Solid-Phase Extraction Combined with Digital Image Colorimetry for the Analysis of Lead in Water Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. SPE Process
2.3. DIC Process
3. Results and Discussion
3.1. Optimization of the SPE Process
3.1.1. Optimization of the Adsorbent Type
3.1.2. Optimization of the Adsorbent Amount
3.1.3. Optimization of the Loading Condition
3.1.4. Optimization of the pH of Samples
3.2. Optimization of the DIC Process
3.2.1. Optimization of the Chromogenic Agent Concentration
3.2.2. Optimization of the Reaction Time
3.3. Method Evaluation
3.4. Actual Sample Analysis
3.5. Comparative Study with Other Studies
3.6. Greenness Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Soubra, G.; Massoud, M.A.; Alameddine, I.; Al Hindi, M.; Sukhn, C. Assessing the Environmental Risk and Pollution Status of Soil and Water Resources in the Vicinity of Municipal Solid Waste Dumpsites. Environ. Monit. Assess. 2021, 193, 857. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; Tang, Z.; Song, J.-J.; Huang, X.-Y.; Wang, P. Toxic Metals and Metalloids: Uptake, Transport, Detoxification, Phytoremediation, and Crop Improvement for Safer Food. Mol. Plant 2022, 15, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Ortega, D.; González Esquivel, D.F.; Blanco Ayala, T.; Pineda, B.; Gómez Manzo, S.; Marcial Quino, J.; Carrillo Mora, P.; Pérez De La Cruz, V. Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity. Toxics 2021, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- GB 5749-2022; Standards for Drinking Water Quality. State Administration for Market Regulation: Beijing, China, 2022.
- Zhang, K.; Chang, S.; Zhang, Q.; Bai, Y.; Wang, E.; Zhang, M.; Fu, Q.; Wei, L.; Yu, Y. Heavy Metals in Influent and Effluent from 146 Drinking Water Treatment Plants across China: Occurrence, Explanatory Factors, Probabilistic Health Risk, and Removal Efficiency. J. Hazard. Mater. 2023, 450, 131003. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, X.; Guo, X.; Wu, J.; Jing, X. Determination of Chiral Prothioconazole and Its Chiral Metabolite in Water, Juice, Tea, and Vinegar Using Emulsive Liquid–Liquid Microextraction Combined with Ultra-High Performance Liquid Chromatography. Food Chem. 2024, 440, 138314. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Jatkowska, N.; Paszkiewicz, M.; Caban, M.; Fares, M.Y.; Dogan, A.; Garrigues, S.; Manousi, N.; Kalogiouri, N.; Nowak, P.M.; et al. Miniaturized Solid Phase Extraction Techniques for Different Kind of Pollutants Analysis: State of the Art and Future Perspectives—PART 1. TrAC Trends Anal. Chem. 2023, 162, 117034. [Google Scholar] [CrossRef]
- Waseem, M.; Majeed, Y.; Nadeem, T.; Naqvi, L.H.; Khalid, M.A.; Sajjad, M.M.; Sultan, M.; Khan, M.U.; Khayrullin, M.; Shariati, M.A.; et al. Conventional and Advanced Extraction Methods of Some Bioactive Compounds with Health Benefits of Food and Plant Waste: A Comprehensive Review. Food Front. 2023, 4, 1681–1701. [Google Scholar] [CrossRef]
- Hammad, S.F.; Abdallah, I.A.; Bedair, A.; Mansour, F.R. Homogeneous Liquid–Liquid Extraction as an Alternative Sample Preparation Technique for Biomedical Analysis. J. Sep. Sci. 2022, 45, 185–209. [Google Scholar] [CrossRef]
