Papaya Seed Extract and Recovery of Some Main Constituents
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Microwave Drying
2.4. Oven Drying
2.5. Calibration Standard Solutions
2.6. UHPLC-PDA-ESI-TOF/MS Instrumentation and Conditions
3. Results
3.1. Amino Acids
3.2. Organic Acids
3.3. Glucotropaeolin and Other Glycosides
3.4. Flavonoids
3.5. Unknown Metabolites
3.6. UHPLC-PDA Quantification of Trp, GTL and 4-HBA
3.7. Recovery
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos Santos, C.; De Abreu, C.; Freire, J.; Queiroz, E.; Mendonca, M. Chemical characterization of the flour of peel and seed from two papaya cultivars. Food Sci. Technol. 2014, 34, 353–357. [Google Scholar] [CrossRef]
- Williams, D.; Pun, S.; Chaliha, M.; Scheelings, P.; O’Hare, T. An unusual combination in papaya (Carica papaya): The good (glucosinolates) and the bad (cyanogenic glycosides). J. Food Comp. Anal. 2013, 29, 82–86. [Google Scholar] [CrossRef]
- Nugroho, A.; Heryani, H.; Choi, J.; Park, H. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitritescavenging activity. Asian Pac. J. Trop. Biomed. 2017, 7, 208–213. [Google Scholar] [CrossRef]
- Rivera-Pastrana, D.; Yahia, E.; Gonzalez-Aguilar, G. Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage. J. Sci. Food Agric. 2010, 90, 2358–2365. [Google Scholar] [CrossRef]
- Ikram, E.; Stanley, R.; Netzel, M.; Fanning, K. Phytochemicals of papaya and its traditional health and culinary uses—A review. J. Food Compos. Anal. 2015, 41, 201–211. [Google Scholar] [CrossRef]
- Barroso, P.T.; de Carvalho, P.P.; Rocha, T.B.; Pessoa, F.L.; Azevedo, D.A.; Mendes, M.F. Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO2. Biotechnol. Rep. 2016, 11, 110–116. [Google Scholar] [CrossRef]
- Gogna, N.; Hamid, N.; Dorai, K. Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by H-1 NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2015, 115, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D. Glucosinolates, structures and analysis in food. Anal. Methods 2010, 2, 310–325. [Google Scholar] [CrossRef]
- Fahey, J.; Zalcmann, A.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Vaughn, S.; Berhow, M. Glucosinolate hydrolysis products from various plant sources: pH effects isolation, and purification. Ind. Crops Prod. 2005, 21, 193–202. [Google Scholar] [CrossRef]
- Bennett, R.; Kiddle, G.; Wallsgrove, R. Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya. Phytochemistry 1997, 45, 59–66. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yoshimoto, M.; Murata, Y.; Shimoishi, Y.; Asai, Y.; Park, E.; Sato, K. Papaya seed represents a rich source of biologically active isothiocyanate. J. Agric. Food Chem. 2007, 55, 4407–4413. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, M.; do Nascimento, J.; Purgatto, E.; Fabi, J.; Lajolo, F.; Cordenunsi, B. Benzylglucosinolate, Benzylisothiocyanate, and Myrosinase Activity in Papaya Fruit during Development and Ripening. J. Agric. Food Chem. 2008, 56, 9592–9599. [Google Scholar] [CrossRef]
- Gründemann, C.; Huber, R. Chemoprevention with isothiocyanates—From bench to bedside. Cancer Lett. 2018, 414, 26–33. [Google Scholar] [CrossRef]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef] [PubMed]
- Conaway, C.; Yang, Y.; Chung, F. Isothiocyanates as cancer chemopreventive agents: Their biological activities and metabolism in rodents and humans. Curr. Drug Metab. 2002, 3, 233–255. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.; Kostov, R. Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med. 2012, 18, 337–347. [Google Scholar] [CrossRef]
