1989, 16, 215–237. [Google Scholar] [CrossRef]
- Di Paolo, A.; Danesi, R.; Ciofi, L.; Vannozzi, F.; Bocci, G.; Lastella, M.; Amatori, F.; Martelloni, B.M.; Ibrahim, T.; Amadori, D.; et al. Improved analysis of 5-Fluorouracil and 5,6-dihydro-5-Fluorouracil by HPLC with diode array detection for determination of cellular dihydropyrimidine dehydrogenase activity and pharmacokinetic profiling. Ther. Drug Monit. 2005, 27, 362–368. [Google Scholar] [CrossRef]
- Lampropoulou, D.I.; Laschos, K.; Amylidi, A.L.; Angelaki, A.; Soupos, N.; Boumpoucheropoulos, S.; Papadopoulou, E.; Nanou, E.; Zidianakis, V.; Nasioulas, G.; et al. Fluoropyrimidine-induced toxicity and DPD deficiency. A case report of early onset, lethal capecitabine-induced toxicity and mini review of the literature. Uridine triacetate: Efficacy and safety as an antidote. Is it accessible outside USA? J. Oncol. Pharm. Pract. 2020, 26, 747–753. [Google Scholar] [CrossRef]
- Ezzeldin, H.; Diasio, R. Dihydropyrimidine dehydrogenase deficiency, a pharmacogenetic syndrome associated with potentially life-threatening toxicity following 5-fluorouracil administration. Clin. Color. Cancer 2004, 4, 181–189. [Google Scholar] [CrossRef]
- Saif, M.W.; Choma, A.; Salamone, S.J.; Chu, E. Pharmacokinetically guided dose adjustment of 5-fluorouracil: A rational approach to improving therapeutic outcomes. J. Natl. Cancer Inst. 2009, 101, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, H.; Zhang, R.; Liu, Y.; Kong, N.; Guo, Y.; Xu, M. 5-Fluorouracil induced dysregulation of the microbiome-gut-brain axis manifesting as depressive like behaviors in rats. Biochim. Et Biophys. Acta Mol. Basis Dis. 2020, 1866, 165884. [Google Scholar] [CrossRef] [PubMed]
- Österlund, P.; Ruotsalainen, T.; Korpela, R.; Saxelin, M.; Ollus, A.; Valta, P.; Kouri, M.; Elomaa, I.; Joensuu, H. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: A randomised study. Br. J. Cancer 2007, 97, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Arrastia, M.; Martinez-Ortigosa, A.; Rueda-Ruzafa, L.; Folch Ayora, A.; Ropero-Padilla, C. Probiotic Supplements on Oncology Patients’ Treatment-Related Side Effects: A Systematic Review of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2021, 18, 4265. [Google Scholar] [CrossRef]
- Feng, J.; Gao, M.; Zhao, C.; Yang, J.; Gao, H.; Lu, X.; Ju, R.; Zhang, X.; Zhang, Y. Oral Administration of Probiotics Reduces Chemotherapy-Induced Diarrhea and Oral Mucositis: A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 823288. [Google Scholar] [CrossRef]
- Baldwin, C.; Millette, M.; Oth, D.; Ruiz, M.T.; Luquet, F.-M.; Lacroix, M. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr. Cancer 2010, 62, 371–378. [Google Scholar] [CrossRef]
- Darbandi, A.; Mirshekar, M.; Shariati, A.; Moghadam, M.T.; Lohrasbi, V.; Asadolahi, P.; Talebi, M. The effects of probiotics on reducing the colorectal cancer surgery complications: A periodic review during 2007–2017. Clin. Nutr. 2020, 39, 2358–2367. [Google Scholar] [CrossRef]
- Agraib, L.M.A.-S.A.; Salah, S.; Abu-hijlih, R.; Abuhijla, F. The effect of probiotics supplementation on the side effects of chemo radiotherapy for colorectal cancer: A literature review. Oncol. Radiother. 2020, 1, 1–9. Available online: https://www.oncologyradiotherapy.com/articles/the-effect-of-probiotics-supplementation-on-the-side-effects-of-chemo-radiotherapy-for-colorectal-cancer-a-literature-review-54551.htmL (accessed on 31 March 2022).
