Pharmaceuticals in Food and Water: Monitoring, Analytical Methods of Detection and Quantification, and Removal Strategies
Abstract
1. Introduction
2. Residues of Veterinary Drugs in Food and Water
2.1. The Importance of Residue Monitoring
2.2. Analytical Approaches for Detecting and Quantifying Residues in Food
2.3. Analytical Approaches for Detecting and Quantifying Residues in Water
2.4. Occurrence of Pharmaceuticals in Food and Water
3. Removal of Pharmaceuticals from Water
3.1. Membrane Technologies
3.2. Adsorption
- ○
- Carbon-based nanoparticles include carbon nanoparticles, nanotubes, and nanoplates.
- ○
- Metal-based nanoparticles are composed of metals such as gold, silver, platinum, zinc, titanium, iron, cerium, or thallium.
- ○
- Metal oxide-based nanomaterials cover a variety of metal oxides, including aluminum, iron, manganese, and titanium oxides.
- ○
- Nanozeolites represent an important group with high porosity, high cation exchange capacity, and large specific surface area. Their structure consists of a framework of tetrahedral metal oxide units connected via oxygen atoms, which determines their adsorption characteristics.
- ○
- Polymeric nanoadsorbents or nanocomposites are categorized into nanocomposites based on carbon nanotubes/polymers, metals and metal oxides/polymers, graphene/polymers, and dendrimers. These nanocomposites are considered promising alternatives to conventional adsorbents because of their versatile surface chemistry, mechanical strength, extensive surface area, and pore size distribution [81].
3.3. Advanced Oxidation Processes
3.4. Hybrid Systems
3.5. Effectiveness of Pharmaceuticals Removal in Wastewater Treatment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taylor, D. The pharmaceutical industry and the future of drug development. In Pharmaceuticals in the Environment; Hester, R.E., Harrison, R.M., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2015; pp. 1–33. [Google Scholar]
- Kümmerer, K. Pharmaceuticals in the environment—Scope of the book and introduction. In Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks; Kümmerer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 3–11. [Google Scholar]
- Pérez-Lucas, G.; Navarro, S. How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment. J. Xenobiot. 2024, 14, 1343–1377. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Chen, M.; Zhang, X.; Liu, P. Determination of veterinary drug residues in food of animal origin: Sample preparation methods and analytical techniques. J. Liq. Chromatogr. Relat. Technol. 2020, 43, 701–724. [Google Scholar] [CrossRef]
- Mansouri, F.; Chouchene, K.; Roche, N.; Ksibi, M. Removal of Pharmaceuticals from Water by Adsorption and Advanced Oxidation Processes: State of the Art and Trends. Appl. Sci. 2021, 11, 6659. [Google Scholar] [CrossRef]
- Yu, C.; Pang, H.; Wang, J.H.; Chi, Z.Y.; Zhang, Q.; Kong, F.T.; Xu, Y.P.; Li, S.Y.; Che, J. Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. Sci. Total Environ. 2022, 813, 151891. [Google Scholar] [CrossRef]
- Alqarni, A.M. Analytical Methods for the Determination of Pharmaceuticals and Personal Care Products in Solid and Liquid Environmental Matrices: A Review. Molecules 2024, 29, 3900. [Google Scholar] [CrossRef]
- Tarigan, M.; Raji, S.; Al-Fatesh, H.; Czermak, P.; Ebrahimi, M. The Occurrence of Micropollutants in the Aquatic Environment and Technologies for Their Removal. Processes 2025, 13, 843. [Google Scholar] [CrossRef]
- Fakhri, B.M.S.; Ghassemi Barghi, N.; Moradnia Mehdikhanmahaleh, M.; Raeis Zadeh, S.M.M.; Mousavi, T.; Rezaee, R.; Daghighi, M.; Abdollahi, M. Pharmaceutical wastewater toxicity: An ignored threat to the public health. Sustain. Environ. 2024, 10, 2322821. [Google Scholar] [CrossRef]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Brandi, J.; Siragusa, G.; Robotti, E.; Marengo, E.; Cecconi, D. Analysis of veterinary drugs and pesticides in food using liquid chromatography-mass spectrometry. TrAC Trends Anal. Chem. 2024, 179, 117888. [Google Scholar] [CrossRef]
- Khalifa, H.O.; Shikoray, L.; Mohamed, M.-Y.I.; Habib, I.; Matsumoto, T. Veterinary Drug Residues in the Food Chain as an Emerging Public Health Threat: Sources, Analytical Methods, Health Impacts, and Preventive Measures. Foods 2024, 13, 1629. [Google Scholar] [CrossRef]
- Leite, M.; Marques, A.R.; Vila Pouca, A.S.; Barros, S.C.; Barbosa, J.; Ramos, F.; Afonso, I.M.; Freitas, A. UHPLC-ToF-MS as a High-Resolution Mass Spectrometry Tool for Veterinary Drug Quantification in Milk. Separations 2023, 10, 457. [Google Scholar] [CrossRef]
