Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Solutions
2.2. Sample Preparation
2.2.1. “Dilute-and-Shoot” Procedure
2.2.2. Solid-Phase Extraction
2.3. Instrumentation
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- World Anti-Doping Agency, Prohibited List. Available online: https://www.wada-ama.org/sites/default/files/2023-09/2024list_en_final_22_september_2023.pdf (accessed on 19 April 2024).
- World Anti-Doping Agency, WADA Testing Figures Report. Available online: https://www.wada-ama.org/sites/default/files/2023-01/2021_anti-doping_testing_figures_en.pdf (accessed on 12 March 2024).
- Gil, J.; Cabrales, A.; Reyes, O.; Morera, V.; Betancourt, L.; Sánchez, A.; García, G.; Moya, G.; Padrón, G.; Besada, V.; et al. Development and validation of a bioanalytical LC-MS method for the quantification of GHRP-6 in human plasma. J. Pharm. Biomed. Anal. 2012, 60, 19–25. [Google Scholar] [CrossRef]
- Coppieters, G.; Deventer, K.; van Eenoo, P.; Judák, P. Combining direct urinary injection with automated filtration and nanoflow LC-MS for the confirmatory analysis of doping-relevant small peptide hormones. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1179, 122842. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Han, B.; Sung, C.; Park, J.-H.; Lee, K.; Kim, H.; Kim, K.; Son, J.; Kwon, O.-S.; Lee, J. LC-MS/MS method for simultaneous analysis of growth hormone-releasing peptides and secretagogues in human urine. Mass Spectrom. Lett. 2016, 7, 55–63. [Google Scholar] [CrossRef]
- Timms, M.; Hall, N.; Levina, V.; Vine, J.; Steel, R. A high-throughput LC-MS/MS screen for GHRP in equine and human urine, featuring peptide derivatization for improved chromatography. Drug Test. Anal. 2014, 6, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Thevis, M.; Thomas, A.; Schänzer, W. Doping control analysis of selected peptide hormones using LC-MS(/MS). Forensic Sci. Int. 2011, 213, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Cox, H.D.; Hughes, C.M.; Eichner, D. Detection of GHRP-2 and GHRP-6 in urine samples from athletes. Drug Test. Anal. 2015, 7, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Guerrero, N.A.; González-López, N.M.; Zapata-Velásquez, J.D.; Martínez-Ramírez, J.A.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Synthetic Peptides in Doping Control: A Powerful Tool for an Analytical Challenge. ACS Omega 2022, 7, 38193–38206. [Google Scholar] [CrossRef] [PubMed]
- Semenistaya, E.; Zvereva, I.; Thomas, A.; Thevis, M.; Krotov, G.; Rodchenkov, G. Determination of growth hormone releasing peptides metabolites in human urine after nasal administration of GHRP-1, GHRP-2, GHRP-6, Hexarelin, and Ipamorelin. Drug Test. Anal. 2015, 7, 919–925. [Google Scholar] [CrossRef]
- Semenistaya, E.; Zvereva, I.; Krotov, G.; Rodchenkov, G. Solid-phase extraction of small biologically active peptides on cartridges and microelution 96-well plates from human urine. Drug Test. Anal. 2016, 8, 940–949. [Google Scholar] [CrossRef]
- Jing, J.; Tian, T.; Wang, Y.; Xu, X.; Shan, Y. Multi-analyte screening of small peptides by alkaline pre-activated solid phase extraction coupled with liquid chromatography-high resolution mass spectrometry in doping controls. J. Chromatogr. A 2022, 1676, 463272. [Google Scholar] [CrossRef]
- WADA Technical Document-TD2022MRPL Document Number: TD2022MRPL Version Number: 1.0 Minimum Required Performance Levels and Applicable Minimum Reporting Levels for Non-Threshold Substances Analyzed by Chromatographic-mass Spectrometric Analytical Methods. Available online: https://www.wada-ama.org/sites/default/files/resources/files/td2022mrpl_v1.0_final_eng.pdf (accessed on 1 May 2024).
- Esposito, C.L.; Ac, A.G.; Laszlo, E.; Duy, S.V.; Michaud, C.; Sauvé, S.; Ong, H.; Marleau, S.; Banquy, X.; Brambilla, D. A Quantitative UHPLC-MS/MS Method for the Growth Hormone-Releasing Peptide-6 Determination in Complex Biological Matrices and Transdermal Formulations. Talanta 2021, 233, 122555. [Google Scholar] [CrossRef]
- Reverter-Branchat, G.; Segura, J.; Pozo, O.J. On the Road of Dried Blood Spot Sampling for Antidoping Tests: Detection of GHRP-2 Abuse. Drug Test. Anal. 2021, 13, 510–522. [Google Scholar] [CrossRef]
- Lange, T.; Thomas, A.; Walpurgis, K.; