Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh
Abstract
1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Materials
2.3. Extraction and Isolation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A.; et al. Plants of the genus zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef] [PubMed]
- Sabulal, B.; Dan, M.; John, A.J.; Kurup, R.; Pradeep, N.S.; Valsamma, R.K.; George, V. Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 2006, 67, 2469–2473. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Yusuf, M. Zingiber salarkhanii (Zingiberaceae), a new species from Bangladesh. Bangladesh J. Plant Taxon. 2013, 20, 239–242. [Google Scholar] [CrossRef]
- Sadhu, S.K.; Khatun, A.; Ohtsuki, T.; Ishibashi, M. First isolation of sesquiterpenes and flavonoids from Zingiber spectabile and identification of zerumbone as the major cell growth inhibitory component. Nat. Prod. Res. 2007, 21, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- The Plant List. Available online: http://www.theplantlist.org/ (accessed on 19 April 2019).
- Sanatombi, R.; Sanatombi, K. Biotechnology of Zingiber montanum (Koenig) Link ex A. Dietr.: A review. J. Appl. Res. Med. Aromat. Plants 2017, 4, 1–4. [Google Scholar] [CrossRef]
- Sirirugsa, P. Thai Zingiberaceae: Species Diversity and Their Uses. Pure Appl. Chem. 1998, 70, 23–27. [Google Scholar]
- Al-Amin, M.; Sultana, G.N.N.; Hossain, C.F. Antiulcer principle from Zingiber montanum. J. Ethnopharmacol. 2012, 141, 57–60. [Google Scholar] [CrossRef]
- Manochai, B.; Paisooksantivatana, Y.; Choi, H.; Hong, J.H. Variation in DPPH scavenging activity and major volatile oil components of cassumunar ginger, Zingiber montanum (Koenig), in response to water deficit and light intensity. Sci. Hortic. (Amsterdam) 2010, 126, 462–466. [Google Scholar] [CrossRef]
- Ozaki, Y.; Kawahara, N.; Harada, M. Anti-inflammatory Effect of Zingiber cassumunar ROXB. and Its Active Principles. Chem. Pharm. Bull. (Tokyo) 2011, 39, 2353–2356. [Google Scholar] [CrossRef]
- Pithayanukul, P.; Tubprasert, J.; Wuthi-Udomlert, M. In vitro antimicrobial activity of Zingiber cassumunar (Plai) oil and a 5% Plai oil gel. Phyther. Res. Int. J. Devot. Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 164–169. [Google Scholar]
- Masuda, T.; Jitoe, A. Antioxidative and Antiinflammatory Compounds from Tropical Gingers: Isolation, Structure Determination, and Activities of Cassumunins A, B, and C, New Complex Curcuminoids from Zingiber cassumunar. J. Agric. Food Chem. 1994, 42, 1850–1856. [Google Scholar] [CrossRef]
- Panthong, A.; Kanjanapothi, D.; Niwatananun, V.; Tuntiwachwuttikul, P.; Reutrakul, V. Anti-inflammatory activity of compounds isolated from Zingiber cassumunar. Planta Med. 1990, 56, 655. [Google Scholar] [CrossRef]
- Kanjanapothi, D.; Soparat, P.; Panthong, A.; Tuntiwachwuttikul, P.; Reutrakul, V. A Uterine Relaxant Compound from Zingiber cassumunar. Planta Med. 2007, 53, 329–332. [Google Scholar] [CrossRef] [PubMed]
- bin Jantan, I.; Yassin, M.S.M.; Chin, C.B.; Chen, L.L.; Sim, N.L. Antifungal Activity of the Essential Oils of Nine Zingiberaceae Species. Pharm. Biol. 2003, 41, 392–397. [Google Scholar] [CrossRef]
- Nugroho, B.W.; Schwarz, B.; Wray, V.; Proksch, P. Insecticidal constituents from rhizomes of Zingiber cassumunar and Kaempferia rotunda. Phytochemistry 1996, 41, 129–132. [Google Scholar] [CrossRef]
- Okonogi, S.; Chaiyana, W. Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique. Drug Discov. Ther. 2012, 6, 249–255. [Google Scholar] [CrossRef][Green Version]
- Pongprayoon, U.; Soontornsaratune, P.; Jarikasem, S.; Sematong, T.; Wasuwat, S.; Claeson, P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part I: The essential oil. Phytomedicine 1997, 3, 319–322. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.I.; Chowdhury, J.U.; Begum, J. Volatile constituents of essential oils isolated from leaf and rhizome of Zingiber cassumunar Roxb. Bangladesh J. Pharmacol. 2008, 3, 69–73. [Google Scholar] [CrossRef]
- Jitoe, A.; Masuda, T.; Mabry, T.J. Novel Antioxidants, Cassumunarin A, B, and C, from Zingiber cassumunar. Tetrahedron Lett. 1994, 35, 981–984. [Google Scholar] [CrossRef]
- Jiang, H.; Xie, Z.; Koo, H.J.; McLaughlin, S.P.; Timmermann, B.N.; Gang, D.R. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry 2006, 67, 1673–1685. [Google Scholar] [CrossRef]
- Invasive Species Compendium. Available online: https://www.cabi.org/ISC/datasheet/57536 (accessed on 19 April 2019).
