Influence of Synthesis Parameters and Polymerization Methods on the Selective and Adsorptive Performance of Bio-Inspired Ion Imprinted Polymers
Abstract
:1. Introduction
2. Fundamentals of Ion-Imprinted Polymers
2.1. History
2.2. Synthesis
2.3. Components of the IIP
2.3.1. Counter-Ions of Template
2.3.2. Ligand
2.3.3. Porogenic Solvent
2.3.4. Crosslinking Agent
2.3.5. Initiator
2.4. General Features of the IIP
3. Polymerization Methods for IIP Synthesis
Polymerization Reactions
4. Classification of IIP
5. Recent Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Figueiredo, E.C.; Dias, A.C.B.; Arruda, M.A.Z. Impressão molecular: Uma estratégia promissora na elaboração de matrizes para a liberação controlada de fármacos. Rev. Bras. Cienc. Farm. 2008, 44, 361–375. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Sotomayor, M.P.T.; Kubota, L.T. Polímeros biomiméticos em química analítica. Parte 1: Preparo e aplicações de MIP (“Molecularly Imprinted Polymers”) em técnicas de extração e separação. Quím. Nova 2005, 28, 1076–1086. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Mitreva, M.; Dakova, I.; Karadjova, I. Iron(II) ion imprinted polymer for Fe(II)/Fe(III) speciation in wine. Microchem. J. 2017, 132, 238–244. [Google Scholar] [CrossRef]
- Dahaghin, Z.; Mousavi, H.Z.; Sajjadi, S.M. A novel magnetic ion imprinted polymer as a selective magnetic solid phase for separation of trace lead(II) ions from agricultural products, and optimization using a Box–Behnken design. Food Chem. 2017, 237, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Ara, B.; Muhammad, M.; Salman, M.; Ahmad, R.; Islam, N. Preparation of microspheric Fe(III)-ion imprinted polymer for selective solid phase extraction. Appl. Water Sci. 2018, 8, 41. [Google Scholar] [CrossRef]
- Jasmin, S.; Jan, M.R. Selective Solid Phase Extraction of Copper from Different Samples using Copper Ion-Imprinted Polymer. J. Anal. Chem. 2018, 73, 1146–1153. [Google Scholar] [CrossRef]
- Roushani, M.; Saedi, Z.; Baghelani, Y.M.; Hamdi, F. Ti(IV) ion-imprinted polymer as a new selective sorbent for extraction and pre-concentration of trace amounts of titanium ions in different samples. J. Environ. Anal. Chem. 2019, 99, 1586–1603. [Google Scholar] [CrossRef]
- Fattahi, M.; Ezzatzadeh, E.; Jalilian, R.; Taheri, A. Micro solid phase extraction of cadmium and lead on a new ion-imprinted hierarchical mesoporous polymer via dual-template method in river water and fish muscles: Optimization by experimental design. J. Hazard. Mater. 2021, 403, 123716. [Google Scholar] [CrossRef]
- Zhao, B.; He, M.; Chen, B.; Xu, H.; Hu, B. Poly(1-vinylimidazole) functionalized magnetic ion imprinted polymer for fast and selective extraction of trace gold in geological, environmental and biological samples followed by graphite furnace atomic absorption spectrometry detection. Spectrochim. Acta B At. Spectrosc. 2018, 143, 32–41. [Google Scholar] [CrossRef]
- Xie, C.; Huang, X.; Wei, S.; Xiao, C.; Cao, J.; Wang, Z. Novel dual-template magnetic ion imprinted polymer for separation and analysis of Cd2+ and Pb2+ in soil and food. J. Clean. Prod. 2020, 262, 121387. [Google Scholar] [CrossRef]
- Lee, H.-K.; Choi, J.-W.; Choi, S.-J. Magnetic ion-imprinted polymer based on mesoporous silica for selective removal of Co(II) from radioactive wastewater. Sep. Sci. Technol. 2021, 56, 1842–1852. [Google Scholar] [CrossRef]
- AL-Maibd, R.; Al-Ashaq, W.; Zainuddin, N.; Ibrahim, N.A.; Samsudin, I.N.; Yahaya, N.; Kamaruzaman, S. Synthesis and optimization selective ion-imprinted polymer for the elimination of Ca II ions using Taguchi design. J. Polym. Res. 2021, 28, 3–16. [Google Scholar] [CrossRef]
- Froidevaux, P.; Pittet, P.A.; Bühlmann, D.; Bochud, F.; Straub, M. Ion-imprinted resin for use in an automated solid phase extraction system for determining 90Sr in environmental and human samples. J. Radioanal. Nucl. Chem. 2021, 330, 797–804. [Google Scholar] [CrossRef]
- Kumar, S.; Balouch, A.; Alveroğlu, E.; Jagirani, M.S.; Mughal, M.A.; Mal, D. Fabrication of nickel-tagged magnetic imprinted polymeric network for the selective extraction of Ni(II) from the real aqueous samples. Environ. Sci. Pollut. Res. 2021, 28, 40022–40034. [Google Scholar] [CrossRef]