- Mesfin, Y.M.; Mitiku, B.A.; Tamrat Admasu, H. Veterinary Drug Residues in Food Products of Animal Origin and Their Public Health Consequences: A Review. Vet. Med. Sci. 2024, 10, e70049. [Google Scholar] [CrossRef]
- European Commission (EC). Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products; OJ L 95; European Parliament and Council of the European Union: Luxembourg, 2017; p. 1. [Google Scholar]
- European Commission (EC). Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin; OJ L 15; European Parliament and Council of the European Union: Luxembourg, 2010; p. 1. [Google Scholar]
- European Parliament and Council of the European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption; OJ L 435; European Parliament and Council of the European Union: Luxembourg, 2020; pp. 1–62. [Google Scholar]
- Hrvatski zavod za javno zdravstvo (HZJZ). Izvještaj o Zdravstvenoj Ispravnosti Vode za Ljudsku Potrošnju u Republici Hrvatskoj za 2023. Godinu; Hrvatski zavod za javno zdravstvo: Zagreb, Croatia, 2024; Available online: https://www.hzjz.hr/wp-content/uploads/2024/07/IZVJESTAJ_Voda-za-ljudsku-potrosnju_2023.pdf (accessed on 13 July 2025). (In Croatian)
- European Commission: Joint Research Centre; Gomez Cortes, L.; Porcel Rodriguez, E.; Marinov, D.; Sanseverino, I.; Lettieri, T. Selection of Substances for the 5th Watch List Under the Water Framework Directive; Publications Office of the European Union: Luxembourg, 2025. [Google Scholar]
- Nielsen, S.S. Introduction to food analysis. In Nielsen’s Food Analysis; Ismail, B.P., Nielsen, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 3–14. [Google Scholar]
- Wu, H.; Zhao, J.; Wan, J. A Review of Veterinary Drug Residue Detection: Recent Advancements, Challenges, and Future Directions. Sustainability 2023, 15, 10413. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Gou, Y.; Chen, T.; Shen, X.; Wang, T.; Li, Y.; He, H.; Deng, H.; Hua, Y. Determination of veterinary drugs in foods of animal origin by QuEChERS coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). J. Chromatogr. A 2025, 1744, 465726. [Google Scholar] [CrossRef]
- Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review. Int. J. Anal. Chem. 2017, 2017, 8215271. [Google Scholar] [CrossRef]
- Pratiwi, R.; Ramadhanti, S.P.; Amatulloh, A.; Megantara, S.; Subra, L. Recent Advances in the Determination of Veterinary Drug Residues in Food. Foods 2023, 12, 3422. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, X.; Shen, D.; Mao, J.; Cao, Y.; Zhang, K.; Peng, J.; Dong, F.; Wang, N.; He, K. A one-step solid-phase extraction with UHPLC-MS/MS for fast and accurate determination of multi-class veterinary drugs in animal muscles. Food Chem. 2023, 428, 136712. [Google Scholar] [CrossRef]
- Jung, Y.S.; Kim, D.B.; Nam, T.G.; Seo, D.; Yoo, M. Identification and quantification of multi-class veterinary drugs and their metabolites in beef using LC-MS/MS. Food Chem. 2022, 382, 132313. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Dong, Y.; Wen, X.; Zhang, X.; Hou, S.; Zhao, W.; Yin, D. A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front. Nutr. 2023, 10, 1244459. [Google Scholar] [CrossRef]
- Koloka, O.; Boti, V.; Hela, D.; Albanis, T.; Konstantinou, I. PFAS Residue Analysis in Fish and Fish Feed by applying a modified QuEChERS in combination with LC-HRMS Detection. Emerg. Contam. 2025, 11, 100467. [Google Scholar] [CrossRef]
- Amelin, V.G.; Lavrukhina, O.I.; Tretyakov, A.V.; Batov, I.V.; Kish, L.K. Sample screening and determination of 214 veterinary drug residues in food using Chromatography–High-Resolution mass spectrometry. J. Anal. Chem. 2024, 79, 200–218. [Google Scholar] [CrossRef]
- Salis, S.; Rubattu, N.; Rubattu, F.; Cossu, M.; Sanna, A.; Chessa, G. Analytical Approaches in Official Food Safety Control: An LC-Orbitrap-HRMS Screening Method for the Multiresidue Determination of Antibiotics in Cow, Sheep, and Goat Milk. Molecules 2022, 27, 6162. [Google Scholar] [CrossRef]
- Varenina, I.; Bilandžić, N.; Božić Luburić, Đ.; Solomun Kolanović, B.; Varga, I. High resolution mass spectrometry method for the determination of 13 antibiotic groups in bovine, swine, poultry and fish meat: An effective screening and confirmation analysis approach for routine laboratories. Food Control 2022, 133, 108576. [Google Scholar] [CrossRef]
- Dasenaki, M.E.; Thomaidis, N.S. Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2015, 880, 103–121. [Google Scholar] [CrossRef]