- Singh, V.; Brecik, M.; Mukherjee, R.; Evans, J.C.; Svetlíková, Z.; Blaško, J.; Surade, S.; Blackburn, J.; Warner, D.F.; Mikušová, K.; et al. The complex mechanism of antimycobacterial action of 5-fluorouracil. Chem. Biol. 2015, 22, 63–75. [Google Scholar] [CrossRef]
- Kyrila, G.; Katsoulas, A.; Schoretsaniti, V.; Rigopoulos, A.; Rizou, E.; Doulgeridou, S.; Sarli, V.; Samanidou, V.; Touraki, M. Bisphenol A removal and degradation pathways in microorganisms with probiotic properties. J. Hazard. Mater. 2021, 413, 125363. [Google Scholar] [CrossRef]
- Lindell, A.E.; Zimmermann-Kogadeeva, M.; Patil, K.R. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat. Rev. Microbiol. 2022, 20, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Sousa, T.; Paterson, R.; Moore, V.; Carlsson, A.; Abrahamsson, B.; Basit, A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm. 2008, 363, 1–25. [Google Scholar] [CrossRef] [PubMed]
- García-González, A.P.; Ritter, A.D.; Shrestha, S.; Andersen, E.C.; Yilmaz, L.S.; Walhout, A. Bacterial Metabolism Affects the C. elegans Response to Cancer Chemotherapeutics. Cell 2017, 169, 431–441.e8. [Google Scholar] [CrossRef] [PubMed]
- Martinussen, J.; Hammer, K. Cloning and characterization of upp, a gene encoding uracil phosphoribosyltransferase from Lactococcus lactis. J. Bacteriol. 1994, 176, 6457–6463. [Google Scholar] [CrossRef] [PubMed]
- Björnberg, O.; Rowland, P.; Larsen, S.; Jensen, K.F. Active site of dihydroorotate dehydrogenase A from Lactococcus lactis investigated by chemical modification and mutagenesis. Biochemistry 1997, 36, 16197–16205. [Google Scholar] [CrossRef]
- Dobritzsch, D.; Schneider, G.; Schnackerz, K.D.; Lindqvist, Y. Crystal structure of dihydropyrimidine dehydrogenase, a major determinant of the pharmacokinetics of the anti-cancer drug 5-fluorouracil. EMBO J. 2001, 20, 650–660. [Google Scholar] [CrossRef]
- Breda, M.; Barattè, S. A review of analytical methods for the determination of 5-fluorouracil in biological matrices. Anal. Bioanal. Chem. 2010, 397, 1191–1201. [Google Scholar] [CrossRef]
- Escoriaza, J.; Aldaz, A.; Calvo, E.; Giráldez, J. Simple and sensitive determination of 5-fluorouracil in plasma by high-performance liquid chromatography. Application to clinical pharmacokinetic studies. J. Chromatogr. B Biomed. Sci. Appl. 1999, 736, 97–102. [Google Scholar] [CrossRef]
- Casale, F.; Canaparo, R.; Muntoni, E.; Serpe, L.; Zara, G.P.; Della Pepa, C.; Berno, E.; Costa, M.; Eandi, M. Simultaneous HPLC determination of 5-fluorouracil and its metabolites in plasma of cancer patients. Biomedical chromatography: BMC 2002, 16, 446–452. [Google Scholar] [CrossRef]
- Ackland, S.P.; Garg, M.B.; Dunstan, R.H. Simultaneous Determination of Dihydrofluorouracil and 5-Fluorouracil in Plasma by High-Performance Liquid Chromatography. Anal. Biochem. 1997, 246, 79–85. [Google Scholar] [CrossRef]