- Kalkunte, S.; Swamy, N.; Dizon, D.S.; Brard, L. Benzyl isothiocyanate (BITC) induces apoptosis in ovarian cancer cells in vitro. J. Exp. Ther. Oncol. 2006, 5, 287–300. [Google Scholar] [PubMed]
- Li, Z.; Wang, Y.; Shen, W.; Zhou, P. Content determination of benzyl glucosinolate and anti-cancer activity of its hydrolysis product in Carica papaya L. Asian Pac. J. Trop. Med. 2012, 5, 231–233. [Google Scholar] [CrossRef]
- Li, P.; Zhao, Y.M.; Wang, C.; Zhu, H.P. Antibacterial activity and main action pathway of benzyl isothiocyanate extracted from papaya seeds. J. Food Sci. 2021, 86, 169–176. [Google Scholar] [CrossRef]
- Senrayan, J.; Venkatachalam, S. Solvent-assisted extraction of oil from papaya (Carica papaya L.) seeds: Evaluation of its physiochemical properties and fatty-acid composition. Sep. Sci. Technol. 2018, 53, 2852–2859. [Google Scholar] [CrossRef]
- Zhang, Y.; Kensler, T.; Cho, C.; Posner, G.; Talalay, P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Natl. Acad. Sci. USA 1994, 91, 3147–3150. [Google Scholar] [CrossRef]
- He, X.; Ma, Y.; Yi, G.; Wu, J.; Zhou, L.; Guo, H. Chemical composition and antifungal activity of Carica papaya Linn. seed essential oil against Candida spp. Lett. Appl. Microbiol. 2017, 64, 350–354. [Google Scholar] [CrossRef]
- Kermanshai, R.; McCarry, B.; Rosenfeld, J.; Summers, P.; Weretilnyk, E.; Sorger, G. Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 2001, 57, 427–435. [Google Scholar] [CrossRef]
- Pathak, N.; Mishra, P.; Manivannan, B.; Lohiya, N. Sterility due to inhibition of sperm motility by oral administration of benzene chromatographic fraction of the chloroform extract of the seeds of Carica papaya in rats. Phytomedicine 2000, 7, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Singh, O.; Ali, M. Phytochemical and antifungal profiles of the seeds of Carica Papaya L. Indian J. Pharm. Sci. 2011, 73, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Madrigal, L.; Ortiz, A.; Cooke, R.; Fernandez, R. The dependence of crude papain yields on different collection (tapping) procedures for papaya latex. J. Sci. Food Agric. 1980, 31, 279–285. [Google Scholar] [CrossRef]
- Castro-Vargas, H.; Baumann, W.; Parada-Alfonso, F. Valorization of agroindustrial wastes: Identification by LC-MS and NMR of benzylglucosinolate from papaya (Carica papaya L.) seeds, a protective agent against lipid oxidation in edible oils. Electrophoresis 2016, 37, 1930–1937. [Google Scholar] [CrossRef]
- Van Eylen, D.; Hendrickx, M.; Van Loey, A. Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chem. 2006, 97, 263–271. [Google Scholar] [CrossRef]
- Panusa, A.; Petrucci, R.; Marrosu, G.; Multari, G.; Gallo, F. UHPLC-PDA-ESI-TOF/MS metabolic profiling of Arctostaphylos pungens and Arctostaphylos uva-ursi A comparative study of phenolic compounds from leaf methanolic extracts. Phytochemistry 2015, 115, 79–88. [Google Scholar] [CrossRef]
- Alonso-Salces, R.; Ndjoko, K.; Queiroz, E.; Ioset, J.; Hostettmann, K.; Berrueta, L.; Gallo, B.; Vicente, F. On-line characterisation of apple polyphenols by liquid chromatography coupled with mass spectrometry and ultraviolet absorbance detection. J. Chromatogr. A 2004, 1046, 89–100. [Google Scholar] [CrossRef]
- Sumner, L.; Amberg, A.; Barrett, D.; Beale, M.; Beger, R.; Daykin, C.; Fan, T.; Fiehn, O.; Goodacre, R.; Griffin, J.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- ISO 9167:2019; Rapeseed and Rapeseed Meals—Determination of Glucosinolates Content—Method Using High-Performance Liquid Chromatography. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:9167:ed-1:v1:en (accessed on 12 August 2024).
