Study on the Performance of BiOCl Photocatalyst for Degradation of Tetracycline Hydrochloride
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BiOCl
2.3. Characterization
2.4. Photocatalytic Performance Evaluation
3. Results and Discussion
3.1. Crystal Structure, Phase Composition, and Microstructure
3.2. Elemental Composition and Valence State Analysis
3.3. Optical Absorption Properties and Band Gap Analysis
3.4. Photoelectrochemical Properties
3.5. Degradation Performance Evaluation of Photocatalysts
3.6. Analysis of Active Species in Photocatalytic System
4. Conclusions
- (1)
- Well-crystallized BiOCl materials were prepared, and the influence of different solvents on their photocatalytic performance was investigated. Reaction solvents modulated the microstructure of samples. Compared to DI-BiOCl and EtOH-BiOCl, EG-BiOCl exhibited a unique spherical architecture composed of closely stacked nanosheets with thicknesses below 100 nm. This structural configuration contributes to enhanced photocatalytic activity.
- (2)
- Solvent selection influenced the light absorption intensity of BiOCl materials but minimally affected their optical response range. DI-BiOCl, ETH-BiOCl, and EG-BiOCl showed similar absorption edges and nearly identical Eg values.
- (3)
- Following 45 min of dark adsorption and 60 min of visible light irradiation, the EG-BiOCl photocatalyst removed 76% of TC-HCl (30 mg/L). Its rate constant k exceeded those of DI-BiOCl and EtOH-BiOCl by factors of 6.3 and 2.1, respectively.
- (4)
- Comprehensive characterization confirms that enhanced light absorption intensity and the distinctive spherical architecture synergistically improve photocatalytic performance. These structural advantages confer EG-BiOCl with optimal degradation efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, W.L.; Wang, X.; Wang, W.L.; Han, T.; Wang, H.; Shi, H. Fabrication of oxygen vacancy-rich 3D/2D BiO1−XBr/BiOCl heterostructures towards efficient charge separation for enhanced photodegradation activity. Mater. Res. Bull. 2021, 143, 111448. [Google Scholar] [CrossRef]
- Zha, Z.X.; Lai, J.H.; Li, Y.; Yang, J.; Cui, S.; Li, Y. The degradation of tetracycline by modified BiOCl nanosheets with carbon dots from the chlorella. J. Alloys Compd. 2021, 855, 157454. [Google Scholar] [CrossRef]
- Liu, Z.M.; Zhang, A.R.; Liu, Y.; Fu, Y.; Du, Y. Local surface plasmon resonance (LSPR)-coupled charge separation over g-C3N4-supported WO3/BiOCl heterojunction for photocatalytic degradation of antibiotics. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128818. [Google Scholar] [CrossRef]
- Peng, R.F.; Kang, Y.X.; Deng, X.H.; Zhang, X.; Xie, F.; Wang, H.; Liu, W. Topotactic transformed face-to-face heterojunction of BiOCl/Bi2WO6 for improved tetracycline photodegradation. J. Environ. Chem. Eng. 2021, 9, 106750. [Google Scholar] [CrossRef]
- Yang, X.L.; Sun, S.D.; Ye, L.; Yun, D.; Liu, C.; Guo, Y.; Yang, B.; Yang, M.; Yang, Q.; Liang, S.; et al. One-pot integration of S-doped BiOCl and ZnO into type-II photocatalysts: Simultaneously boosting bulk and surface charge separation for enhanced antibiotic removal. Sep. Purif. Technol. 2022, 299, 121725. [Google Scholar] [CrossRef]
- Wang, S.; Yin, H.S.; Li, P.H.; Ding, J.; Wang, L.; Zhou, Y.; Wang, J. Controlled preparation of Bi/BiOCl with enhanced catalytic activity for organic pollutant under visible light using one-pot hydrothermal technology. Chemosphere 2022, 307, 136188. [Google Scholar] [CrossRef]
- Chen, J.; Ren, Q.F.; Ding, Y.; Xiong, C.; Guo, W. Synthesis of bifunctional composites Ag/BiOCl/diatomite: Degradation of tetracycline and evaluation of antimicrobial activity. J. Environ. Chem. Eng. 2021, 9, 106476. [Google Scholar] [CrossRef]
- Hu, J.; Weng, S.X.; Zheng, Z.Y.; Pei, Z.; Huang, M.; Liu, P. Solvents mediated-synthesis of BiOI photocatalysts with tunable morphologies and their visible-light driven photocatalytic performances in removing of arsenic from water. J. Hazard. Mater. 2014, 264, 293–302. [Google Scholar] [CrossRef]
- Zhang, X.; Ai, Z.H.; Jia, F.L.; Zhang, L. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X = Cl, Br, I) Nanoplate Microspheres. J. Phys. Chem. C 2008, 112, 747–753. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, W.-D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J. Mater. Chem. 2010, 20, 5866–5870. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.X.; Li, H.M.; Guo, S.; Dai, S. Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy 2017, 41, 172–192. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, G.Y.; Wang, X.N.; Wang, Y.; Zhou, Y.; Wu, Z. Amorphous iron oxides anchored on BiOCl nanoplates as robust catalysts for high-performance photo-Fenton oxidation. J. Colloid Interface Sci. 2022, 622, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Y.; Peng, W.; Tang, G.B.; Guo, Q.; Luo, Y. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine. J. Alloys Compd. 2018, 757, 455–465. [Google Scholar] [CrossRef]