- Desmarchelier, A.; Savoy, M.; Delatour, T.; Mottier, P. Extended coverage of veterinary drug residues in food by LC-HRMS to ensure food compliance and prevent the spread of antimicrobial resistance. Microchem. J. 2022, 183, 108057. [Google Scholar] [CrossRef]
- Kenjeric, L.; Sulyok, M.; Malachova, A.; Greer, B.; Kolawole, O.; Quinn, B.; Elliott, C.T.; Krska, R. Extention and interlaboratory comparison of an LC-MS/MS multi-class method for the determination of 15 different classes of veterinary drug residues in milk and poultry feed. Food Chem. 2024, 449, 138834. [Google Scholar] [CrossRef]
- Melekhin, A.O.; Tolmacheva, V.V.; Goncharov, N.O.; Apyari, V.V.; Dmitrienko, S.G.; Shubina, E.G.; Grudev, A.I. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography—Tandem mass spectrometry. Food Chem. 2022, 387, 132866. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Choi, S.Y.; Kang, H.S.; ji Kwon, N. Multi residue determination of 96 veterinary drug residues in domestic livestock and fishery products in South Korea. Aquaculture 2022, 553, 738064. [Google Scholar] [CrossRef]
- Pedersen, M.; Hakme, E.; Ninga, E.; Frandsen, H.L. Analysis of veterinary drug- and pesticide residues in pig muscle by LC-QTOF-MS. Food Control 2023, 148, 109656. [Google Scholar] [CrossRef]
- Wang, H.; Tian, H.; Ai, L.; Liang, S. Screening and quantification of 146 veterinary drug residues in beef and chicken using QuEChERS combined with high performance liquid chromatography-quadrupole orbitrap mass spectrometry. Food Chem. 2023, 408, 135207. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, J.; Tang, Y.; Kong, C.; Li, S.; Wang, S.; Ding, S.; Gu, L.; Shen, X.; Martin, A.A.; et al. Development and validation of rapid screening of 192 veterinary drug residues in aquatic products using HPLC-HRMS coupled with QuEChERS. Food Chem. X 2024, 22, 101504. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Chai, T.; Mu, P.; Xu, N.; Song, Y.; Wang, X.; Jia, Q.; Qiu, J. Multi-residue determination of 210 drugs in pork by ultra-high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2016, 1463, 49–59. [Google Scholar] [CrossRef]
- Mookantsa, S.O.S.; Dube, S.; Nindi, M.M. Multiclass Determination of 87 Mixed Veterinary Drugs, Pesticides and Mycotoxin Residues in Beef Muscle Samples by Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction and Liquid Chromatography Tandem Mass Spectrometry. Foods 2025, 14, 720. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, M.; Hou, F.; He, Y.; Zhu, Y.; Dai, H.; Huang, M.; Yang, Y.; Wu, L. Multi-residue analysis of pesticides and veterinary drugs by ultra-performance liquid chromatography-tandem mass spectrometry using a modified QuEChERS method. Microchem. J. 2025, 208, 112384. [Google Scholar] [CrossRef]
- Arumugam, A.; Lee, K.E.; Ng, P.Y.; Shamsuddin, A.S.; Zulkifli, A.; Goh, T.L. Pharmaceuticals as emerging pollutants: Implications for water resource management in Malaysia. Emerg. Contam. 2025, 11, 100470. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Pharmaceuticals in Drinking-Water; World Health Organization: Geneva, Switzerland, 2012; Available online: https://www.who.int/publications/i/item/9789241502085 (accessed on 27 September 2025).
- Vumazonke, S.; Khamanga, S.M.; Ngqwala, N.P. Detection of Pharmaceutical Residues in Surface Waters of the Eastern Cape Province. Int. J. Environ. Res. Public Health 2020, 17, 4067. [Google Scholar] [CrossRef]
- Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC Trends Anal. Chem. 2017, 88, 1–24. [Google Scholar] [CrossRef]
- Miossec, C.; Lanceleur, L.; Monperrus, M. Multi-residue analysis of 44 pharmaceutical compounds in environmental water samples by solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2019, 42, 1853–1866. [Google Scholar] [CrossRef]
- Yao, W.; Ge, J.; Hu, Q.; Ma, J.; Yuan, D.; Fu, X.; Qi, Y.; Volmer, D.A. An advanced LC-MS/MS protocol for simultaneous detection of pharmaceuticals and personal care products in the environment. Rapid Commun. Mass Spectrom. 2023, 37, e9397. [Google Scholar] [CrossRef]
- Belay, M.H.; Precht, U.; Mortensen, P.; Marengo, E.; Robotti, E. A Fully Automated Online SPE-LC-MS/MS Method for the Determination of 10 Pharmaceuticals in Wastewater Samples. Toxics 2022, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Canela, C.; Edo, S.; Rodríguez, N.; Gotor, G.; Lacorte, S. Comprehensive Characterization of 76 Pharmaceuticals and Metabolites in Wastewater by LC-MS/MS. Chemosensors 2021, 9, 273. [Google Scholar] [CrossRef]