- Matthaus, B.; Luftmann, H. Glucosinolates in members of the family Brassicaceae: Separation and identification by LC/ESI-MS-MS. J. Agric. Food Chem. 2000, 48, 2234–2239. [Google Scholar] [CrossRef]
- Mellon, F.; Bennett, R.; Holst, B.; Williamson, G. Intact glucosinolate analysis in plant extracts by programmed cone voltage electrospray LC/MS: Performance and comparison with LC/MS/MS methods. Anal. Biochem. 2002, 306, 83–91. [Google Scholar] [CrossRef]
- Ares, A.; Valverde, S.; Nozal, M.; Bernal, J.; Bernal, J. Development and validation of a specific method to quantify intact glucosinolates in honey by LC-MS/MS. J. Food Compos. Anal. 2016, 46, 114–122. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, M.J.; Jeong, M.H.; Kim, J.E. Identification and Quantification of Glucosinolates in Kimchi by Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Int. J. Anal. Chem. 2017, 2017, 6753481. [Google Scholar] [CrossRef]
- Vallejo-Castillo, V.; Muñoz-Mera, J.; Pérez-Bustos, M.; Rodriguez-Stouvenel, A. Recovery of antioxidants from Papaya (Carica papaya L.) peel and pulp by microwave-assisted extraction. Rev. Mex. Ing. Quim 2020, 19, 85–98. [Google Scholar] [CrossRef]
- Sticha, K.; Kenney, P.; Boysen, G.; Liang, H.; Su, X.; Wang, M.; Upadhyaya, P.; Hecht, S. Effects of benzyl isothiocyanate and phenethyl isothiocyanate on DNA adduct formation by a mixture of benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Carcinogenesis 2002, 23, 1433–1439. [Google Scholar] [CrossRef]
- Miyoshi, N.; Takabayashi, S.; Osawa, T.; Nakamura, Y. Benzyl isothiocyanate inhibits excessive superoxide generation in inflammatory leukocytes: Implication for prevention against inflammation-related carcinogenesis. Carcinogenesis 2004, 25, 567–575. [Google Scholar] [CrossRef]
- Dinh, T.; Parat, M.; Ong, Y.; Khaw, K. Anticancer activities of dietary benzyl isothiocyanate: A comprehensive review. Pharm. Res. 2021, 169, 105666. [Google Scholar] [CrossRef]
- Wong, R. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87–101. [Google Scholar] [CrossRef]
- Lui, V.; Wentzel, A.; Xiao, D.; Lew, K.; Singh, S.; Grandis, J. Requirement of a carbon spacer in benzyl isothiocyanate-mediated cytotoxicity and MAPK activation in head and neck squamous cell carcinoma. Carcinogenesis 2003, 24, 1705–1712. [Google Scholar] [CrossRef]
- Lai, K.; Huang, A.; Hsu, S.; Kuo, C.; Yang, J.; Wu, S.; Chung, J. Benzyl Isothiocyanate (BITC) Inhibits Migration and Invasion of Human Colon Cancer HT29 Cells by Inhibiting Matrix Metalloproteinase-2/-9 and Urokinase Plasminogen (uPA) through PKC and MAPK Signaling Pathway. J. Agric. Food Chem. 2010, 58, 2935–2942. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Meng, Y.; Huang, L. Benzyl isothiocyanate inhibits breast cancer cell tumorigenesis via repression of the FoxH1-Mediated Wnt/β-catenin pathway. Int. J. Clin. Exp. Med. 2015, 8, 17601–17611. [Google Scholar] [PubMed]
- Mi, L.; Gan, N.; Chung, F. Isothiocyanates inhibit proteasome activity and proliferation of multiple myeloma cells. Cancer Res. 2011, 71, 5130–5142. [Google Scholar] [CrossRef]