- Zhu, C.-Q.; Chen, J.-B.; Zhao, C.-N.; Liu, X.-J.; Chen, Y.-Y.; Liang, J.-J.; Cao, J.-P.; Wang, Y.; Sun, C.-D. Advances in Extraction and Purification of Citrus Flavonoids. Food Front. 2023, 4, 750–781. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; He, Q.; Sun, Q.; Yin, D.; Zhang, Y. A Review on Recent Developments and Applications of Green Sorbents-Based Solid Phase Extraction Techniques. Adv. Sample Prep. 2023, 6, 100065. [Google Scholar] [CrossRef]
- Yılmaz, S.; Hazer, B.; Tuzen, M. Extraction and Preconcentration of Lead (II) in Various Water and Food Samples by Orbital Shaker-Assisted Magnetic Solid Phase Extraction Method Using a New Magnetic Poly Linoleic Acid-Polystyrene-PDMS Block Copolymer. Food Chem. 2024, 457, 140114. [Google Scholar] [CrossRef] [PubMed]
- López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The Ten Principles of Green Sample Preparation. TrAC Trends Anal. Chem. 2022, 148, 116530. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, Y.; Huang, K.; Yin, S.; Chen, B.; Yao, S. Solid-Phase Extraction of Carotenoids. J. Chromatogr. A 2009, 1216, 5763–5768. [Google Scholar] [CrossRef] [PubMed]
- Vismeh, R.; Humpula, J.F.; Chundawat, S.P.S.; Balan, V.; Dale, B.E.; Jones, A.D. Profiling of Soluble Neutral Oligosaccharides from Treated Biomass Using Solid Phase Extraction and LC–TOF MS. Carbohydr. Polym. 2013, 94, 791–799. [Google Scholar] [CrossRef]
- Millán-Santiago, J.; García-Valverde, M.T.; Lucena, R.; Cárdenas, S. Polyamide-Coated Wooden Tips Coupled to Direct Infusion Mass Spectrometry, a High Throughput Alternative for the Determination of Methadone, Cocaine and Methamphetamine in Oral Fluid. Microchem. J. 2021, 162, 105843. [Google Scholar] [CrossRef]
- Solayman, M.d.; Islam, M.d.A.; Paul, S.; Ali, Y.; Khalil, M.d.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Savitha, R.; Mallelwar, P.; Mohanraj, M.; Renganathan, T.; Pushpavanam, S. Adsorptive Preconcentration Integrated with Colorimetry for Ultra-Sensitive Detection of Lead and Copper. Anal. Bioanal. Chem. 2022, 414, 4089–4102. [Google Scholar] [CrossRef]
- Jing, X.; Wang, H.; Huang, X.; Chen, Z.; Zhu, J.; Wang, X. Digital Image Colorimetry Detection of Carbaryl in Food Samples Based on Liquid Phase Microextraction Coupled with a Microfluidic Thread-Based Analytical Device. Food Chem. 2021, 337, 127971. [Google Scholar] [CrossRef]
- Fan, Y.; Li, J.; Guo, Y.; Xie, L.; Zhang, G. Digital Image Colorimetry on Smartphone for Chemical Analysis: A Review. Measurement 2021, 171, 108829. [Google Scholar] [CrossRef]
- Issarangkura Na Ayutthaya, P.; Yeerum, C.; Kesonkan, K.; Kiwfo, K.; Grudpan, K.; Teshima, N.; Murakami, H.; Vongboot, M. Lead Assays with Smartphone Detection Using a Monolithic Rod with 4-(2-Pyridylazo) Resorcinol. Molecules 2021, 26, 5720. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Chu, S.; Liu, B.; Zhang, Q.; Zou, L.; Yu, S.; Jiang, C. Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device. Anal. Chem. 2019, 91, 9292–9299. [Google Scholar] [CrossRef] [PubMed]
- Carolina Souza Andrada Anconi, A.; de Jesus Fonseca, J.L.; Antônio Nunes, C. A Digital Image-Based Colorimetric Method for Measuring Free Acidity in Edible Vegetable Oils. Food Chem. 2024, 443, 138555. [Google Scholar] [CrossRef] [PubMed]