- Hua, Y.; Li, J.; Min, H.; Wu, X.-H.; Cui, X.-B.; Chen, Y.-J.; Zhen-Lian, H.; Sheng, D. Hybrid monolith assisted magnetic ion-imprinted polymer extraction coupled with ICP-MS for determination of trace Au(III) in environmental and mineral samples. Microchem. J. 2020, 158, 105210. [Google Scholar] [CrossRef]
- Yang, S.; Xu, M.; Yin, J.; Zhao, T.; Li, C.; Hua, D. Thermal-responsive Ion-imprinted magnetic microspheres for selective separation and controllable release of uranium from highly saline radioactive effluents. Sep. Purif. Technol. 2020, 246, 116917. [Google Scholar] [CrossRef]
- Jalilian, R.; Shahmari, M.; Taheri, A.; Gholami, K. Ultrasonic-Assisted Micro Solid Phase Extraction of Arsenic on a New Ion-Imprinted Polymer Synthesized from Chitosan-Stabilized Pickering Emulsion in Water, Rice and Vegetable Samples. Ultrason. Sonochem. 2019, 61, 104802. [Google Scholar] [CrossRef]
- Ghanei-Motlagh, M.; Taher, M.A. Magnetic silver(I) ion-imprinted polymeric nanoparticles on a carbon paste electrode for voltammetric determination of silver(I). Microchim. Acta 2017, 184, 1691–1699. [Google Scholar] [CrossRef]
- Aravind, A.; Mathew, B. Electrochemical sensor based on nanostructured ion imprinted polymer for the determination of Cr (III) ions from industrial waste water. Polym. Int. 2018, 67, 1595–1604. [Google Scholar] [CrossRef]
- Aravind, A.; Mathew, B. Nano layered ion imprinted polymer based electrochemical sensor and sorbent for Mn(II) ions from real samples. J. Macromol. Sci. A 2020, 57, 256–265. [Google Scholar] [CrossRef]
- Di Masi, S.; Garcia Cruz, A.; Canfarotta, F.; Cowen, T.; Marote, P.; Malitesta, C.; Piletsky, S.A. Synthesis and application of ion-imprinted nanoparticles in electrochemical sensors for copper(II) determination. Chem. Nano. Mat. 2019, 5, 754–760. [Google Scholar] [CrossRef]
- Shamsipur, M.; Samandari, L.; Besharati-Seidani, A.; Pashabadi, A. Synthesis, characterization and using a new terpyridine moiety-based ion-imprinted polymer nanoparticle: Sub-nanomolar detection of Pb(II) in biological and water samples. Chem. Pap. 2018, 72, 2707–2717. [Google Scholar] [CrossRef]
- Huang, W.; Liu, Y.; Wang, N.; Song, G.; Yin, X.; Zhang, L.; Ni, X.; Xu, W. A Sensitive Electrochemical Sensor Based on Ion Imprinted Polymers with Gold Nanoparticles for High Selective Detecting Cd (II) Ions in Real Samples. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2043–2053. [Google Scholar] [CrossRef]
- Rezvani, S.A.I.; Darroudi, A.; Zavar, M.H.A.; Zohuri, G.; Ashraf, N. Ion imprinted polymer based potentiometric sensor for the trace determination of Cadmium(II) ions. Arab. J. Chem. 2017, 10, S864–S869. [Google Scholar] [CrossRef]
- Molaei, K.; Bagheri, H.; Asgharinezhad, A.A.; Ebrahimzadeh, H.; Shamsipur, M. SiO2-coated magnetic graphene oxide modified with polypyrrole–polythiophene: A novel and efficient nanocomposite for solid phase extraction of trace amounts of heavy metals. Talanta 2017, 167, 607–616. [Google Scholar] [CrossRef]
- Pauling, L. A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc. 1940, 62, 2643–2657. [Google Scholar] [CrossRef]
- Dickey, F.H. The preparation of specific adsorbents. Proc. Natl. Acad. Sci. USA 1949, 35, 227–229. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A. The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew. Chem. Int. Ed. 1972, 11, 341. [Google Scholar]
- Takagishi, T.; Klotz, I.M. Macromolecule-small molecule interactions; Introduction of additional binding sites in polyethyleneimine by disulfide cross-linkages. Biopolymers 1972, 11, 483–491. [Google Scholar] [CrossRef]
- Arshady, R.; Mosbach, K. Synthesis of substrate-selective polymers by host-guest polymerization. Macromol. Chem. Phys. 1981, 182, 687–692. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Rodriguez, M.E.; Villar, P.; Vulfson, E.N.A. New method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: Synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc. 1995, 117, 7105–7111. [Google Scholar] [CrossRef]
- Nishide, H.; Deguchi, J.; Tsuchida, E. Selective adsorption of metal ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template. Chem. Lett. 1976, 5, 169–174. [Google Scholar] [CrossRef]
- Saatçılar, Ö.; Şatıroğlu, N.; Say, R.; Bektas, S.; Denizli, A. Binding behavior of Fe3+ ions on ion-imprinted polymeric beads for analytical applications. J. Appl. Polym. Sci. 2006, 101, 3520–3528. [Google Scholar] [CrossRef]