- Maring, J.G.; Schouten, L.; Greijdanus, B.; de Vries, E.G.; Uges, D.R. A simple and sensitive fully validated HPLC-UV method for the determination of 5-fluorouracil and its metabolite 5,6-dihydrofluorouracil in plasma. Ther. Drug Monit. 2005, 27, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Barberi-Heyob, M.; Merlin, J.L.; Weber, B. Determination of 5-Fluorouracil and Its Main Metabolites in Plasma by High-Performance Liquid Chromatography. J. Chromatogr. 1992, 573, 241–252. [Google Scholar] [CrossRef]
- Joulia, J.M.; Pinguet, F.; Grosse, P.Y.; Astre, C.; Bressolle, F. Determination of 5-fluorouracil and its main metabolites in plasma by high-performance liquid chromatography: Application to a pharmacokinetic study. J. Chromatogr. B Biomed. Sci. Appl. 1997, 692, 427–435. [Google Scholar] [CrossRef]
- Guerrieri, A.; Palmisano, F.; Zambonin, P.G.; De Lena, M.; Lorusso, V. Solid-phase extraction of fluoropyrimidine derivatives on a copper-modified strong cation exchanger: Determination of doxifluridine, 5-fluorouracil and its main metabolites in serum by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. 1993, 617, 71–77. [Google Scholar] [CrossRef]
- Nassim, M.A.; Shirazi, F.H.; Cripps, C.M.; Veerasinghan, S.; Molepo, M.J.; Obrocea, M.; Redmond, D.; Bates, S.; Fry, D.; Stewart, D.J.; et al. An HPLC method for the measurement of 5-fluorouracil in human plasma with a low detection limit and a high extraction yield. Int. J. Mol. Med. 2002, 10, 513–516. [Google Scholar] [CrossRef]
- Wickremsinhe, E.R.; Lee, L.B.; Schmalz, C.A.; Torchia, J.; Ruterbories, K.J. High sensitive assay employing column switching chromatography to enable simultaneous quantification of an amide prodrug of gemcitabine (LY2334737), gemcitabine, and its metabolite dFdU in human plasma by LC-MS/MS. J. Chromatogr. B Biomed. Sci. Appl. 2013, 932, 117–122. [Google Scholar] [CrossRef]
- Salvador, A.; Millérioux, L.; Renou, A. Simultaneous LC-MS-MS Analysis of Capecitabine and its Metabolites (5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil) After Off-Line SPE from Human Plasma. Chromatographia 2006, 63, 609–615. [Google Scholar] [CrossRef]
- Pandey, K.; Dubey, R.S.; Prasad, B.B. A Critical Review on Clinical Application of Separation Techniques for Selective Recognition of Uracil and 5-Fluorouracil. Indian J. Clin. Biochem. IJCB 2016, 31, 3–12. [Google Scholar] [CrossRef]
- Semail, N.F.; Abdul Keyon, A.S.; Saad, B.; Noordin, S.S.; Nik Mohamed Kamal, N.N.S.; Mohamad Zain, N.N.; Azizi, J.; Kamaruzaman, S.; Yahaya, N. Analytical method development and validation of anticancer agent, 5-fluorouracil, and its metabolites in biological matrices: An updated review. J. Liq. Chromatogr. Relat. Technol. 2020, 43, 562–579. [Google Scholar] [CrossRef]
- Anderson, L.W.; Parker, R.J.; Collins, J.M.; Ahlgren, J.D.; Wilkinson, D.; Strong, J.M. Gas Chromatographic—Mass Spectrometric Method for Routine Monitoring of 5-Fluorouracil in Plasma of Patients Receiving Low-Level Protracted Infusions. J. Chromatogr. B Biomed. Sci. Appl. 1992, 581, 195–201. [Google Scholar] [CrossRef]
