Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Materials
2.3. Extraction and Isolation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A.; et al. Plants of the genus zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef] [PubMed]
- Sabulal, B.; Dan, M.; John, A.J.; Kurup, R.; Pradeep, N.S.; Valsamma, R.K.; George, V. Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 2006, 67, 2469–2473. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Yusuf, M. Zingiber salarkhanii (Zingiberaceae), a new species from Bangladesh. Bangladesh J. Plant Taxon. 2013, 20, 239–242. [Google Scholar] [CrossRef]
- Sadhu, S.K.; Khatun, A.; Ohtsuki, T.; Ishibashi, M. First isolation of sesquiterpenes and flavonoids from Zingiber spectabile and identification of zerumbone as the major cell growth inhibitory component. Nat. Prod. Res. 2007, 21, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- The Plant List. Available online: http://www.theplantlist.org/ (accessed on 19 April 2019).
- Sanatombi, R.; Sanatombi, K. Biotechnology of Zingiber montanum (Koenig) Link ex A. Dietr.: A review. J. Appl. Res. Med. Aromat. Plants 2017, 4, 1–4. [Google Scholar] [CrossRef]
- Sirirugsa, P. Thai Zingiberaceae: Species Diversity and Their Uses. Pure Appl. Chem. 1998, 70, 23–27. [Google Scholar]
- Al-Amin, M.; Sultana, G.N.N.; Hossain, C.F. Antiulcer principle from Zingiber montanum. J. Ethnopharmacol. 2012, 141, 57–60. [Google Scholar] [CrossRef]
- Manochai, B.; Paisooksantivatana, Y.; Choi, H.; Hong, J.H. Variation in DPPH scavenging activity and major volatile oil components of cassumunar ginger, Zingiber montanum (Koenig), in response to water deficit and light intensity. Sci. Hortic. (Amsterdam) 2010, 126, 462–466. [Google Scholar] [CrossRef]
- Ozaki, Y.; Kawahara, N.; Harada, M. Anti-inflammatory Effect of Zingiber cassumunar ROXB. and Its Active Principles. Chem. Pharm. Bull. (Tokyo) 2011, 39, 2353–2356. [Google Scholar] [CrossRef]
- Pithayanukul, P.; Tubprasert, J.; Wuthi-Udomlert, M. In vitro antimicrobial activity of Zingiber cassumunar (Plai) oil and a 5% Plai oil gel. Phyther. Res. Int. J. Devot. Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 164–169. [Google Scholar]
- Masuda, T.; Jitoe, A. Antioxidative and Antiinflammatory Compounds from Tropical Gingers: Isolation, Structure Determination, and Activities of Cassumunins A, B, and C, New Complex Curcuminoids from Zingiber cassumunar. J. Agric. Food Chem. 1994, 42, 1850–1856. [Google Scholar] [CrossRef]
- Panthong, A.; Kanjanapothi, D.; Niwatananun, V.; Tuntiwachwuttikul, P.; Reutrakul, V. Anti-inflammatory activity of compounds isolated from Zingiber cassumunar. Planta Med. 1990, 56, 655. [Google Scholar] [CrossRef]
- Kanjanapothi, D.; Soparat, P.; Panthong, A.; Tuntiwachwuttikul, P.; Reutrakul, V. A Uterine Relaxant Compound from Zingiber cassumunar. Planta Med. 2007, 53, 329–332. [Google Scholar] [CrossRef] [PubMed]
- bin Jantan, I.; Yassin, M.S.M.; Chin, C.B.; Chen, L.L.; Sim, N.L. Antifungal Activity of the Essential Oils of Nine Zingiberaceae Species. Pharm. Biol. 2003, 41, 392–397. [Google Scholar] [CrossRef]
- Nugroho, B.W.; Schwarz, B.; Wray, V.; Proksch, P. Insecticidal constituents from rhizomes of Zingiber cassumunar and Kaempferia rotunda. Phytochemistry 1996, 41, 129–132. [Google Scholar] [CrossRef]
- Okonogi, S.; Chaiyana, W. Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique. Drug Discov. Ther. 2012, 6, 249–255. [Google Scholar] [CrossRef]
- Pongprayoon, U.; Soontornsaratune, P.; Jarikasem, S.; Sematong, T.; Wasuwat, S.; Claeson, P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part I: The essential oil. Phytomedicine 1997, 3, 319–322. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.I.; Chowdhury, J.U.; Begum, J. Volatile constituents of essential oils isolated from leaf and rhizome of Zingiber cassumunar Roxb. Bangladesh J. Pharmacol. 2008, 3, 69–73. [Google Scholar] [CrossRef]
- Jitoe, A.; Masuda, T.; Mabry, T.J. Novel Antioxidants, Cassumunarin A, B, and C, from Zingiber cassumunar. Tetrahedron Lett. 1994, 35, 981–984. [Google Scholar] [CrossRef]
- Jiang, H.; Xie, Z.; Koo, H.J.; McLaughlin, S.P.; Timmermann, B.N.; Gang, D.R. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry 2006, 67, 1673–1685. [Google Scholar] [CrossRef]
- Invasive Species Compendium. Available online: https://www.cabi.org/ISC/datasheet/57536 (accessed on 19 April 2019).