- Branger, C.; Meouche, W.; Margaillan, A. Recent advances on ion-imprinted polymers. React. Funct. Polym. 2013, 73, 859–875. [Google Scholar] [CrossRef]
- Liu, H.; Kong, D.; Sun, W.; Li, Q.; Zhou, Z.; Ren, Z. Effect of anions on the polymerization and adsorption processes of Cu(II) ion-imprinted polymers. Chem. Eng. J. 2016, 303, 348–358. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, J.; Liu, Z.; Ni, L.; Jiang, Y.; Gong, C.; Meng, X.; Liu, F.; Zhong, G. Tailor-made ion-imprinted polymer based on functionalized graphene oxide for the preconcentration and determination of trace copper in food sample. J. Sep. Sci. 2016, 39, 1371–1378. [Google Scholar] [CrossRef]
- Walas, S.; Tobiasz, A.; Gawin, M.; Trzewik, B.; Strojny, M.; Mrowiec, H. Application of a metal ion-imprinted polymer based on salen–Cu complex to flow injection preconcentration and F AAS determination of copper. Talanta 2008, 76, 96–101. [Google Scholar] [CrossRef]
- Baghel, A.; Boopathi, M.; Singh, B.; Pandey, P.; Mahato, T.H.; Gutch, P.K.; Sekhar, K. Synthesis and characterization of metal ion imprinted nano-porous polymer for the selective recognition of copper. Biosens. Bioelectron. 2007, 22, 3326–3334. [Google Scholar] [CrossRef]
- Germiniano, T.O.; Corazza, M.Z.; Segatelli, M.G.; Ribeiro, E.S.; Yabe, M.J.S.; Galunin, E.; Tarley, C.R.T. Synthesis of novel copper ion-selective material based on hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate). React. Funct. Polym. 2014, 82, 72–80. [Google Scholar] [CrossRef]
- Kuras, M.J.; Wieckowska, E. Synthesis and characterization of a new copper(II) ion-imprinted polymer. Polym. Bull. 2015, 72, 3227–3240. [Google Scholar] [CrossRef]
- Zhang, T.; Yue, X.; Zhang, K.; Li, J.; Zhu, C.; Zhang, L.; Chen, W. Selective adsorption of CuSO4 from mixed sulfate solutions by Cu(II) ion-imprinted polymers containing salicylaldoximes, ammonium cations, and tertiary amino groups. Mater. Des. 2016, 107, 372–377. [Google Scholar] [CrossRef]
- Ahamed, M.E.H.; Mbianda, X.Y.; Mulaba-Bafubiandi, A.F.; Marjanovic, L. Ion imprinted polymers for the selective extraction of silver(I) ions in aqueous media: Kinetic modeling and isotherm studies. React. Funct. Polym. 2013, 73, 474–483. [Google Scholar] [CrossRef]
- Rajabi, H.R.; Shamsipur, M.; Pourmortazavi, S.M. Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K+ ion in different water samples. Mater. Sci. Eng. C. 2013, 33, 3374–3381. [Google Scholar] [CrossRef]
- Luo, X.; Guo, B.; Luo, J.; Deng, F.; Zhang, S.; Luo, S.; Crittenden, J. Recovery of lithium from wastewater using development of li ion-imprinted polymers. ACS Sustain. Chem. Eng. 2015, 3, 460–467. [Google Scholar] [CrossRef]
- Behbahani, M.; Bagheri, A.; Taghizadeh, M.; Salarian, M.; Sadeghi, O.; Adlnasab, L.; Jalali, K. Synthesis and characterisation of nano structure lead(II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra trace amounts of lead ions from vegetables, rice, and fish samples. Food Chem. 2013, 138, 2050–2056. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Asgharinezhad, A.A.; Moazzen, E.; Amini, M.M.; Sadeghi, O. A magnetic ion-imprinted polymer for lead(II) determination: A study on the adsorption of lead(II) by beverages. J. Food Compos. Anal. 2015, 41, 74–80. [Google Scholar] [CrossRef]
- Shamsipur, M.; Rajabi, H.R.; Pourmortazavi, S.M.; Roushani, M. Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 117, 24–33. [Google Scholar] [CrossRef]
- Roushani, M.; Abbasi, S.; Khani, H.; Sahraei, R. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions. Food Chem. 2015, 173, 266–273. [Google Scholar] [CrossRef]
- Vatanpour, V.; Madaeni, S.S.; Zinadini, S.; Rajabi, H.R. Development of ion imprinted technique for designing nickel ion selective membrane. J. Membr. Sci. 2011, 373, 36–42. [Google Scholar] [CrossRef]
- Abbasi, S.; Roushani, M.; Khani, H.; Sahraei, R.; Mansouri, G. Synthesis and application of ion-imprinted polymer nanoparticles for the determination of nickel ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 140, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Laatikainen, K.; Udomsap, D.; Siren, H.; Brisset, H.; Sainio, T.; Branger, C. Effect of template ion–ligand complex stoichiometry on selectivity of ion-imprinted polymers. Talanta 2015, 134, 538–545. [Google Scholar] [CrossRef]