- Marunaka, T.; Umeno, Y. Determination of 5-Fluorouracil and Pyrimidine Bases in Plasma by Gas Chromatography-Chemical Ionization-Mass Fragmentography. J. Chromatogr. B Biomed. Sci. Appl. 1980, 221, 382–386. [Google Scholar] [CrossRef]
- Remaud, G.; Boisdron-Celle, M.; Morel, A.; Gamelin, A. Sensitive MS/MS-liquid chromatography assay for simultaneous determination of tegafur, 5-fluorouracil and 5-fluorodihydrouracil in plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 824, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Licea-Perez, H.; Wang, S.; Bowen, C. Development of a sensitive and selective LC-MS/MS method for the determination of alpha-fluoro-beta-alanine, 5-fluorouracil and capecitabine in human plasma. J. Chromatogr. B Biomed. Sci. Appl. 2009, 877, 1040–1046. [Google Scholar] [CrossRef]
- Holleran, J.L.; Eiseman, J.L.; Parise, R.A.; Kummar, S.; Beumer, J.H. LC–MS/MS Assay for the Quantitation of FdCyd and Its Metabolites FdUrd and FU in Human Plasma. J. Pharm. Biomed. Anal. 2016, 129, 359–366. [Google Scholar] [CrossRef]
- Del Nozal, M.; Bernal, J.; Marenero, P.; Pampliega, A. Extraction Procedures for the HPLC determination of 5-fluorouracil in biological samples. J. Liq. Chromatogr. Relat. Technol. 1994, 17, 1621–1636. [Google Scholar] [CrossRef]
- Odagiri, H.; Ichihara, S.; Semura, E.; Utoh, M.; Tateishi, M.; Kuruma, I. Determination of 5-Fluorouracil in Plasma and Liver after Oral Administration of 5’-Deoxy-5-Fluorouridine using Gas Chromatography-Mass Spectrometry. J. Pharmacobio-Dyn. 1988, 11, 234–240. [Google Scholar] [CrossRef]
- Ozawa, S.; Hamada, M.; Murayama, N.; Nakajima, Y.; Kaniwa, N.; Matsumoto, Y.; Fukuoka, M.; Sawada, J.-I.; Ohno, Y. Cytosolic and microsomal activation of doxifluridine and tegafur to produce 5-fluorouracil in human liver. Cancer Chemother. Pharm. 2002, 50, 454–458. [Google Scholar] [CrossRef]
- Zufía, L.; Aldaz, A.; Castellanos, C.; Giráldez, J. Determination of 5-fluorouracil and its prodrug tegafur in plasma and tissue by high-performance liquid chromatography in a single injection: Validation for application in clinical pharmacokinetic studies. Ther. Drug Monit. 2003, 25, 221–228. [Google Scholar] [CrossRef]
- Wrightson, W.R.; Myers, S.R.; Galandiuk, S. HPLC analysis of 5-FU and FdUMP in tissue and serum. Biochem. Biophys. Res. Commun. 1995, 216, 808–813. [Google Scholar] [CrossRef]
- Petrilli, R.; Eloy, J.O.; Paschoal, J.; Lopez, R. Quantification of 5-FU in skin samples for the development of new delivery systems for topical cancer treatment. Die Pharm. 2018, 73, 133–138. [Google Scholar] [CrossRef]
- Jochheim, C.; Janning, P.; Marggraf, U.; Löffler, T.M.; Hasse, F.; Linscheid, M. A procedure for the determination of 5-fluorouracil in tissue using microbore HPLC and fluorescence detection. Anal. Biochem. 1994, 217, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Gamelin, E.; Boisdron-Celle, M.; Larra, F.; Robert, J. A Simple Chromatographic Method for the Analysis of Pyrimidines and their Dihydrogenated Metabolites. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 3155–3172. [Google Scholar] [CrossRef]