- Guan, J.; Zhang, C.; Wang, Y.; Guo, Y.; Huang, P.; Zhao, L. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 8099–8109. [Google Scholar] [CrossRef]
- Martin, N.; Duporté, G.; Lemaire, E.; Sauvêtre, A.; Bertrand, M.; Rosain, D.; Gomez, E.; Farcy, E. Pollution by polar pesticides and pharmaceuticals and risk assessment in surface water bodies along the French Mediterranean coast: Complementarity of target and non-target screenings. Environ. Chem. Ecotoxicol. 2025, 7, 819–835. [Google Scholar] [CrossRef]
- Molnarova, L.; Halesova, T.; Vaclavikova, M.; Bosakova, Z. Monitoring Pharmaceuticals and Personal Care Products in Drinking Water Samples by the LC-MS/MS Method to Estimate Their Potential Health Risk. Molecules 2023, 28, 5899. [Google Scholar] [CrossRef] [PubMed]
- Nannou, C.; Efthymiou, C.; Boti, V.; Albanis, T. Unveiling the pharmaceutical footprint in freshwater and seawater: HRMS method optimization, validation, and uncertainty estimation. Microchem. J. 2025, 210, 112933. [Google Scholar] [CrossRef]
- Omotola, E.O.; Olatunji, O.S. Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS). Heliyon 2020, 6, e05787. [Google Scholar] [CrossRef]
- Paíga, P.; Lolić, A.; Hellebuyck, F.; Santos, L.H.M.L.M.; Correia, M.; Delerue-Matos, C. Development of a SPE–UHPLC–MS/MS methodology for the determination of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawater. J. Pharm. Biomed. Anal. 2015, 106, 61–70. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.M.L.M.; Delerue-Matos, C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2017, 135, 75–86. [Google Scholar] [CrossRef]
- Van Hoi, B.; Vu, C.T.; Phung-Thi, L.A.; Thi Nguyen, T.; Nguyen, P.T.; Mai, H.; Le, P.T.; Nguyen, T.H.; Thanh Duong, D.; Nguyen Thi, H.; et al. Determination of Pharmaceutical Residues by UPLC-MS/MS Method: Validation and Application on Surface Water and Hospital Wastewater. J. Anal. Methods Chem. 2021, 2021, 6628285. [Google Scholar] [CrossRef] [PubMed]
- Mheidli, N.; Malli, A.; Mansour, F.; Al-Hindi, M. Occurrence and risk assessment of pharmaceuticals in surface waters of the Middle East and North Africa: A review. Sci. Total Environ. 2022, 851, 158302. [Google Scholar] [CrossRef]
- Paíga, P.; Figueiredo, S.; Correia, M.; André, M.; Barbosa, R.; Jorge, S.; Delerue-Matos, C. Occurrence of 97 Pharmaceuticals in Wastewater and Receiving Waters: Analytical Validation and Treatment Influence. J. Xenobiot. 2025, 15, 78. [Google Scholar] [CrossRef]
- Iancu, V.-I.; Chiriac, L.-F.; Paun, I.; Dinu, C.; Pirvu, F.; Cojocaru, V.; Tenea, A.G.; Cimpean, I.A. Pharmaceutical Contaminants Occurrence and Ecological Risk Assessment Along the Romanian Black Sea Coast. Toxics 2025, 13, 498. [Google Scholar] [CrossRef]
- Stipaničev, D.; Dragun, Z.; Repec, S.; Ivanković, D.; Barac, F.; Kiralj, Z.; Kralj, T.; Valić, D. Dynamics of drug contamination of the river-water in the rural, semirural and urban areas of the Mrežnica River in Croatia during COVID-19 pandemic (2020–2021). Environ. Sci. Pollut. Res. Int. 2023, 30, 93652–93666. [Google Scholar] [CrossRef]
- Kim, Y.R.; Park, D.; Sim, J.H.; Lee, H.; Kim, J.Y.; Shin, D.-W.; Eom, M.O. National long-term monitoring and risk assessment of various veterinary drug residues in livestock products in the Republic of Korea. Food Control 2025, 167, 110818. [Google Scholar] [CrossRef]
- Eissa, F.; Khaled, O.; Ryad, L.; Younes, A. Residues of veterinary medicines and feed additives: An analysis of EU RASFF notifications from 2001 to 2023. Food Humanit. 2025, 5, 100654. [Google Scholar] [CrossRef]
- Soares, V.M.; Pereira, J.G.; Barreto, F.; Jank, L.; Rau, R.B.; Dias Ribeiro, C.B.; Dos Santos Castilhos, T.; Tomaszewski, C.A.; Hillesheim, D.R.; Mondadori, R.G.; et al. Residues of Veterinary Drugs in Animal Products Commercialized in the Border Region of Brazil, Argentina, and Uruguay. J. Food Prot. 2022, 85, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Chavoshani, A.; Hashemi, M.; Amin, M.M.; Ameta, S.C. Pharmaceuticals as emerging micropollutants in aquatic environments. In Micropollutants and Challenges: Emerging in the Aquatic Environments and Treatment Processes; Chavoshani, A., Hashemi, M., Amin, M.M., Ameta, S.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 35–90. [Google Scholar]
- Ahmadi, S.; Quimbayo, J.M.; Yaah, V.B.K.; De Oliveira, S.B.; Ojala, S. A critical review on combining adsorption and photocatalysis in composite materials for pharmaceutical removal: Pros and cons, scalability, TRL, and sustainability. Energy Nexus 2025, 17, 100396. [Google Scholar] [CrossRef]