- Zou, P.; Li, Z.G.; Jia, P.Q.; Luo, G.; Wang, C. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126705. [Google Scholar] [CrossRef]
- Liao, H.R.; Liu, C.; Zhong, J.B.; Li, J. Fabrication of BiOCl with adjustable oxygen vacancies and greatly elevated photocatalytic activity by using bamboo fiber surface embellishment. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127892. [Google Scholar] [CrossRef]
- Hao, R.; Xiao, X.; Zuo, X.X.; Nan, J.; Zhang, W. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J. Hazard. Mater. 2012, 209, 137–145. [Google Scholar] [CrossRef]
- Zhang, R.J.; Chilivery, R.; Yao, D.F.; Chen, W.; Lu, F.; Gao, W.; Fang, Y.; Zhong, Z.; Song, Y. Controlled engineering of tunable 3D-BiOX (X = Cl, Br) hierarchical nanostructures via dopamine-mediated synergetic interactions for efficient visible-light absorption photocatalysis. Appl. Surf. Sci. 2022, 574, 151683. [Google Scholar] [CrossRef]
- Guo, Y.R.; Qi, C.L.; Lu, B.; Li, P. Enhanced hydrogen production from water splitting by Sn-doped ZnO/BiOCl photocatalysts and Eosin Y sensitization. Int. J. Hydrogen Energy 2022, 47, 228–241. [Google Scholar] [CrossRef]
- Ma, W.J.; Dong, X.A.; Wang, Y.; He, W.; Zhang, W.; Liang, Y.; Wang, Y.; Fu, W.; Liao, J.; Dong, F. Highly enhanced photocatalytic toluene degradation and in situ FT-IR investigation on designed Sn-doped BiOCl nanosheets. Appl. Surf. Sci. 2022, 578, 152002. [Google Scholar] [CrossRef]
- An, W.J.; Hu, S.N.; Yang, T.; Wang, H.; Hu, J.; Cui, W.; Liang, Y. Oxygen vacancies enhance Fe-doped BiOCl photocatalysis-Fenton synergy degradation of phenol. Mater. Lett. 2022, 322, 132466. [Google Scholar] [CrossRef]
- Huang, C.J.; Hu, J.L.; Cong, S.; Zhao, Z.; Qiu, X. Hierarchical BiOCl microflowers with improved visible-light-driven photocatalytic activity by Fe(III) modification. Appl. Catal. B Environ. 2015, 174, 105–112. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, F.J.; Lin, J.; Chen, D.; Gao, J.; Huang, Z.; Ding, X.; Tang, C. Self-Assembled 3-D Architectures of BiOBr as a Visible Light-Driven Photocatalyst. Chem. Mater. 2008, 20, 2937–2941. [Google Scholar] [CrossRef]
- Huoy, N.; Zhang, J.; Miao, M.; Jin, Y. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances. Appl. Catal. B Environ. 2012, 111, 334–341. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Fu, X.; Xu, J.; Yu, X.; Zhu, Y.; Zhang, Y.; Zhu, M. Boosted visible-light photocatalytic performance of Au/BiOCl/BiOI by high-speed spatial electron transfer channel. J. Alloys Compd. 2022, 890, 161736. [Google Scholar] [CrossRef]
- Tao, S.; Sun, S.; Zhao, T.; Cui, J.; Yang, M.; Yu, X.; Yang, Q.; Zhang, X.; Liang, S. One-pot construction of Ta-doped BiOCl/Bi heterostructures toward simultaneously promoting visible light harvesting and charge separation for highly enhanced photocatalytic activity. Appl. Surf. Sci. 2021, 543, 148798. [Google Scholar] [CrossRef]
- Yu, G.; Yang, Y.; Wang, S.; Yu, Z.; Sun, Q.; Li, Y.; Sun, J.; Ling, T.; Shu, Z. Preparation of Bi2O2CO3/BiOBr0.9I0.1 photocatalyst and its degradation performance for 2,4-dichlorophenoxyacetic acid. J. Alloys Compd. 2023, 952, 169835. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Cheng, Y.; Li, P.; Yu, G. Study on the Performance of BiOCl Photocatalyst for Degradation of Tetracycline Hydrochloride. Separations 2025, 12, 242. https://doi.org/10.3390/separations12090242
Li F, Cheng Y, Li P, Yu G. Study on the Performance of BiOCl Photocatalyst for Degradation of Tetracycline Hydrochloride. Separations. 2025; 12(9):242. https://doi.org/10.3390/separations12090242
Chicago/Turabian StyleLi, Fang, Yuxi Cheng, Peiyuan Li, and Guanlong Yu. 2025. "Study on the Performance of BiOCl Photocatalyst for Degradation of Tetracycline Hydrochloride" Separations 12, no. 9: 242. https://doi.org/10.3390/separations12090242
APA StyleLi, F., Cheng, Y., Li, P., & Yu, G. (2025). Study on the Performance of BiOCl Photocatalyst for Degradation of Tetracycline Hydrochloride. Separations, 12(9), 242. https://doi.org/10.3390/separations12090242