- He, H.; Gan, Q.; Feng, C. Preparation and application of Ni(II) ion-imprinted silica gel polymer for selective separation of Ni(II) from aqueous solution. R. Soc. Chem. Adv. 2017, 7, 15102–15111. [Google Scholar] [CrossRef]
- Roushani, M.; Abbasi, S.; Khani, H. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of mercury in water and food samples employing cold vapor atomic absorption spectrometry. Environ. Monit. Assess. 2015, 187, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Aboufazeli, F.; Zhad, H.R.L.Z.; Sadeghi, O.; Karimi, M.; Najafi, E. Novel Cd(II) ion imprinted polymer coated on multiwall carbon nanotubes as a highly selective sorbent for cadmium determination in food samples. J. AOAC Int. 2014, 97, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Lulinski, P.; Kalny, P.; Giebułtowicz, J.; Maciejewska, D.; Wroczynski, P. Synthesis and characterization of cadmium(II)-imprinted poly(1-allyl-2-thiourea-co-ethylene glycol dimethacrylate) particles for selective separation. Polym. Bull. 2014, 7, 1727–1741. [Google Scholar] [CrossRef]
- Li, M.; Feng, C.; Li, M.; Zeng, Q.; Yang, H. Synthesis and characterization of a surface-grafted Cd(II) ion-imprinted polymer for selective separation of Cd(II) ion from aqueous solution. Appl. Surf. Sci. 2015, 332, 463–472. [Google Scholar] [CrossRef]
- Kang, R.; Qiu, L.; Fang, L.; Yu, R.; Chen, Y.; Lu, X.; Luo, X. A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater. J. Environ. Chem. Eng. 2016, 4, 2268–2277. [Google Scholar] [CrossRef]
- Tavengwa, N.T.; Cukrowska, E.; Chimuka, L. Sequestration of U(VI) from aqueous solutions using precipitate ion imprinted polymers endowed with oleic acid functionalized magnetite. J. Radioanal. Nucl. Chem. 2015, 304, 933–943. [Google Scholar] [CrossRef]
- Li, M.; Feng, C.; Li, M.; Zeng, Q.; Gan, Q. Synthesis and application of a surface-grafted in (III) ion-imprinted polymer for selective separation and pre-concentration of indium (III) ion from aqueous solution. Hydrometallurgy 2015, 154, 63–71. [Google Scholar] [CrossRef]
- Pearson, R.G. Chemical hardness and bond dissociation energies. J. Am. Chem. Soc. 1998, 110, 7684–7690. [Google Scholar] [CrossRef]
- Cormack, P.A.G.; Elorza, A.Z. Molecularly imprinted polymers: Synthesis and characterization. J. Chromatogr. B 2004, 804, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Mishra, S. Synthesis of a new Cu(II)-ion imprinted polymer for solid phase extraction and preconcentration of Cu (II). Chromatographia 2009, 70, 1539–1545. [Google Scholar] [CrossRef]
- Bojdi, M.K.; Mashhadizadeh, M.H.; Behbahani, M.; Farahani, A.; Davarani, S.S.H.; Bagheri, A. Synthesis, characterization and application of novel lead imprintedpolymer nanoparticles as a high selective electrochemical sensor forultra-trace determination of lead ions in complex matrixes. Electrochim. Acta 2014, 136, 59–65. [Google Scholar] [CrossRef]
- Martín-Esteban, A. Molecularly imprinted polymers: New molecular recognation materials for selective solidphase extraction of organic compounds. Fresen. J. Anal. Chem. 2001, 370, 795–802. [Google Scholar] [CrossRef]
- Gladis, J.M.; Rao, T.P. Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration-separation of traces of uranium. Microchim. Acta 2004, 146, 251–258. [Google Scholar] [CrossRef]
- Meouche, W.; Laatikainen, K.; Margaillan, A.; Silvonen, T.; Siren, H.; Sainio, T.; Beurroies, I.; Denoyel, R.; Branger, C. Effect of porogen solvent on the properties of nickel ion imprinted polymer materials prepared by inverse suspension polymerization. Eur. Polym. J. 2017, 87, 124–135. [Google Scholar] [CrossRef]
- Rahman, S.K.A.; Yusof, N.A.; Abdullah, A.H.; Mohammad, F.; Idris, A.; Al-lohedan, H.A. Evaluation of porogen factors for the preparation of ion imprinted polymer monoliths used in mercury removal. PLoS ONE 2018, 13, e0195546. [Google Scholar] [CrossRef]
- Kala, R.; Biju, V.M.; Rao, T.P. Synthesis, characterization, and analytical applications of erbium (III) ion imprinted polymer particles prepared via γ-irradiation with different functional and crosslinking monomers. Anal. Chim. Acta 2005, 549, 51–58. [Google Scholar] [CrossRef]
- Isikver, Y.; Baylav, S. Synthesis and characterization of metal ion-imprinted polymers. Bull. Mater. Sci. 2018, 41, 49. [Google Scholar] [CrossRef]
- Marestoni, L.D.; Segatelli, M.G.; Sotomayor, M.P.T.; Sartori, L.R.; Tarley, C.R.T. Polímeros impressos com íons: Fundamentos, estratégias de preparo e aplicações em química analítica. Quím. Nova 2013, 36, 1194–1207. [Google Scholar] [CrossRef] [Green Version]