- Nakatani, N.; Jitoe, A.; Masuda, T.; Yonemori, S. Flavonoid Constituents of Zingiber zerumbet Smith. Agric. Biol. Chem. 1991, 55, 445–460. [Google Scholar] [CrossRef]
- Markham, K.R.; Chari, V.M. Carbon-13 NMR Spectroscopy of Flavonoids. In The Flavonoids; Harborne, J.B., Marby, T.J., Marby, H., Eds.; Chapman and Hall: New York, NY, USA, 1982; pp. 19–134. ISBN 978-1-4899-2915-0. [Google Scholar]
- Masuda, T.; Jitoe, A.; Kato, S.; Nakatani, N. Acetylated flavonol glycosides from Zingiber zerumbet. Phytochemistry 1991, 30, 2391–2392. [Google Scholar] [CrossRef]
- Xu, Y.; Smith, J.A.; Lannigan, D.A.; Hecht, S.M. Three acetylated flavonol glycosides from Forsteronia refracta that specifically inhibit p90 RSK. Bioorg. Med. Chem. 2006, 14, 3974–3977. [Google Scholar] [CrossRef] [PubMed]
- Dev, S. Studies in sesquiterpenes-XVI. Zerumbone, a monocyclic sesquiterpene ketone. Tetrahedron 1960, 8, 171–180. [Google Scholar] [CrossRef]
- Kitayama, T.; Okamoto, T.; Hill, R.K.; Kawai, Y.; Takahashi, S.; Yonemori, S.; Yamamoto, Y.; Ohe, K.; Uemura, S.; Sawada, S. Chemistry of Zerumbone. 1. Simplified isolation, conjugate addition reactions, and a unique ring contracting transannular reaction of its dibromide. J. Org. Chem. 1999, 64, 2667–2672. [Google Scholar] [CrossRef] [PubMed]
- Chien, T.Y.; Chen, L.G.; Lee, C.J.; Lee, F.Y.; Wang, C.C. Anti-inflammatory constituents of Zingiber zerumbet. Food Chem. 2008, 110, 584–589. [Google Scholar] [CrossRef]
- Ruslay, S.; Abas, F.; Shaari, K.; Zainal, Z.; Maulidiani; Sirat, H.; Israf, D.A.; Lajis, N.H. Characterization of the components present in the active fractions of health gingers (Curcuma xanthorrhiza and Zingiber zerumbet) by HPLC-DAD-ESIMS. Food Chem. 2007, 104, 1183–1191. [Google Scholar] [CrossRef]
- Dai, J.R.; Cardellina, J.H.; McMahon, J.B.; Boyd, M.R. Zerumbone, an HIV-inhibitory and cytotoxic sesquiterpene of Zingiber aromaticum and Z. zerumbet. Nat. Prod. Lett. 1997, 10, 115–118. [Google Scholar] [CrossRef]
- Kalantari, K.; Moniri, M.; Moghaddam, A.B.; Rahim, R.A.; Bin Ariff, A.; Izadiyan, Z.; Mohamad, R. A Review of the biomedical applications of zerumbone and the techniques for its extraction from ginger rhizomes. Molecules 2017, 22, 1645. [Google Scholar] [CrossRef]
- Ho, Y.C.; Lee, S.S.; Yang, M.L.; Huang-Liu, R.; Lee, C.Y.; Li, Y.C.; Kuan, Y.H. Zerumbone reduced the inflammatory response of acute lung injury in endotoxin-treated mice via Akt-NFκB pathway. Chem. Biol. Interact. 2017, 271, 9–14. [Google Scholar] [CrossRef]
- Mukherjee, D.; Singh, C.B.; Dey, S.; Mandal, S.; Ghosh, J.; Mallick, S.; Hussain, A.; Swapana, N.; Ross, S.A.; Pal, C. Induction of apoptosis by zerumbone isolated from Zingiber zerumbet (L.) Smith in protozoan parasite Leishmania donovani due to oxidative stress. Brazilian J. Infect. Dis. 2016, 20, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Sidahmed, H.M.A.; Hashim, N.M.; Abdulla, M.A.; Ali, H.M.; Mohan, S.; Abdelwahab, S.I.; Taha, M.M.E.; Fai, L.M.; Vadivelu, J. Antisecretory, gastroprotective, antioxidant and anti-Helicobcter pylori activity of zerumbone from Zingiber zerumbet (L.) smith. PLoS ONE 2015, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zou, S.; Cui, Z.; Guo, P.; Meng, Q.; Shi, X.; Gao, Y.; Yang, G.; Han, Z. Zerumbone protects INS-1 rat pancreatic beta cells from high glucose-induced apoptosis through generation of reactive oxygen species. Biochem. Biophys. Res. Commun. 