- Nakatani, N.; Jitoe, A.; Masuda, T.; Yonemori, S. Flavonoid Constituents of Zingiber zerumbet Smith. Agric. Biol. Chem. 1991, 55, 445–460. [Google Scholar] [CrossRef]
- Markham, K.R.; Chari, V.M. Carbon-13 NMR Spectroscopy of Flavonoids. In The Flavonoids; Harborne, J.B., Marby, T.J., Marby, H., Eds.; Chapman and Hall: New York, NY, USA, 1982; pp. 19–134. ISBN 978-1-4899-2915-0. [Google Scholar]
- Masuda, T.; Jitoe, A.; Kato, S.; Nakatani, N. Acetylated flavonol glycosides from Zingiber zerumbet. Phytochemistry 1991, 30, 2391–2392. [Google Scholar] [CrossRef]
- Xu, Y.; Smith, J.A.; Lannigan, D.A.; Hecht, S.M. Three acetylated flavonol glycosides from Forsteronia refracta that specifically inhibit p90 RSK. Bioorg. Med. Chem. 2006, 14, 3974–3977. [Google Scholar] [CrossRef] [PubMed]
- Dev, S. Studies in sesquiterpenes-XVI. Zerumbone, a monocyclic sesquiterpene ketone. Tetrahedron 1960, 8, 171–180. [Google Scholar] [CrossRef]
- Kitayama, T.; Okamoto, T.; Hill, R.K.; Kawai, Y.; Takahashi, S.; Yonemori, S.; Yamamoto, Y.; Ohe, K.; Uemura, S.; Sawada, S. Chemistry of Zerumbone. 1. Simplified isolation, conjugate addition reactions, and a unique ring contracting transannular reaction of its dibromide. J. Org. Chem. 1999, 64, 2667–2672. [Google Scholar] [CrossRef] [PubMed]
- Chien, T.Y.; Chen, L.G.; Lee, C.J.; Lee, F.Y.; Wang, C.C. Anti-inflammatory constituents of Zingiber zerumbet. Food Chem. 2008, 110, 584–589. [Google Scholar] [CrossRef]
- Ruslay, S.; Abas, F.; Shaari, K.; Zainal, Z.; Maulidiani; Sirat, H.; Israf, D.A.; Lajis, N.H. Characterization of the components present in the active fractions of health gingers (Curcuma xanthorrhiza and Zingiber zerumbet) by HPLC-DAD-ESIMS. Food Chem. 2007, 104, 1183–1191. [Google Scholar] [CrossRef]
- Dai, J.R.; Cardellina, J.H.; McMahon, J.B.; Boyd, M.R. Zerumbone, an HIV-inhibitory and cytotoxic sesquiterpene of Zingiber aromaticum and Z. zerumbet. Nat. Prod. Lett. 1997, 10, 115–118. [Google Scholar] [CrossRef]
- Kalantari, K.; Moniri, M.; Moghaddam, A.B.; Rahim, R.A.; Bin Ariff, A.; Izadiyan, Z.; Mohamad, R. A Review of the biomedical applications of zerumbone and the techniques for its extraction from ginger rhizomes. Molecules 2017, 22, 1645. [Google Scholar] [CrossRef]
- Ho, Y.C.; Lee, S.S.; Yang, M.L.; Huang-Liu, R.; Lee, C.Y.; Li, Y.C.; Kuan, Y.H. Zerumbone reduced the inflammatory response of acute lung injury in endotoxin-treated mice via Akt-NFκB pathway. Chem. Biol. Interact. 2017, 271, 9–14. [Google Scholar] [CrossRef]
- Mukherjee, D.; Singh, C.B.; Dey, S.; Mandal, S.; Ghosh, J.; Mallick, S.; Hussain, A.; Swapana, N.; Ross, S.A.; Pal, C. Induction of apoptosis by zerumbone isolated from Zingiber zerumbet (L.) Smith in protozoan parasite Leishmania donovani due to oxidative stress. Brazilian J. Infect. Dis. 2016, 20, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Sidahmed, H.M.A.; Hashim, N.M.; Abdulla, M.A.; Ali, H.M.; Mohan, S.; Abdelwahab, S.I.; Taha, M.M.E.; Fai, L.M.; Vadivelu, J. Antisecretory, gastroprotective, antioxidant and anti-Helicobcter pylori activity of zerumbone from Zingiber zerumbet (L.) smith. PLoS ONE 2015, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zou, S.; Cui, Z.; Guo, P.; Meng, Q.; Shi, X.; Gao, Y.; Yang, G.; Han, Z. Zerumbone protects INS-1 rat pancreatic beta cells from high glucose-induced apoptosis through generation of reactive oxygen species. Biochem. Biophys. Res. Commun. 2015, 460, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Sehrawat, A.; Sakao, K.; Singh, S.V. Notch2 activation is protective against anticancer effects of zerumbone in human breast cancer cells. Breast Cancer Res. Treat. 2014, 146, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Ohnishi, K.; Murakami, A.; Lee, J.S.; Kundu, J.K.; Na, H.K.; Ohigashi, H.; Surh, Y.J. Zerumbone induces heme oxygenase-1 expression in mouse skin and cultured murine epidermal cells through activation of Nrf2. Cancer Prev. Res. 2011, 4, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Saranya, J.; Dhanya, B.P.; Greeshma, G.; Radhakrishnan, K.V.; Priya, S. Effects of a new synthetic zerumbone pendant derivative (ZPD) on apoptosis induction and anti-migratory effects in human cervical cancer cells. Chem. Biol. Interact. 2017, 278, 32–39. [Google Scholar] [CrossRef]
- Chen, B.; Lin, D.P.; Su, K.; Chen, Y.; Wu, C.; Teng, M.; Tsai, Y.; Sun, C.; Wang, S.; Chang, H. Dietary zerumbone prevents against ultraviolet B-induced cataractogenesis in the mouse. Mol. Vis. 2011, 723–730. [Google Scholar]
- Chung, S.Y.; Jang, D.S.; Han, A.; Jang, J.O.; Kwon, Y.; Seo, E.; Lee, H.J. Modulation of P-glycoprotein-Mediated Resistance by Kaempferol Derivatives Isolated from Zingiber zerumbet. Phytother. Res. 2007, 569, 565–569. [Google Scholar] [CrossRef]
- Subehan; Usia, T.; Kadota, S.; Tezuka, Y. Constituents of Zingiber aromaticum and their CYP3A4 and CYP2D6 inhibitory activity. Chem. Pharm. Bull. 2005, 53, 333–335. [Google Scholar] [CrossRef]
- Usia, T.; Iwata, H.; Hiratsuka, A.; Watabe, T.; Kadota, S.; Tezuka, Y. Sesquiterpenes and flavonol glycosides from Zingiber aromaticum and their CYP3A4 and CYP2D6 inhibitory activities. J. Nat. Prod. 2004, 67, 1079–1083. [Google Scholar] [CrossRef]
- Miyazaki, S.; Devkota, H.P.; Joshi, K.R.; Malla, K.J.; Watanabe, T.; Yahara, S. Chemical constituents from the aerial parts and rhizomes of Roscoea purpurea. Jpn. J. Pharmacogn. 2014, 68, 99–100. [Google Scholar]
- Akiyama, K.; Kikuzaki, H.; Aoki, T.; Okuda, A.; Lajis, N.H.; Nakatani, N. Terpenoids and a diarylheptanoid from Zingiber ottensii. J. Nat. Prod. 2006, 69, 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Sivasothy, Y.; Hadi, A.H.A.; Mohamad, K.; Leong, K.H.; Ibrahim, H.; Sulaiman, S.F.; Ooi, K.L.; Awang, K. Spectaflavoside A, a new potent iron chelating dimeric flavonol glycoside from the rhizomes of Zingiber spectabile Griff. Bioorg. Med. Chem. Lett. 2012, 22, 3831–3836. [Google Scholar] [CrossRef] [PubMed]
Position | δC | δH, mult. (J in Hz) | Position | δC | δH, mult. (J in Hz) |