- Drobnica, L.; Kristian, P.J.; Augustin, J. Cyanates and their Thio Derivatives Part 2. In The Chemistry of Cyanates and Their Thio Derivatives; Patai, S., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 1977; pp. 1003–1221. [Google Scholar] [CrossRef]
- Getahun, S.M.; Chung, F.L. Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress. Cancer Epidemiol. Biomark. Prev. 1999, 8, 447–451. [Google Scholar] [PubMed]
- Adeoye, R.I.; Olopade, E.T.; Olayemi, I.O.; Okaiyeto, K.; Akiibinu, M.O. Nutritional and therapeutic potentials of Carica papaya Linn. seed: A comprehensive review. Plant Sci. Today 2024, 11, 671–680. [Google Scholar] [CrossRef]
No. | RT (min) | λ max (nm) | [M-H]− m/z | [M+H]+ m/z | Chemical Formula | Compound |
1 | 0.23 | 116.07 | C5H9NO2 | Proline * | ||
2 | 0.27 | 118.09 | C5H11NO2 | Valine * | ||
3 | 0.35 | 191.02 | C6H8O7 | Citric acid * | ||
4 | 0.43 | 223/273 | 182.08 | C9H11NO3 | Tyrosine * | |
5 | 0.47 | 130.09 | 132.10 | C6H13NO2 | Leucine * | |
6 | 0.59 | 292.14 | 294.15 | Unknown | ||
7 | 1.01 | 257 | 164.07 | 166.09 | C9H11NO2 | Phenylalanine * |
8 | 1.17 | 248 | 299.08 | 301.09 | C13H16O8 | 4-hydroxybenzoic acid glycoside ** |
9 | 1.25 | 326 | Unknown | |||
10 | 1.33 | 248 | 461.13 | [M+Na]+ 485.13 | C19H26O13 | 4-hydroxybenzoic acid diglycoside ** |
11 | 1.49 | 248 | 623.18 | [M+Na]+ 647.18 | C25H36O18 | 4-hydroxybenzoic acid triglycoside ** |
12 | 1.54 | 247/295 | 801.21 | C34H42O22 | Rhamnetin triglycoside 1 ** | |
13 | 1.61 | 244/310 | 801.21 | C34H42O22 | Rhamnetin triglycoside 2 ** | |
14 | 1.64 | 218/279 | 203.08 | 205.10 | C11H12N2O2 | Tryptophan * |
15 | 1.74 | 313.09 | Unknown | |||
16 | 1.76 | 240 sh | 408.04 | [M+H-SO3]+ 330.10 | C14H19NO9S2 | Glucotropaeolin * |
17 | 1.85 | 254 | 137.02 | C7H6O3 | 4-hydroxybenzoic acid * | |
18 | 2.20 | 230 | 236.06 | 238.07 | Unknown |
Myrosinase Deactivation | Trp | GTL | 4-HBA |
---|---|---|---|
Microwave | 69 ± 1 | 245 ± 72 | 56 ± 13 |
Oven | 85 ± 5 | 308 ± 31 | 74 ± 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panusa, A.; Mammone, F.R.; Rotundo, P.; Multari, G.; Palazzino, G.; Gallo, F.R. Papaya Seed Extract and Recovery of Some Main Constituents. Separations 2024, 11, 254. https://doi.org/10.3390/separations11090254
Panusa A, Mammone FR, Rotundo P, Multari G, Palazzino G, Gallo FR. Papaya Seed Extract and Recovery of Some Main Constituents. Separations. 2024; 11(9):254. https://doi.org/10.3390/separations11090254
Chicago/Turabian StylePanusa, Alessia, Francesca Romana Mammone, Paola Rotundo, Giuseppina Multari, Giovanna Palazzino, and Francesca Romana Gallo. 2024. "Papaya Seed Extract and Recovery of Some Main Constituents" Separations 11, no. 9: 254. https://doi.org/10.3390/separations11090254
APA StylePanusa, A., Mammone, F. R., Rotundo, P., Multari, G., Palazzino, G., & Gallo, F. R. (2024). Papaya Seed Extract and Recovery of Some Main Constituents. Separations, 11(9), 254. https://doi.org/10.3390/separations11090254