- Ilavský, J.; Barloková, D. The Removal of Selected Pharmaceuticals from Water by Adsorption with Granular Activated Carbons. Eng. Proc. 2023, 57, 33. [Google Scholar] [CrossRef]
- Popović, M.; Morović, S.; Kovačić, M.; Košutić, K. Pharmaceutical Removal with Photocatalytically Active Nanocomposite Membranes. Membranes 2024, 14, 239. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 2021, 76, 105656. [Google Scholar] [CrossRef]
- Ma, R.; Li, J.; Zeng, P.; Duan, L.; Dong, J.; Ma, Y.; Yang, L. The application of membrane separation technology in the pharmaceutical industry. Membranes 2024, 14, 24. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Košutić, K.; Dolar, D.; Ašperger, D.; Kunst, B. Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 2007, 53, 244–249. [Google Scholar] [CrossRef]
- Shin, Y.; Hwang, T.-M.; Nam, S.-H.; Kim, E.; Park, J.; Choi, Y.-J.; Kye, H.; Koo, J.-W. Evaluating Nanofiltration and Reverse Osmosis Membranes for Pharmaceutically Active Compounds Removal: A Solution Diffusion Model Approach. Membranes 2024, 14, 250. [Google Scholar] [CrossRef]
- Volf, M.; Morović, S.; Košutić, K. Integration and Operational Application of Advanced Membrane Technologies in Military Water Purification Systems. Separations 2025, 12, 162. [Google Scholar] [CrossRef]
- Ghazal, H.; Koumaki, E.; Hoslett, J.; Malamis, S.; Katsou, E.; Barcelo, D.; Jouhara, H. Insights into current physical, chemical and hybrid technologies used for the treatment of wastewater contaminated with pharmaceuticals. J. Clean. Prod. 2022, 361, 132079. [Google Scholar] [CrossRef]
- García-Ávila, F.; Zambrano-Jaramillo, A.; Velecela-Garay, C.; Coronel-Sánchez, K.; Valdiviezo-Gonzalez, L. Effectiveness of membrane technologies in removing emerging contaminants from wastewater: Reverse Osmosis and Nanofiltration. Water Cycle 2025, 6, 357–373. [Google Scholar] [CrossRef]
- De Oliveira, C.P.M.; Moreira, V.R.; Lebron, Y.A.R.; de Vasconcelos, C.K.B.; Koch, K.; Viana, M.M.; Drewes, J.E.; Amaral, M.C.S. Converting recycled membranes into photocatalytic membranes using greener TiO2-GRAPHENE oxide nanomaterials. Chemosphere 2022, 306, 135591. [Google Scholar] [CrossRef] [PubMed]
- Sadegh, H.; Ali, G.A.M. Potential applications of nanomaterials in wastewater treatment: Nanoadsorbents performance. In Advanced Treatment Techniques for Industrial Wastewater; Hussain, A., Ahmed, S., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 51–61. [Google Scholar]
- Abolghasemi, S.; Nasiri, A.; Hashemi, M.; Rajabi, S.; Rahimi, F. Magnetic nanocomposites: Innovative adsorbents for antibiotics removal from aqueous environments–a narrative review. Appl. Water Sci. 2025, 15, 30. [Google Scholar] [CrossRef]
- Neha, R.; Adithya, S.; Jayaraman, R.S.; Gopinath, K.P.; Pandimadevi, M.; Praburaman, L.; Arun, J. Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: A critical review on emerging trends. Chemosphere 2021, 272, 129852. [Google Scholar] [CrossRef]
- Roslan, N.N.; Lau, H.L.H.; Suhaimi, N.A.A.; Shahri, N.N.M.; Verinda, S.B.; Nur, M.; Lim, J.-W.; Usman, A. Recent Advances in Advanced Oxidation Processes for Degrading Pharmaceuticals in Wastewater—A Review. Catalysts 2024, 14, 189. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Glass, B.D.; Goh, P.S. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review of recent advances. Environ. Sci. Pollut. Res. 2025, 32, 14316–14350. [Google Scholar] [CrossRef]
- Wydro, U.; Wołejko, E.; Luarasi, L.; Puto, K.; Tarasevičienė, Ž.; Jabłońska-Trypuć, A. A Review on Pharmaceuticals and Personal Care Products Residues in the Aquatic Environment and Possibilities for Their Remediation. Sustainability 2024, 16, 169. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2020, 12, 102. [Google Scholar] [CrossRef]
- Rodríguez-Serin, H.; Gamez-Jara, A.; De La Cruz-Noriega, M.; Rojas-Flores, S.; Rodriguez-Yupanqui, M.; Gallozzo Cardenas, M.; Cruz-Monzon, J. Literature Review: Evaluation of Drug Removal Techniques in Municipal and Hospital Wastewater. Int. J. Environ. Res. Public Health 2022, 19, 13105. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Cuprys, A.K.; Maletskyi, Z.; Ratnaweera, H. Treatment Trends and Combined Methods in Removing Pharmaceuticals and Personal Care Products from Wastewater—A Review. Membranes 2023, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Al-Mashaqbeh, O.; Alsalhi, L.; Salaymeh, L.; Dotro, G.; Lyu, T. Treatment of pharmaceutical industry wastewater for water reuse in Jordan using hybrid constructed wetlands. Sci. Total Environ. 2024, 939, 173634. [Google Scholar] [CrossRef]