- Kempe, M. Antibody-mimicking polymers as chiral stationary phases in HPLC. Anal. Chem. 1996, 68, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.D.; Barbosa, C.M. Polímeros com capacidade de reconhecimento molecular no controlo da libertação de fármacos. Parte 1: Síntese e caracterização. Quím. Nova 2009, 32, 1609–1619. [Google Scholar] [CrossRef]
- Huang, K.; Chen, Y.; Zhou, F.; Zhao, X.; Liu, J.; Mei, S.; Jing, T. Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd (II) ions. J. Hazard. Mater. 2017, 333, 137–143. [Google Scholar] [CrossRef]
- Machado, F.; Lima, E.L.; Pinto, J.C. Uma revisão sobre os processos de polimerização em suspensão. Polímeros Ciência Tecnol. 2007, 17, 166–179. [Google Scholar] [CrossRef]
- Mayes, A.G.; Mosbach, K. Molecularly imprinted polymer beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. 1996, 68, 3769–3774. [Google Scholar] [CrossRef]
- Lenoble, V.; Meouche, W.; Laatikainen, K.; Garnier, C.; Brisset, H.; Margaillan, A.; Branger, C. Assessment and modelling of Ni(II) retention by an ion-imprinted polymer: Application in natural samples. J. Colloid Interface Sci. 2015, 448, 473–481. [Google Scholar] [CrossRef]
- Long, J.; Luo, X.; Yin, X.; Wu, X. An ion-imprinted polymer based on the novel functional monomer for selective removal of Ni(II) from aqueous solution. J. Environ. Chem. Eng. 2016, 4, 4776–4785. [Google Scholar] [CrossRef]
- Yu, H.; Shao, P.; Fang, L.; Pei, J.; Ding, L.; Pavlostathis, S.G.; Luo, X. Palladium ion-imprinted polymers with PHEMA polymer brushes: Role of grafting polymerization degree in anti-interference. Chem. Eng. Res. Des. 2019, 359, 176–185. [Google Scholar] [CrossRef]
- Hassanzadeh, M.; Ghaemy, M.; Amininasab, S.M.; Shami, Z. An effective approach for fast selective separation of Cr(VI) from water by ion-imprinted polymer grafted on the electro-spun nanofibrous mat of functionalized polyacrylonitrile. React. Funct. Polym. 2018, 130, 70–80. [Google Scholar] [CrossRef]
- Díaz-García, M.E.; Laíño, R.B. Molecular imprinting in sol-gel materials: Recent developments and applications. Microchim. Acta 2005, 149, 19–36. [Google Scholar] [CrossRef]
- Ghanei-Motlagh, M.; Taher, M.A. Novel imprinted polymeric nanoparticles prepared by sol–gel technique for electrochemical detection of toxic cadmium(II) ions. J. Chem. Eng. 2017, 327, 135–141. [Google Scholar] [CrossRef]
- Bali Prasad, B.; Jauhari, D.; Verma, A. A dual-ion imprinted polymer embedded in sol–gel matrix for the ultra trace simultaneous analysis of cadmium and copper. Talanta 2014, 120, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Li, L.; Xing, J. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism. J. Hazard. Mater. 2017, 321, 103–110. [Google Scholar] [CrossRef]
- Mano, E.B.; Mendez, L.C. Introdução a Polímeros, 2nd ed.; Edgard Blücher Ltda.: São Paulo, Brazil, 2004; pp. 26–46. [Google Scholar]
- Jenkins, A.D.; Jones, R.G.; Moad, G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl. Chem. 2010, 82, 483–491. [Google Scholar] [CrossRef]
- Otsu, T.; Yoshida, M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters. Macromol. Rapid Commun. 1982, 3, 127–132. [Google Scholar] [CrossRef]
- Chen, M.; Zhong, M.; Johnson, J.A. Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chem. Rev. 2016, 116, 10167–10211. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; Zhang, Z.; Xu, T. Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes. Prog. Polym. Sci. 2014, 39, 124–144. [Google Scholar] [CrossRef]
- Zhang, H. Controlled “living” radical precipitation polymerization: A versatile polymerization technique for advanced functional polymers. Eur. Polym. J. 2013, 49, 579–600. [Google Scholar] [CrossRef]
- Hande, P.E.; Samui, A.B.; Kulkarni, P.S. Selective nanomolar detection of mercury using coumarin based fluorescent Hg(II)-Ion imprinted polymer. Sens. Actuators B Chem. 2017, 246, 597–605. [Google Scholar] [CrossRef]