- Uhrovčík, J. Strategy for determination of LOD and LOQ values—Some basic aspects. Talanta 2014, 119, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Miolo, G.; Marzano, C.; Gandin, V.; Palozzo, A.C.; Dalzoppo, D.; Salvador, A.; Caffieri, S. Photoreactivity of 5-fluorouracil under UVB light: Photolysis and cytotoxicity studies. Chem. Res. Toxicol. 2011, 24, 1319–1326. [Google Scholar] [CrossRef]
- Martinussen, J.; Andersen, P.S.; Hammer, K. Nucleotide metabolism in Lactococcus lactis: Salvage pathways of exogenous pyrimidines. J. Bacteriol. 1994, 176, 1514–1516. [Google Scholar] [CrossRef][Green Version]
- Martinussen, J.; Glaser, P.; Andersen, P.S.; Saxild, H.H. Two genes encoding uracil phosphoribosyltransferase are present in Bacillus subtilis. J. Bacteriol. 1995, 177, 271–274. [Google Scholar] [CrossRef]
- Deenen, M.J.; Rosing, H.; Hillebrand, M.J.; Schellens, J.H.; Beijnen, J.H. Quantitative determination of capecitabine and its six metabolites in human plasma using liquid chromatography coupled to electrospray tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 913–914, 30–40. [Google Scholar] [CrossRef]
- Botticelli, A.; Borro, M.; Onesti, C.E.; Strigari, L.; Gentile, G.; Cerbelli, B.; Romiti, A.; Occhipinti, M.; Sebastiani, C.; Lionetto, L.; et al. Degradation Rate of 5-Fluorouracil in Metastatic Colorectal Cancer: A New Predictive Outcome Biomarker? PLoS ONE 2016, 11, e0163105. [Google Scholar] [CrossRef][Green Version]
Analyte in Medium/Std. Curve Equation/R2 (F, Fcritical, p) | Nominal Conc. (μg/mL) | Mean Calculated Concentration (μg/mL) (Mean ± SD) | Relative Bias (%) | Precision | Recovery (Mean ± SD) | |
---|---|---|---|---|---|---|
Intraday (RSD %) | Interday (RSD %) | |||||
5-FU in BSM y = 0.0054x + 0.104 0.9999 (34,170.8, 6.4, 2.6 × 10−9) | 5 | 5.3 ± 1.0 | 7.0 | 3.5 | 4.5 | 107.0 ± 19.4 |
25 | 24.8 ± 3.8 | −0.7 | 2.7 | 3.3 | 99.2 ± 15.3 | |
50 | 50.1 ± 10.7 | 0.3 | 2.8 | 3.3 | 100.2 ± 21.4 | |
75 | 74.6 ± 0.8 | −0.5 | 0.9 | 1.0 | 99.5 ±1.1 | |
100 | 100.6 ± 7.9 | 0.6 | 6.4 | 7.8 | 100.6 ± 7.9 | |
5-FU in L. lactis cells y = 0.0051x + 0.079 0.9999 (37,773, 6.4, 2.1 × 10−9) | 5 | 4.7 ± 0.8 | −5.3 | 0.1 | 0.2 | 94.6 ± 1.3 |
25 | 25.6 ± 2.7 | 2.7 | 2.2 | 3.1 | 102.6 ± 9.5 | |
50 | 50.4 ± 3.3 | 0.8 | 3.8 | 5.4 | 102.5 ± 3.9 | |
75 | 75.8 ± 6.2 | 1.2 | 3.1 | 4.3 | 101.1 ± 3.4 | |
100 | 98.5 ± 5.6 | −1.4 | 3.9 | 4.8 | 100.6 ± 5.6 | |
FdUMP in BSM y = 0.003 + 0.010 0.9999 (128,406.1, 9.3, 3.7 × 10−8) | 5 | 5.1 ± 0.4 | 2.6 | 2.8 | 7.1 | 102.6 ± 7.2 |
10 | 9.9 ± 0.4 | −1.3 | 3.1 | 4.0 | 98.7 ± 4.0 | |
15 | 14.7 ± 1.2 | −2.0 | 6.8 | 8.3 | 97.9 ± 8.2 | |
20 | 20.2 ± 1.3 | 1.3 | 5.3 | 6.6 | 101.3 ± 12.2 | |
FdUMP in L. lactis cells y = 0.004x + 0.012 0.9998 (70,690.9, 6.4, 6 × 10−10) | 5 | 4.8 ± 0.2 | −3.5 | 0.9 | 3.9 | 96.4 ± 3.8 |