- Bajda, T.; Grela, A.; Pamuła, J.; Kuc, J.; Klimek, A.; Matusik, J.; Franus, W.; Alagarsamy, S.K.K.; Danek, T.; Gara, P. Using Zeolite Materials to Remove Pharmaceuticals from Water. Materials 2024, 17, 3848. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Vargas, D.A.; Rodríguez-Quesada, L.; Ledezma-Espinoza, A.; Masís-Meléndez, F.; Infante-Alfaro, S.; Starbird-Perez, R. Biochar-Based Electrochemical Degradation System for Removing Pharmaceutical Pollutants from Aqueous Media as Potential Wastewater Treatment. Water 2025, 17, 722. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Torres-Pinto, A.; Rosales, E.; Silva, C.G.; Faria, J.L.; Pazos, M.; Silva, A.M. Optimisation of a photoelectrochemical system for the removal of pharmaceuticals in water using graphitic carbon nitride. Catal. Today 2024, 432, 114578. [Google Scholar] [CrossRef]
- Han, S.; Jung, B.; Park, C.; Jang, M.; Park, C.M.; Nam, S.; Yoon, Y. Pump-less forward osmosis and low-pressure membrane hybrid system for the removal of selected pharmaceuticals from water. Sep. Purif. Technol. 2025, 372, 133499. [Google Scholar] [CrossRef]
- Hossain, A.; Nishimura, Y.; Salma, U.; Tokumura, M.; Nishino, T.; Raknuzzaman, M.; Noro, K.; Watanabe, K.; Amagai, T.; Makino, M. Effects of Water Matrices on the Removal of Oxytetracycline Antibiotic and Total Organic Carbon (TOC) using Four Different Oxidation Processes. Results Eng. 2024, 24, 103183. [Google Scholar] [CrossRef]
- Koundle, P.; Nirmalkar, N.; Momotko, M.; Makowiec, S.; Boczkaj, G. Tetracycline degradation for wastewater treatment based on ozone nanobubbles advanced oxidation processes (AOPs)—Focus on nanobubbles formation, degradation kinetics, mechanism and effects of water composition. Chem. Eng. J. 2024, 501, 156236. [Google Scholar] [CrossRef]
- Liu, Q.; Ouyang, W.; Yang, X.; He, Y.; Wu, Z.; Ostrikov, K.K. Plasma-microbubble treatment and sustainable agriculture application of diclofenac-contaminated wastewater. Chemosphere 2023, 334, 138998. [Google Scholar] [CrossRef] [PubMed]
- Mabu, D.; Waleng, N.J.; Munonde, T.S.; Nqombolo, A.; Nomngongo, P.N. Fe3O4/SiO2 Nanocomposite Derived from Coal Fly Ash and Acid Mine Drainage for the Adsorptive Removal of Diclofenac in Wastewater. Recycling 2025, 10, 99. [Google Scholar] [CrossRef]
- Paparo, R.; Di Serio, M.; Roviello, G.; Ferone, C.; Trifuoggi, M.; Russo, V.; Tarallo, O. Geopolymer-Based Materials for the Removal of Ibuprofen: A Preliminary Study. Molecules 2024, 29, 2210. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Freitas, A.; Silva, M.; Camara, A.; Moura, H.; Ballesteros-Plata, D.; Rodríguez-Castellón, E.; de Carvalho, L. Efficient Removal of Tetracycline Hydrochloride via Adsorption onto Modified Bentonite: Kinetics and Equilibrium Studies. Appl. Sci. 2025, 15, 3372. [Google Scholar] [CrossRef]
- Qiao, Y.; Han, X.; Ren, Y.; Chen, F.; Sun, C.; Wang, J.; Yang, Z.; Xu, L.; Shen, X.; Liu, R. The role of graft-modified chitosan-based coagulants in pharmaceutically combined polluted water: Performance and mechanism. J. Environ. Chem. Eng. 2025, 13, 116205. [Google Scholar] [CrossRef]
- Wakejo, W.K.; Meshesha, B.T.; Kang, J.W.; Dessalegn, E.E.; Demesa, A.G. Integrated electrochemical-adsorption for simultaneous removal of pharmaceuticals from water: Process optimization and synergistic insights. Chemosphere 2024, 365, 143402. [Google Scholar] [CrossRef]
- Wypart-Pawul, A.; Neczaj, E.; Grosser, A.; Grobelak, A. Assessment of the effectiveness of atmospheric plasma on the removal of selected pharmaceuticals from water. Desalin. Water Treat. 2024, 320, 100600. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, L.-X.; Yang, J.-B.; Liu, Y.-H.; He, L.-Y.; Liu, Y.-S.; Zhao, J.-L.; Ying, G.-G. Suspect and nontarget screening of sulfonamides and novel transformation products in pharmaceutical Wastewater-Contaminated areas: Distribution, migration, and environmental risks. Environ. Sci. Technol. 2025, 59, 15978–15989. [Google Scholar] [CrossRef]
- Zilberman, A.; Gozlan, I.; Avisar, D. Pharmaceutical Transformation Products Formed by Ozonation—Does Degradation Occur? Molecules 2023, 28, 1227. [Google Scholar] [CrossRef] [PubMed]

| Matrix Type | Number of Substances Analyzed | Extraction, Analytical Technique | Limits | References |
|---|---|---|---|---|
| Butter, milk powder, egg, and fish tissue | 115 veterinary drugs and pharmaceuticals from >20 classes, including antibiotics (β-lactams, sulfonamides, macrolides, tetracyclines, quinolones), coccidiostats, anthelmintics, and NSAIDs | Solid–liquid extraction (SLE), LC-ESI-MS/MS | LOD and LOQ ranged 0.008–3.15 μg·kg−1 | [32] |