- Francisco, J.E.; Feiteira, F.N.; da Silva, W.A.; Pacheco, W.F. Synthesis and application of ion-imprinted polymer for the determination of mercury(II) in water samples. Environ. Sci. Pollut. Res. 2019, 26, 19588–19597. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, F.; Taheri, A.; Shahmari, M. Application of selective solid-phase extraction using a new core-shell-shell magnetic ion-imprinted polymer for the analysis of ultra-trace mercury in serum of gallstone patients. Sep. Sci. Technol. 2019, 55, 2758–2771. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, R.-Y.; Yao, L.; Yin, W.; Yu, J.-X.; Yue, Q.; Xue, Z.; He, H.; Gao, B. Synthesis of rice husk-based ion-imprinted polymer for selective capturing Cu(II) from aqueous solution and re-use of its waste material in Glaser coupling reaction. J. Hazard. Mater. 2022, 424, 127203. [Google Scholar] [CrossRef] [PubMed]
- Sabbaghi, N.; Monajjemi, M. Synthesis of ion-imprinted polymer for solid-phase extraction (IIP-SPE) of lead from tap water samples before ICP/OES analysis: Compared to Monte Carlo simulation. Biointerface Res. Appl. Chem. 2022, 12, 668–681. [Google Scholar]
- Elsayed, N.H.; Monier, M.; Alatawi, R.A.S.; Albalawi, M.A.; Alhawiti, A.S. Preparation of chromium(III) ion-imprinted polymer based on azo dye functionalized chitosan. Carbohydr. Polym. 2022, 284, 119139. [Google Scholar] [CrossRef]
- Lee, Y.; Ahn, S.; Cho, H.; Ogunro, V.; Bae, S. Solventless solid-phase extraction using Zn ion-imprinted polymer detected by colorimetric method. Bull. Korean Chem. Soc. 2022, 43, 429–437. [Google Scholar] [CrossRef]
- Li, W.; Guo, J.; Du, H.; Wang, D.; Cao, J.; Wang, Z. Selective removal of aluminum ions from rare earth solutions by using ion-imprinted polymers. Sep. Purif. Technol. 2022, 286, 120486. [Google Scholar] [CrossRef]
- Cui, C.; He, M.; Chen, B.; Hu, B. Restricted accessed material-copper(II) ion imprinted polymer solid phase extraction combined with inductively coupled plasma-optical emission spectrometry for the determination of free Cu(II) in urine and serum samples. Talanta 2013, 116, 1040–1046. [Google Scholar] [CrossRef]
- Suquila, F.A.C.; Tarley, C.R.T. Performance of restricted access copper-imprinted poly(allylthiourea) in an on-line preconcentration and sample clean-up FIA-FAAS system for copper determination in milk samples. Talanta 2019, 202, 460–468. [Google Scholar] [CrossRef]
- Oliveira, L.L.G.; Suquila, F.A.C.; Figueiredo, E.C.; Segatelli, M.G.; Tarley, C.R.T. Restricted access material-ion imprinted polymer-based method for on-line flow preconcentration of Cd2+ prior to flame atomic absorption spectrometry determination. Microchem. J. 2020, 157, 105022. [Google Scholar] [CrossRef]
Type of Solvent | Solvent | Boiling Point (°C) | Dielectric Constant (k) | Dipole Moment (D) |
---|---|---|---|---|
Non-polar | Toluene [53] | 111.6 | 2.38 | 0.36 |
Chloroform [38,50] | 61.1 | 4.81 | 1.04 | |
Aprotic polar | Dichloromethane (DCM) | 40.0 | 9.1 | 1.60 |
Tetrahydrofuran (THF) | 65.0 | 7.5 | 1.75 | |
Dimethylformamide (DMF) [42] | 153.0 | 38.0 | 3.82 | |
Acetonitrile (ACN) [46,47] | 81.6 | 37.5 | 3.92 | |
Dimethylsulfoxide (DMSO)[60] | 189.0 | 46.5 | 3.96 | |
Protic Polar | Methanol (MeOH) [39,41] | 64.6 | 33.0 | 1.70 |
Ethanol (EtOH) [34,40,43,51] | 78.2 | 30.0 | 1.69 | |
Acetic Acid (HAc) | 118.0 | 6.2 | 1.74 |
Metal Ion Salt | Functional Monomer/Non-Vinylated Ligand | Crosslinking Agent | Initiator | Other Reagents Used | Porogenic Solvent | Polymerization Strategy | Adsorption Capacity (mg g−1) | Eluent | Determination Technique | Application in Samples | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
1.0 mmol of Cu(NO3)2▪3H2O | 0.4 mmol of Acrylamide | 1.00 mmol of EGDMA | 0.03 mmol of AIBN | Graphene oxide (GO) | EtOH | Surface imprinting | 109.38 | HCl | GF AAS | Milk and crayfish (head, claw, tail). | [37] |
2.4 mmol of Cu(CH3COO)2 | 2.0 mmol of Salen | 65.50 mmol of Styrene and 10.5 mmol of DVB | 3.04 mmol of Benzoyl peroxide (BPO) | Chloroform | Suspension | 7.22 | EDTA, HCl, HNO3 | F AAS | Water. | [38] | |
2.5 mmol of CuCl2▪2H2O | 10.0 mmol of Acrylamide | DVB | AIBN | MeOH | Precipitation | N.I | HCl | F AAS Cronop. | N.I | [39] | |
0.9 mmol of Cu(NO3)2▪3H2O | 9.9 mmol of Acrylamide | EGDMA | AIBN | 1.2 mmol of CTAB (Surfactant) | EtOH | Bulk | 0.84 | HNO3 | F AAS | N.I | [40] |
1.0 mmol of Cu2+ | 2.0 mmol of Itaconic acid | 20.00 mmol of EGDMA | 0.30 mmol of AIBN | MeOH | Precipitation | 14.80 | HCl in EDTA | WD-XRF | N.I | [41] | |
CuSO4▪5H2O | 7.4 mmol of PCC and 0.2 mmol of DAMAS | 0.20 mol DVB and 0.05 mol EGDMA | 12.18 mmol of AIBN | DMF | Precipitation | 8.56 | H2SO4 | F AAS | N.I | [42] | |