2015, 460, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Sehrawat, A.; Sakao, K.; Singh, S.V. Notch2 activation is protective against anticancer effects of zerumbone in human breast cancer cells. Breast Cancer Res. Treat. 2014, 146, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Ohnishi, K.; Murakami, A.; Lee, J.S.; Kundu, J.K.; Na, H.K.; Ohigashi, H.; Surh, Y.J. Zerumbone induces heme oxygenase-1 expression in mouse skin and cultured murine epidermal cells through activation of Nrf2. Cancer Prev. Res. 2011, 4, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Saranya, J.; Dhanya, B.P.; Greeshma, G.; Radhakrishnan, K.V.; Priya, S. Effects of a new synthetic zerumbone pendant derivative (ZPD) on apoptosis induction and anti-migratory effects in human cervical cancer cells. Chem. Biol. Interact. 2017, 278, 32–39. [Google Scholar] [CrossRef]
- Chen, B.; Lin, D.P.; Su, K.; Chen, Y.; Wu, C.; Teng, M.; Tsai, Y.; Sun, C.; Wang, S.; Chang, H. Dietary zerumbone prevents against ultraviolet B-induced cataractogenesis in the mouse. Mol. Vis. 2011, 723–730. [Google Scholar]
- Chung, S.Y.; Jang, D.S.; Han, A.; Jang, J.O.; Kwon, Y.; Seo, E.; Lee, H.J. Modulation of P-glycoprotein-Mediated Resistance by Kaempferol Derivatives Isolated from Zingiber zerumbet. Phytother. Res. 2007, 569, 565–569. [Google Scholar] [CrossRef]
- Subehan; Usia, T.; Kadota, S.; Tezuka, Y. Constituents of Zingiber aromaticum and their CYP3A4 and CYP2D6 inhibitory activity. Chem. Pharm. Bull. 2005, 53, 333–335. [Google Scholar] [CrossRef]
- Usia, T.; Iwata, H.; Hiratsuka, A.; Watabe, T.; Kadota, S.; Tezuka, Y. Sesquiterpenes and flavonol glycosides from Zingiber aromaticum and their CYP3A4 and CYP2D6 inhibitory activities. J. Nat. Prod. 2004, 67, 1079–1083. [Google Scholar] [CrossRef]
- Miyazaki, S.; Devkota, H.P.; Joshi, K.R.; Malla, K.J.; Watanabe, T.; Yahara, S. Chemical constituents from the aerial parts and rhizomes of Roscoea purpurea. Jpn. J. Pharmacogn. 2014, 68, 99–100. [Google Scholar]
- Akiyama, K.; Kikuzaki, H.; Aoki, T.; Okuda, A.; Lajis, N.H.; Nakatani, N. Terpenoids and a diarylheptanoid from Zingiber ottensii. J. Nat. Prod. 2006, 69, 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Sivasothy, Y.; Hadi, A.H.A.; Mohamad, K.; Leong, K.H.; Ibrahim, H.; Sulaiman, S.F.; Ooi, K.L.; Awang, K. Spectaflavoside A, a new potent iron chelating dimeric flavonol glycoside from the rhizomes of Zingiber spectabile Griff. Bioorg. Med. Chem. Lett. 2012, 22, 3831–3836. [Google Scholar] [CrossRef] [PubMed]
Position | δC | δH, mult. (J in Hz) | Position | δC | δH, mult. (J in Hz) |