| Meat, eggs, fish, dairy, and other animal-derived by-products, processed ingredients, and commercial items | 353 veterinary drugs (parent compounds and markers, e.g., β-lactams, aminoglycosides, tetracyclines) | QuEChERS, LC-HRMS (screening method); LC-MS/MS (confirmatory method) | - | [33] |
| Milk and chicken feed | >140 veterinary drug residues (15 classes, e.g., aminoglycosides, β-lactams, macrolides, cephalosporins, penicilins, quinolones, tetracyclines) | SLE, UHPLC-QTrap-MS/MS | LOD (milk) = 2.2–603.5 μg·kg−1; LOD (feed) = 5.3–1814.7 μg·kg−1 | [34] |
| Milk | 132 veterinary drugs (≈15 classes; e.g., sulfonamides, β-lactams, tetracyclines, quinolones, macrolides, nitrofurans, benzimidazoles, anthelmintics, coccidiostats) | MSPE, HPLC-MS/MS | LOQ = 0.05–1 μg·kg−1 | [35] |
| Meat (chicken, beef, pork), fishery products (shrimp, flatfish, eel), milk, and eggs | 96 veterinary drugs (e.g., β-lactams, quinolones, macrolides, lincosamides, tetracyclines, anthelmintics) | SLE + DSPE, LC-MS/MS | LOD = 0.3–19.7 μg·kg−1; LOQ = 1–65 μg·kg−1 | [36] |
| Pig muscle | 65 veterinary drug residues (e.g., antibiotics, NSAIDs, anthelmintics, coccidiostats, and tranquilizers) and 97 pesticides | SLE + DSPE, LC-HRMS (QTOF) | - | [37] |
| Beef and chicken | 146 veterinary drug residues (multi-class, including 15 isomer pairs and 55 hormones, e.g., sulfonamides, quinolones, β-agonists, glucocorticoids, β-blockers) | QuEChERS, HPLC-Q-Orbitrap HRMS | LOD = 0.15–3.03 μg·kg−1; LOQ = 0.5–10 μg·kg−1 | [38] |
| Aquaculture products | 192 veterinary drug residues (15 classes, e.g., β-agonists, antiviral drugs, macrolides, avermectins, nitrofurans, steroid hormones, fluoroquinolones, tetracyclines) | QuEChERS, HPLC-HRMS | LOD = 0.5–10 μg·kg−1 | [39] |
| Pork | 210 drugs (21 chemical classes, e.g., macrolides, aminoglycosides, antiviral drugs, glycosides, NSAIDs, corticosteroids, β-lactams) | SLE+DSPE, UPLC-MS/MS (Q-Trap) | LOQ: <10 μg·kg−1 for >90% analytes; CCα = 2–502 μg·kg−1; CCβ = 4–505 μg·kg−1 | [40] |
| Beef muscle | 87 pesticides, mycotoxin, and veterinary drugs residues, including antibiotics (e.g., quinolones, cephalosporins, macrolides, tetracyclines), sedatives, NSAIDs, anthelmintics, anticoccidials | Ionic liquid-based dispersive liquid–liquid microextraction (IL–DLLME), LC–MS/MS | LOD = 0.93–23.78 μg·kg−1; LOQ = 1.98–38.27 μg·kg−1 | [41] |
| Buffalo and cow milk | 20 pesticides and veterinary drug residues, e.g., β2-agonists, quinolones, hormones, triazine herbicides | QuEChERS, UPLC-MS/MS | LOD = 0.7–1.7 μg·L−1; LOQ = 2.0–5.0 μg·L−1 | [42] |
| Matrix Type | Number of Substances Analyzed | Extraction, Analytical Technique | Limits | References |
|---|---|---|---|---|
| Wastewater effluents | 76 pharmaceuticals (e.g., antibiotics, cytostatic, NSAIDs, hormones, corticosteroids, antiepileptics) | SPE, LC-MS/MS | MDL = 0.4–22 ng·L−1; LOQ = 1–73 ng·L−1 | [50] |
| River water, drinking water, running water, effluent and influent wastewater | 12 pharmaceuticals (e.g., NSAIDs, antibiotics, antiprotozoals) | Ultrasound assisted DLLME, UHPLC-MS/MS | LOD = 0.006–0.091 ng·mL−1 LOQ = 0.018–0.281 ng·mL−1 | [51] |
| Surface water | 31 pesticides and 31 pharmaceuticals by target (e.g., NSAIDs, β-blockers, antifungals, opioid analgesics, antihistamines, psychotropics, anticonvulsants) and 137 for suspect screening (e.g., NSAIDs, antibiotics, pesticides, hormones, antiepileptics) | QuEChERS + DSPE, LC-HRMS (Q-Orbitrap, HESI) | LOQ = 0.002–1.64 ng·L−1 | [52] |
| Drinking water | 52 pharmaceuticals (e.g., psychotropics, antiepileptics, opioids, cytostatics, antibiotics, NSAIDs) | Direct filtration, UHPLC-MS/MS | LOD = 0.70–96.93 ng·L−1 LOQ = 2.09–290.78 ng·L−1 | [53] |
| Seawater and river water | 25 pharmaceuticals (e.g., psychotropics, NSAIDs, hypolipidemics, analgesics, and other drugs) | SPE, LC-HRMS | MDL = 0.2–8.0 ng·L−1; MQL = 0.8–25 ng·L−1 | [54] |
| Fresh surface waters and wastewater streams | 7 pharmaceuticals (e.g., antiretroviral, antibacterial/antimicrobials, anthelmintics, and analgesics) | SPE, LC-MS | LOD = 0.0439–0.1219 μg·L−1; LOQ = 0.1462–0.4065 μg·L−1 | [55] |
| Seawater | 7 pharmaceuticals and 2 metabolites (e.g., analgesics and NSAIDs) | SPE, UHPLC-MS/MS | MDL = 0.02–8.18 ng·L−1 MQL = 0.06–24.8 ng·L−1 | [56] |
| Drinking water, surface water, and wastewater | 33 pharmaceuticals (e.g., psychiatric drugs as well as their metabolites, NSAIDs/analgesics, and antibiotics) | SPE, UHPLC-MS/MS | MDL = 0.02–185 ng·L−1; MQL = 0.04–562 ng·L−1 | [57] |