- Landes, F.C.; Paltseva, A.; Sobolewski, J.M.; Cheng, Z.; Ellis, T.K.; Mailloux, B.J.; van Geen, A. A Field Procedure to Screen Soil for Hazardous Lead. Anal. Chem. 2019, 91, 8192–8198. [Google Scholar] [CrossRef] [PubMed]
- Gentile, G.; Tambuzzi, S.; Andreola, S.; Boracchi, M.; Gibelli, L.; Migliorini, A.S.; Zoja, R. Is It Possible to Detect Lead Derived from Gunshot Residues on Decalcified Human Bone by Means of a Histochemical Staining with Sodium Rhodizonate? Forensic Sci. Int. 2020, 316, 110474. [Google Scholar] [CrossRef]
- Joshi, N.C.; Joshi, A.; Mitra, D.; Gururani, P.; Kumar, N.; Joshi, H.K. Removal of Heavy Metals Using Cellulose-Based Materials: A Mini-Review. Environ. Nanotechnol. Monit. Manag. 2024, 21, 100942. [Google Scholar] [CrossRef]
- Yu, X.; Tong, S.; Ge, M.; Wu, L.; Zuo, J.; Cao, C.; Song, W. Adsorption of Heavy Metal Ions from Aqueous Solution by Carboxylated Cellulose Nanocrystals. J. Environ. Sci. 2013, 25, 933–943. [Google Scholar] [CrossRef]
- Maatar, W.; Boufi, S. Poly(Methacylic Acid-Co-Maleic Acid) Grafted Nanofibrillated Cellulose as a Reusable Novel Heavy Metal Ions Adsorbent. Carbohydr. Polym. 2015, 126, 199–207. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Zhang, Z.; Li, P.; He, C.; Zhong, M. Pb(II) Adsorption Properties of a Three-Dimensional Porous Bacterial Cellulose/Graphene Oxide Composite Hydrogel Subjected to Ultrasonic Treatment. Materials 2024, 17, 3053. [Google Scholar] [CrossRef]
- Satarpai, T.; Shiowatana, J.; Siripinyanond, A. Paper-Based Analytical Device for Sampling, on-Site Preconcentration and Detection of Ppb Lead in Water. Talanta 2016, 154, 504–510. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Wang, A. Adsorption of Lead Ions from Aqueous Solution by Using Carboxymethyl Cellulose-g-Poly (Acrylic Acid)/Attapulgite Hydrogel Composites. Desalination 2010, 259, 258–264. [Google Scholar] [CrossRef]
- Zhang, H.; Omer, A.M.; Hu, Z.; Yang, L.-Y.; Ji, C.; Ouyang, X. Fabrication of Magnetic Bentonite/Carboxymethyl Chitosan/Sodium Alginate Hydrogel Beads for Cu (II) Adsorption. Int. J. Biol. Macromol. 2019, 135, 490–500. [Google Scholar] [CrossRef]
- Fakhre, N.A.; Ibrahim, B.M. The Use of New Chemically Modified Cellulose for Heavy Metal Ion Adsorption. J. Hazard. Mater. 2018, 343, 324–331. [Google Scholar] [CrossRef]
- Lian, Z.; Li, Y.; Xian, H.; Ouyang, X.; Lu, Y.; Peng, X.; Hu, D. EDTA-Functionalized Magnetic Chitosan Oligosaccharide and Carboxymethyl Cellulose Nanocomposite: Synthesis, Characterization, and Pb(II) Adsorption Performance. Int. J. Biol. Macromol. 2020, 165, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Abdolmohammad-Zadeh, H.; Mousavi, S. Starch-Modified Nickel Ferrite Nanoparticles as a Magnetic Nano-Bio Adsorbent for the Extraction and Determination of Lead in Water and Moringa oleifera Samples. J. Food Compos. Anal. 2024, 136, 106820. [Google Scholar] [CrossRef]
- Luo, J.; Lei, Y.; Ge, Q.; Liu, M.; Jiang, N.; Huang, Y.-H.; Cong, H.; Zhao, J.-L. Carbon Quantum Dots from Hemicucur[6]Bit and the Application for the Detection of Pb2+. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 317, 124459. [Google Scholar] [CrossRef] [PubMed]