---|---|---|---|---|---|
1 | 42.4 | 1.89, brd (16.0) 2.22–2.46, m | 9 | 127.2 | 5.96, d (16.4) |
2 | 125.0 | 5.25, brd (15.3) | 10 | 160.7 | 5.86, d (16.4) |
3 | 136.3 | 11 | 37.9 | ||
4 | 39.4 | 2.22–2.46, m | 12 | 15.2 | 1.54, s |
5 | 29.4 | 2.22–2.46, m | 13 | 11.8 | 1.80, s |
6 | 148.8 | 6.01, brd (11.3) | 14 | 24.2 a | 1.20, s a |
7 | 138.0 | 15 | 24.4 a | 1.08, s a | |
8 | 204.3 |
Position | Compound 2 | Compound 3 | Compound 4 | Compound 5 | Compound 6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | |
2 | 157.6 | 159.2 | 158.6 | 159.2 | 159.2 | |||||
3 | 139.5 | 136.2 | 135.6 | 136.0 | 135.6 | |||||
4 | 180.1 | 179.6 | 179.5 | 179.6 | 179.4 | |||||
5 | 163.1 | 163.2 | 163.2 | 163.2 | 163.2 | |||||
6 | 99.8 | 6.20, d (2.0) | 99.0 | 6.19, d (2.0) | 99.6 | 6.21, d (2.1) | 99.9 | 6.19, d (2.0) | 100.4 | 6.20, d (2.0) |
7 | 165.9 | 165.8 | 165.9 | 165.9 | 165.9 | |||||
8 | 94.6 | 6.40, d (2.0) | 94.8 | 6.36, d (2.0) | 94.8 | 6.38, d (2.1) | 94.8 | 6.38, d (2.0) | 94.8 | 6.52, d (2.0) |
9 | 158.1 | 158.5 | 159.4 | 158.6 | 158.6 | |||||
10 | 105.7 | 106.0 | 105.9 | 106.0 | 105.9 | |||||
1’ | 122.2 | 122.7 | 122.6 | 122.6 | 122.5 | |||||
2’, 6’ | 131.4 | 7.99, d (8.7) | 131.9 | 7.76, d (8.7) | 131.9 | 7.81, d (8.9) | 131.9 | 7.80, d (8.9) | 131.8 | 7.81, d (8.8) |
3’, 5’ | 116.4 | 6.93, d (8.7) | 116.5 | 6.94, d (8.7) | 116.5 | 6.96, d (8.8) | 116.6 | 6.93, d (8.9) | 116.6 | 6.96, d (8.8) |
4’ | 161.7 | 161.5 | 161.7 | 161.6 | 161.7 | |||||
3-OCH3 | 60.4 | 3.78, s | ||||||||
1” | 103.5 | 5.38, d (1.5) | 102.5 | 5.51, d (1.5) | 103.0 | 5.50, d (1.3) | 102.5 | 5.59, d (1.3) | ||
2” | 72.0 | 4.22, brs | 71.7 | 4.21, brs | 69.7 | 4.36, brs | 72.1 | 4.34, brs | ||
3” | 72.1 | 3.73, m | 70.1 | 3.84, dd (3.4,9.8) | 75.3 | 4.97, dd (3.2, 9.8) | 69.4 | 5.16, dd (3.2, 9.8) | ||
4” | 73.2 | 3.31–3.34, m | 74.9 | 4.82, dd (9.8, 9.9) | 70.4 | 3.63, m | 71.9 | 5.07, t (9.8) | ||
5” | 71.9 | 3.31-3.34, m | 69.6 | 3.22, m | 71.7 | 3.40, m | 69.4 | 3.44, m | ||
6” | 17.6 | 0.98, d (5.6) | 17.5 | 0.77, d (6.2) | 17.7 | 0.94, d (6.2) | 17.5 | 0.80, d (6.2) | ||
COCH3 | 172.4 | 172.7 | 171.5 172.1 | |||||||
COCH3 | 20.9 | 2.03, s | 21.1 | 2.12, s | 20.7 20.9 | 1.97, s 2.06, s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.M.; Adhikari-Devkota, A.; Imai, T.; Devkota, H.P. Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations 2019, 6, 31. https://doi.org/10.3390/separations6020031
Hassan MM, Adhikari-Devkota A, Imai T, Devkota HP. Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations. 2019; 6(2):31. https://doi.org/10.3390/separations6020031
Chicago/Turabian StyleHassan, Md. Mahadi, Anjana Adhikari-Devkota, Teruko Imai, and Hari Prasad Devkota. 2019. "Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh" Separations 6, no. 2: 31. https://doi.org/10.3390/separations6020031
APA StyleHassan, M. M., Adhikari-Devkota, A., Imai, T., & Devkota, H. P. (2019). Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations, 6(2), 31. https://doi.org/10.3390/separations6020031