---|---|---|---|---|---|
1 | 42.4 | 1.89, brd (16.0) 2.22–2.46, m | 9 | 127.2 | 5.96, d (16.4) |
2 | 125.0 | 5.25, brd (15.3) | 10 | 160.7 | 5.86, d (16.4) |
3 | 136.3 | 11 | 37.9 | ||
4 | 39.4 | 2.22–2.46, m | 12 | 15.2 | 1.54, s |
5 | 29.4 | 2.22–2.46, m | 13 | 11.8 | 1.80, s |
6 | 148.8 | 6.01, brd (11.3) | 14 | 24.2 a | 1.20, s a |
7 | 138.0 | 15 | 24.4 a | 1.08, s a | |
8 | 204.3 |
Position | Compound 2 | Compound 3 | Compound 4 | Compound 5 | Compound 6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | |
2 | 157.6 | 159.2 | 158.6 | 159.2 | 159.2 | |||||
3 | 139.5 | 136.2 | 135.6 | 136.0 | 135.6 | |||||
4 | 180.1 | 179.6 | 179.5 | 179.6 | 179.4 | |||||
5 | 163.1 | 163.2 | 163.2 | 163.2 | 163.2 | |||||
6 | 99.8 | 6.20, d (2.0) | 99.0 | 6.19, d (2.0) | 99.6 | 6.21, d (2.1) | 99.9 | 6.19, d (2.0) | 100.4 | 6.20, d (2.0) |
7 | 165.9 | 165.8 | 165.9 | 165.9 | 165.9 | |||||
8 | 94.6 | 6.40, d (2.0) | 94.8 | 6.36, d (2.0) | 94.8 | 6.38, d (2.1) | 94.8 | 6.38, d (2.0) | 94.8 | 6.52, d (2.0) |
9 | 158.1 | 158.5 | 159.4 | 158.6 | 158.6 | |||||
10 | 105.7 | 106.0 | 105.9 | 106.0 | 105.9 | |||||
1’ | 122.2 | 122.7 | 122.6 | 122.6 | 122.5 | |||||
2’, 6’ | 131.4 | 7.99, d (8.7) | 131.9 | 7.76, d (8.7) | 131.9 | 7.81, d (8.9) | 131.9 | 7.80, d (8.9) | 131.8 | 7.81, d (8.8) |
3’, 5’ | 116.4 | 6.93, d (8.7) | 116.5 | 6.94, d (8.7) | 116.5 | 6.96, d (8.8) | 116.6 | 6.93, d (8.9) | 116.6 | 6.96, d (8.8) |
4’ | 161.7 | 161.5 | 161.7 | 161.6 | 161.7 | |||||
3-OCH3 | 60.4 | 3.78, s | ||||||||
1” | 103.5 | 5.38, d (1.5) | 102.5 | 5.51, d (1.5) | 103.0 | 5.50, d (1.3) | 102.5 | 5.59, d (1.3) | ||
2” | 72.0 | 4.22, brs | 71.7 | 4.21, brs | 69.7 | 4.36, brs | 72.1 | 4.34, brs | ||
3” | 72.1 | 3.73, m | 70.1 | 3.84, dd (3.4,9.8) | 75.3 | 4.97, dd (3.2, 9.8) | 69.4 | 5.16, dd (3.2, 9.8) | ||
4” | 73.2 | 3.31–3.34, m | 74.9 | 4.82, dd (9.8, 9.9) | 70.4 | 3.63, m | 71.9 | 5.07, t (9.8) | ||
5” | 71.9 | 3.31-3.34, m | 69.6 | 3.22, m | 71.7 | 3.40, m | 69.4 | 3.44, m | ||
6” | 17.6 | 0.98, d (5.6) | 17.5 | 0.77, d (6.2) | 17.7 | 0.94, d (6.2) | 17.5 | 0.80, d (6.2) | ||
COCH3 | 172.4 | 172.7 | 171.5 172.1 | |||||||
COCH3 | 20.9 | 2.03, s | 21.1 | 2.12, s | 20.7 20.9 | 1.97, s 2.06, s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.M.; Adhikari-Devkota, A.; Imai, T.; Devkota, H.P. Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations 2019, 6, 31. https://doi.org/10.3390/separations6020031
Hassan MM, Adhikari-Devkota A, Imai T, Devkota HP. Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations. 2019; 6(2):31. https://doi.org/10.3390/separations6020031
Chicago/Turabian StyleHassan, Md. Mahadi, Anjana Adhikari-Devkota, Teruko Imai, and Hari Prasad Devkota. 2019. "Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh" Separations 6, no. 2: 31. https://doi.org/10.3390/separations6020031
APA StyleHassan, M. M., Adhikari-Devkota, A., Imai, T., & Devkota, H. P. (2019). Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations, 6(2), 31. https://doi.org/10.3390/separations6020031