10 | 10.1 ± 0.4 | 0.7 | 2.3 | 4.5 | 100.7 ± 4.5 | |
15 | 14.8 ± 1.2 | −1.4 | 5.7 | 6.8 | 98.5 ± 7.9 | |
20 | 19.7 ± 1.0 | −1.4 | 4.6 | 5.2 | 98.6 ± 5.2 | |
Uracil in BSM y = 0.014x + 0.041 0.9993 (5197, 9, 4.5 × 10−6) | 5 | 5.3 ± 0.6 | 6.8 | 0.3 | 10.6 | 106.8 ± 11.1 |
10 | 10.1 ± 1.1 | 0.8 | 7.3 | 10.9 | 101.1 ± 11.5 | |
15 | 14.8 ± 1.1 | −1.5 | 1.0 | 7.1 | 99.8 ± 7.2 | |
20 | 20.0 ± 0.7 | 0.2 | 1.8 | 3.6 | 102.2 ±3.7 | |
Uracil in L. lactis cells y = 0.13x + 0.046 0.9994 (5649.3, 9.3, 4 × 10−6) | 5 | 4.8 ± 0.3 | −3.03 | 2.9 | 3.5 | 96.9 ± 5.8 |
10 | 10.9 ± 0.1 | 9.52 | 0.8 | 1.0 | 109.5 ± 1.5 | |
15 | 14.9 ± 0.8 | −0.01 | 3.7 | 4.5 | 99.9 ± 5.5 | |
20 | 19.9 ± 0.4 | −0.16 | 1.4 | 1.8 | 99.8 ± 2.1 |
Std. Curve | Retention Time (min) Mean ± SD (RSD %) | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|
5-FU in BSM | 8.12 ± 0.11 | 1.2 | 3.7 |
5-FU in L. lactis cells | 8. 37 ± 0.17 | 0.9 | 3.0 |
FdUMP in BSM | 5.89 ± 0.09 | 0.4 | 1.2 |
FdUMP in L. lactis cells | 5.81 ± 0.11 | 0.4 | 1.2 |
Uracil in BSM | 7.25 ± 0.11 | 0.7 | 2.1 |
Uracil in L. lactis cells | 7.76 ± 0.11 | 0.7 | 2.2 |
Analyte/Sample | Amount (μg/mL) Mean ± SDp (CI, n = 3, df = 2) | Amount in Total Culture (0.25 g Cells/30 mL) (μg) |
---|---|---|
5-FU/medium | 5.2 ± 0.8 (2.0) | 156 |
5-FU/cells | 10.5 ± 0.63 (1.6) | 26.2 |
F-dUMP/medium | nq | - |
F-dUMP/cells | 21.2 ± 1.2 (2.55) | 47.2 |
Uracil/medium | nd | - |
Uracil cells | nq | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavromatis, P.; Stampouli, K.; Vliora, A.; Mayilyan, A.; Samanidou, V.; Touraki, M. Development of an HPLC-DAD Method for the Extraction and Quantification of 5-Fluorouracil, Uracil, and 5-Fluorodeoxyuridin Monophosphate in Cells and Culture Media of Lactococcus lactis. Separations 2022, 9, 376. https://doi.org/10.3390/separations9110376
Mavromatis P, Stampouli K, Vliora A, Mayilyan A, Samanidou V, Touraki M. Development of an HPLC-DAD Method for the Extraction and Quantification of 5-Fluorouracil, Uracil, and 5-Fluorodeoxyuridin Monophosphate in Cells and Culture Media of Lactococcus lactis. Separations. 2022; 9(11):376. https://doi.org/10.3390/separations9110376
Chicago/Turabian StyleMavromatis, Petros, Kyriaki Stampouli, Angeliki Vliora, Anna Mayilyan, Victoria Samanidou, and Maria Touraki. 2022. "Development of an HPLC-DAD Method for the Extraction and Quantification of 5-Fluorouracil, Uracil, and 5-Fluorodeoxyuridin Monophosphate in Cells and Culture Media of Lactococcus lactis" Separations 9, no. 11: 376. https://doi.org/10.3390/separations9110376
APA StyleMavromatis, P., Stampouli, K., Vliora, A., Mayilyan, A., Samanidou, V., & Touraki, M. (2022). Development of an HPLC-DAD Method for the Extraction and Quantification of 5-Fluorouracil, Uracil, and 5-Fluorodeoxyuridin Monophosphate in Cells and Culture Media of Lactococcus lactis. Separations, 9(11), 376. https://doi.org/10.3390/separations9110376