0.9 mmol of AgNO3 | 1-VID or 4-VP | EBAm | AMP | EtOH | Precipitation | 1-VID: 72.22 and 4-VP: 72.97 | Thiourea in HCl, Na2S2O3, EDTA in NaOH | ICP OES | N.I | [43] | |
1.0 mmol of KNO3 | 1.0 mmol of DC18C6/10.0 mmol of MAA | 100.0 mmol of EGDMA | 0.30 mmol of AIBN | ACN:DMSO (3:1. v/v) | Precipitation | 15.60 | HNO3, HCl, H2SO4. | Flame Photometer | Water (drinking, mineral, waste). | [44] | |
5.0 mmol of LiCl▪H2O | 1.9 mmol of 2M12C4 | 25.00 mmol of EGDMA | 1.10 mmol of AIBN | 2.0 g MH-Fe3O4@SiO2 | MeOH:DMF (1:2 v/v) | Surface imprinting | 4.08 | HCl | F AAS | Wastewater. | [45] |
0.5 mmol of Pb(NO3)2 | 1.0 mmol of 1.5-diphenylcarbazone/4.0 mmol of 2-VP | 20.00 mmol of EGDMA | 0.40 mmol of AIBN | ACN | Bulk | 75.40 | HCl | F AAS | Fish, vegetables (parsley, basil, and mint), and rice. | [46] | |
1.0 mmol of PbCO3 | 2.0 mmol of MAA | 5.80 mmol of EGDMA | 0.30 mmol of AIBN | 1.0 g of Fe3O4 functionalized with TEVS | ACN | Surface imprinting | 51.80 | Thiourea in HCl | F AAS | Beverages (milk, coffee, tea, juice, lemonade, water). | [47] |
1.0 mmol of Zn(NO3)2▪6H2O | 1.0 mmol of Morin/6.0 mmol of MAA | 20.00 mmol of EGDMA | 0.30 mmol of AIBN | EtOH:ACN (2:1 v/v) | Bulk | 0.13 | HCl, HNO3, H2SO4, EDTA | F AAS | Orange juice and water (waste, river, tap). | [48] | |
1.0 mmol of Zn(NO3)2▪6H2O | 1.0 mmol of N,N’-Bis(salicylidene)ethylenediamine/4.7 mmol of MAA | 30.00 mmol of EGDMA | 0.40 mmol of AIBN | MeOH: EtOH (3:1 v/v) | Precipitation | 22.11 | H2SO4, HNO3, HCl | F AAS | Milk, potato, rice, tea, and mineral water. | [49] | |
2.1 mmol of Ni(NO3)2▪6H2O | 4.0 mmol of Dz/2.4 mmol of MAA | 12.00 mmol of EGDMA | 0.73 mmol of AIBN | Membrane of PVDF | Chloroform | Surface imprinting | 37.00 | HCl | F AAS | N.I | [50] |
1.0 mmol of Ni (NO3)2▪6H2O | 2.0 mmol of 1.5-diphenylcarbazone/4.7 mmol of MAA | 30.00 mmol of EGDMA | 0.40 mmol of AIBN | EtOH | Precipitation | 40.25 | HCl, H2SO4, HNO3 | F AAS | Water (drinking, river, minerals) and tomatoes. | [51] | |
1.2 mmol of Ni(NO3)2▪6H2O or 1.2 mmol of Ni(ClO4)2▪6H2O | Vbamp | 23.50 mmol of EGDMA | 0.65 mmol of AIBN | EtOH: 2-methoxyethanol (1:1. v/v) | Reverse suspension | IIPNO3: 7.04 (pH 4.00) and 11.73 (pH 7.00) IIPClO4: 5.86 (pH 4.00) and 9.39 (pH 7.00) | H2SO4 | ICP OES | N.I | [52] | |
1.0 mmol of Ni(NO3)2▪6H2O | 4.0 mmol of AMPSA | 7.95 mmol of EGDMA | 0.61 mmol of AIBN | SG-PMA (Support); SDS and n-pentanol (Emulsifiers) | Toluene | Surface imprinting | 20.30 | HNO3 | ICP OES | Water | [53] |
1.0 mmol of HgCl2 | 1.0 mmol of 2. 2- dipyridylamine | 30.00 mmol of EGDMA | 0.40 mmol of AIBN | MeOH | Precipitation | 27.96 | HCl, H2SO4, HNO3. | CV-AAS | Water and fish. | [54] | |
0.5 mmol of CdI2 | 2.0 mmol of N-pdc | 5.29 mmol of EGDMA | 0.61 mmol of AIBN | CNT functionalized with VS | EtOH | Surface imprinting | 46.00 | Thiourea in HCl, HCl, HNO3, H2SO4 | F AAS | Lettuce, coriander, onion, spinach, parsley, cabbage, and tea. | [55] |
0.05–0.8 mmol of Cd(NO3)2▪4H2O | 0.8 mmol of ALU or 1-VID or Acrylamide or ATU | 4.00 mmol of EGDMA | 0.06 mmol of AIBN | MeOH | Bulk | Between 2.1 × 10−4 and1.7 × 10−3 | HNO3 | GF AAS | Water | [56] | |
1.0 mmol of CdCl2▪2.5H2O | 2.0 mmol of ATU | 7.94 mmol of EGDMA | 0.43 mmol of AIBN | SG-PMA | ACN | Surface imprinting | 38.3 | HCl, HNO3 | ICP OES | Water (synthetic, tap, lake, waste) | [57] |
5.0 mmol of Co(NO3)2▪6H2O | 10.0 mmol of 1-VID | 50.00 mmol of EGDMA | 0.61 mmol of AIBN | Fe3O4 functionalized with TEOS | DMF: MeOH | Surface imprinting | 21.00 | HNO3 | F AAS | Wastewater. | [58] |
UO2(NO3)2 ▪6H2O | SALO/4-VP and 12.0 mmol of MAA | 36.00 mmol of EGDMA | 0.30 mmol of AIBN | Fe3O4 functionalized with AO | 2-methoxyethanol | Bulk | 1.04 | HCl, H2SO4, HNO3, NaHCO3, Na2CO3 | ICP OES | Wastewater (mine treatment and acid drainage plants). | [59] |
0.1 mmol In2(SO4)3 | 0.15 mmol of AVF | 6.36 mmol of EGDMA | 0.61 mmol AIBN | SG-PMA | DMSO | Graft | 45.07 | H2SO4 | ICP OES | Wastewater (mines) | [74] |
Polymerization Methods | General Features | Examples of Polymeric Particle Morphology Obtained by Other Researchers |
---|---|---|
Bulk polymerization |
| Ref. [40] Ref. [56] Relatively large particles with irregular size and shape. |
Suspension Polymerization |
| Ref. [38] Ref. [67] Uniformly sized microspheres |
Precipitation Polymerization |
| Ref. [77] Ref. [78] Highly homogeneous microspheres. |