| Surface water and hospital wastewater | 7 pharmaceuticals (e.g., antiepileptics, antibiotics, and NSAIDs) | SPE, UPLC-MS/MS | MDL = 0.005–0.015 µg·L−1 (surface water) MDL = 0.014–0.123 µg·L−1 (hospital wastewater) | [58] |
| River water | 6 pharmaceuticals (e.g., antibiotics, antiepileptics, and NSAIDs) | SPE, UPLC-MS/MS | LOD < 0.1–1 ng·L−1 LOQ < 0.1–3.4 ng·L−1 | [45] |
| Method | Compounds | Removal Efficiency | References |
|---|---|---|---|
| Hybrid constructed wetlands (CWs) approach, incorporating tidal flow (TF) operation and utilizing local Jordanian zeolite as a wetland substrate | Ciprofloxacin, ofloxacin, erythromycin, enrofloxacin, flumequine, lincomycin, carbamazepin, diclofenac | >98% ciprofloxacin, ofloxacin, erythromycin, enrofloxacin; 43–81% flumequine, lincomycin; <8% carbamazepin, diclofenac | [88] |
| Adsorption on synthetic zeolite (NaP1_FA) and zeolite-carbon composite (NaP1_C) | Colistin, fluoxetine, amoxicillin, 17-α-ethinylestradiol | >90% removal within 2 min contact time | [89] |
| Biochar based electrochemical degradation | Acetaminophen, sulindac, carbamazepine | >99% | [90] |
| Photoelectrocatalytic (PEC) system with immobilized g-C3N4@PAN | Diclofenac | 92% (5 min) | [91] |
| Pump-less forward osmosis low-pressure membrane (FO-LPM) hybrid system with 1 M NaCl draw solution and NF membrane | Propranolol, naproxen, antipyrine | 98.8% (propranolol), 97.7% (naproxen), 95.5% (antipyrine), 99.8% in presence of natural organic matter and divalent ions | [92] |
| Ozone/hydrogen peroxide process (O3/H2O2) | Oxytetracycline | >99% degradation within 15 min | [93] |
| photo-Fenton reaction (Fe/H2O2/UV) | |||
| Fenton reaction (Fe/H2O2) | |||
| Ozonation (O3) | |||
| Ozone (O3) nanobubbles AOPs | Tetracycline | 100% (20 min, 100 mg/L tetracycline, 8 mg/L ozone) | [94] |
| Hybrid plasma-microbubble system | Diclofenac | 90.9% (after 45 min) | [95] |
| Adsorption on Fe3O4/SiO2 nanocomposite | Diclofenac | 95.28% (influent), 97.44% (effluent); 94.83% (raw sewage), 88.61% (final sewage) | [96] |
| Adsorption on geopolymers (metakaolin-based (GMK) and organic–inorganic hybrid (GMK-S) geopolymer) | Ibuprofen | ~29% (batch), ~90% (continuous) | [97] |
| Adsorption on bentonite (BN) and acid-treated bentonite (BA1) | Tetracycline hydrochloride | Up to 99% (30 min, optimal pH 5) | [98] |
| Chitosan-based coagulant (CTS-DMDAAC) combined with powdered activated carbon (PAC) | Ibuprofen, acetaminophen | without PAC: <15%; with PAC: 71.44% (ibuprofen), 79.9% (acetaminophen) | [99] |
| Nanofiltration (NF), Reverse osmosis (RO) | Acetaminophen, caffeine, carbamazepine, diclofenac, ibuprofen, iopromide, lincomycin, naproxen, propranolol, ranitidine, sulfamethoxazole, sulfamethazine, trimethoprim | NF: ~84.17%, RO: ~99.21% | [74] |
| Electrochemical oxidation (EO)—adsorption | Acetaminophen (ACM), ciprofloxacin (CIP), atenolol (ATN), amoxicillin (AMX) | Single pharmaceuticals EO: 94.6% (ACM) + 92% (CIP), Adsorption: 94.07% (ACM) + 91.15% (CIP), EO + adsorption >99.8% (ACM + CIP) Multiple pharmaceuticals EO + adsorption: >97.56% (ACM + CIP + ATN + AMX) EO: ACM (83.35%) + CIP (73.1%) + ATN (68.52%) + AMX (63.05%) Adsorption: ACM (80.37%) + CIP (66.5%) + ATN (73.07%) + AMX (60.5%) | [100] |
| Atmospheric cold plasma | Diclofenac, sulfamethoxazole, trimethoprim, carbamazepine, caffeine | Up to 98% | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Varga, I.; Bilandžić, N.; Morović, S.; Košutić, K. Pharmaceuticals in Food and Water: Monitoring, Analytical Methods of Detection and Quantification, and Removal Strategies. Separations 2026, 13, 21. https://doi.org/10.3390/separations13010021
Varga I, Bilandžić N, Morović S, Košutić K. Pharmaceuticals in Food and Water: Monitoring, Analytical Methods of Detection and Quantification, and Removal Strategies. Separations. 2026; 13(1):21. https://doi.org/10.3390/separations13010021
Chicago/Turabian StyleVarga, Ines, Nina Bilandžić, Silvia Morović, and Krešimir Košutić. 2026. "Pharmaceuticals in Food and Water: Monitoring, Analytical Methods of Detection and Quantification, and Removal Strategies" Separations 13, no. 1: 21. https://doi.org/10.3390/separations13010021
APA StyleVarga, I., Bilandžić, N., Morović, S., & Košutić, K. (2026). Pharmaceuticals in Food and Water: Monitoring, Analytical Methods of Detection and Quantification, and Removal Strategies. Separations, 13(1), 21. https://doi.org/10.3390/separations13010021