- Oularbi, L.; Turmine, M.; El Rhazi, M. Electrochemical Determination of Traces Lead Ions Using a New Nanocomposite of Polypyrrole/Carbon Nanofibers. J. Solid State Electrochem. 2017, 21, 3289–3300. [Google Scholar] [CrossRef]
- Santini, S.; Campanella, B.; Giannarelli, S.; Palleschi, V.; Poggialini, F.; Legnaioli, S. Optimization of Carbon-Based Thin Film Microextraction Supports for Simultaneous Detection of Heavy Metals Using LIBS. Spectrochim. Acta Part B At. Spectrosc. 2024, 216, 106948. [Google Scholar] [CrossRef]
- Long, X.; Li, R.; Xiang, J.; Wu, S.; Wang, J. Ultrabright Carbon Dots as a Fluorescent Nano Sensor for Pb2+ Detection. RSC Adv. 2022, 12, 24390–24396. [Google Scholar] [CrossRef]
- Siswanta, D.; Yaqin, A.A.A.; Suherman, S.; Mudasir, M.; Hosseini-Bandegharaei, A. Pb(II) Solid-Phase Extraction in Wastewater Samples Prior to Flame Atomic Absorption Spectrometry Analysis Using Chitosan and Alginate Modified Carbon. Int. J. Environ. Anal. Chem. 2024, 1–13. [Google Scholar] [CrossRef]












| Mass Concentration (mg L−1) | Tap Water | River Water | Spring Water | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Recovery (%) | RSD (%) | CI (%) | Recovery (%) | RSD (%) | CI (%) | Recovery (%) | RSD (%) | RSD (%) | |
| 0 | - | - | - | - | - | - | - | - | - |
| 0.01 | 95.8 | 2.1 | 90.8–100.8 | 93.5 | 4.6 | 82.8–104.2 | 94.0 | 4.2 | 84.2–103.8 |
| 0.1 | 94.8 | 4.4 | 84.4–105.2 | 95.1 | 2.2 | 89.9–100.3 | 97.5 | 2.8 | 90.7–104.3 |
| 0.8 | 97.0 | 4.8 | 85.4–108.6 | 95.9 | 1.7 | 91.9–100.0 | 96.8 | 2.9 | 89.8–103.8 |
| Method | Material | Adsorbent Weight or Volume (mg or mL) | Total Time (min) | Linear Range (mg L−1) | LOD (mg L−1) | On-Site Feasibility | Reference |
|---|---|---|---|---|---|---|---|
| Resonant rayleigh scattering | CQDs | 1.35 | 3 | 0–1.243 | 0.087 | No | [36] |
| Electrochemical techniques | PPy/CNF/CPE | / | 10.5 | 0.04144–26.936 | 0.010 | No | [37] |
| Thin film microextraction-nanoparticle enhanced LIBS | Graphene | 0.2 | 15 | 0.1–5 | 0.300 | No | [38] |
| Fluorescence | U-CDs | 1 | 30 | 8.288–74.592 | 0.207 | No | [39] |
| Flame atomic adsorption | CAC | 10 | 8 | / | 0.071 | No | [40] |
| Dispersive magnetic solid-phase extraction-graphite furnace atomic absorption spectrometry | Starch-modified nickel ferrite nanoparticles | 200 | 30 | 0.0005–0.14 | 0.0001 | No | [35] |
| SPE-DIC | Cellulose | 5 | 10 | 0.01–0.8 | 0.003 | Yes | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Ma, Z.; Jing, X.; Bi, X. Solid-Phase Extraction Combined with Digital Image Colorimetry for the Analysis of Lead in Water Samples. Separations 2025, 12, 319. https://doi.org/10.3390/separations12110319
Wu W, Ma Z, Jing X, Bi X. Solid-Phase Extraction Combined with Digital Image Colorimetry for the Analysis of Lead in Water Samples. Separations. 2025; 12(11):319. https://doi.org/10.3390/separations12110319
Chicago/Turabian StyleWu, Wenying, Zhen Ma, Xu Jing, and Xinyuan Bi. 2025. "Solid-Phase Extraction Combined with Digital Image Colorimetry for the Analysis of Lead in Water Samples" Separations 12, no. 11: 319. https://doi.org/10.3390/separations12110319
APA StyleWu, W., Ma, Z., Jing, X., & Bi, X. (2025). Solid-Phase Extraction Combined with Digital Image Colorimetry for the Analysis of Lead in Water Samples. Separations, 12(11), 319. https://doi.org/10.3390/separations12110319