Polymerization by surface imprinting |
| Ref. [57] Ref. [58] |
Graft Polymerization |
| Ref. [79] Ref. [80] The particles are homogeneous in size. |
Sol-gel polymerization |
| Ref. [82] Ref. [83] |
Emulsion polymerization |
| Ref. [84] |
Chemical Nature of IIP | Synthesis | Features/Properties |
---|---|---|
Organic |
|
|
Inorganic |
|
|
Hybrids (Organic-inorganic) |
|
|
Metal Ion | Application in Samples | Modality | Determination Technique | Limit of Detection— LD (µg L−1) | Year | Ref. |
---|---|---|---|---|---|---|
Fe2+ | Wine. | SPE | F AAS | 30.00 | 2017 | [4] |
Pb2+ | Agricultural products (Orange, mango, apple, kiwi, lettuce, broccoli, carrot, squash, eggplant, radish, mushroom, cucumber, and tomato). | MSPE | F AAS | 0.48 | 2017 | [5] |
Ag+ | Well water, aqueduct water, and dam water | - | DPV | 0.015 | 2017 | [19] |
Cd2+ | Tap water. | - | potentiometry with ion-selective electrodes (IES) | 11.20 | 2017 | [25] |
Hg2+ | River and lake water. | - | UV-visible and fluorescence spectrophotometer | 4.00 | 2017 | [91] |
Fe3+ | Springs, tube well, hand pumps, open streams, and rivers. | SPE | Ultraviolet-Visible spectrophotometer and F AAS. | N.I | 2018 | [6] |
Cu2+ | Water samples such as well water river water, tap water and industrial effluent water. | SPE | F AAS | N.I | 2018 | [7] |
Au3+ | Geological, environmental and biological. | MSPE | GF-AAS | 0.0079 | 2018 | [10] |
Cr3+ | Industrial wastewater. | - | DPV | 2.65 | 2018 | [20] |
Pb2+ | Tap water and well water. | - | DPASV | 0.021 | 2018 | [23] |
Ti4+ | Tap water, well water, and wastewater. | - | F AAS | 10.00 | 2019 | [8] |
Mn2+ | Lake, fertilizers, and mining effluents. | - | DPV | 0.75 | 2019 | [21] |
Cu2+ | Water. | - | DPV | 0.0047 | 2019 | [22] |
Hg2+ | Lagoon and river water. | SPE | DPASV | 0.322 | 2019 | [92] |
Hg2+ | Serum of gallstone patients. | SPE | UV-Vis spectrophotometer | 0.05 | 2019 | [93] |
Cd2+ and Pb2+ | Soil, rice, and rice husk. | MISPE | GF-AAS | 0.102 (Cd2+) 0.011 (Pb2+) | 2020 | [11] |
Co2+ | Radioactive wastewater. | MSPE | ICP-OES | N. I | 2020 | [12] |
Au3+ | Tap water, river water, soil, and coal. | MSPE | ICP-MS | 0.002 | 2020 | [16] |
UO22+ | Highly saline radioactive effluents. | MSPE | ICP-MS. | N.I | 2020 | [17] |
As3+ | Well water, parsley, mint, and rice. | MSPE | HG-AAS | 0.0043 | 2020 | [18] |
Cd2+ and Pb2+ | River water and fish muscles | SPE | FS-FAAS | 0.20 (Cd2+) 0.43 (Pb2+) | 2021 | [9] |
Ca2+ | Human blood serum. | SPE | ICP-OES | N. I | 2021 | [13] |
90Sr | Soil, river sediments, wheat, grass, vegetables (Potatoes, salad, rhubarb, spinach, chard, parsnip, carrot, radish, leek, celery, Jer. artichoke, bear’s garlic), milk, milk teeth, human vertebrae, urine, and water. | SPE | ICP-OES | 8 mBq L−1 | 2021 | [14] |
Ni2+ | Water | MSPE | ICP-OES | 0.58 | 2021 | [15] |
Cd2+ | Tap water, river water, and rice. | - | CV, DPV, and EIS | 0.016 | 2021 | [24] |
Cu2+ | Wastewater | SPE | F AAS | N.I | 2022 | [94] |
Pb2+ | Tap water | SPE | ICP-OES | N.I | 2022 | [95] |
Cr3+ | Real and artificial electroplating industrial effluent | SPE | ICP-OES | N.I | 2022 | [96] |
Zn2+ | Honey | SPE | UV-Vis | 25.70 | 2022 | [97] |
Al3+ | Rare earth solutions | SPE | ICP-AES | N.I | 2022 | [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cajamarca, F.A.; Tarley, C.R.T. Influence of Synthesis Parameters and Polymerization Methods on the Selective and Adsorptive Performance of Bio-Inspired Ion Imprinted Polymers. Separations 2022, 9, 266. https://doi.org/10.3390/separations9100266
Cajamarca FA, Tarley CRT. Influence of Synthesis Parameters and Polymerization Methods on the Selective and Adsorptive Performance of Bio-Inspired Ion Imprinted Polymers. Separations. 2022; 9(10):266. https://doi.org/10.3390/separations9100266
Chicago/Turabian StyleCajamarca, Fabio Antonio, and César Ricardo Teixeira Tarley. 2022. "Influence of Synthesis Parameters and Polymerization Methods on the Selective and Adsorptive Performance of Bio-Inspired Ion Imprinted Polymers" Separations 9, no. 10: 266. https://doi.org/10.3390/separations9100266
APA StyleCajamarca, F. A., & Tarley, C. R. T. (2022). Influence of Synthesis Parameters and Polymerization Methods on the Selective and Adsorptive Performance of Bio-Inspired Ion Imprinted Polymers. Separations, 9(10), 266. https://doi.org/10.3390/separations9100266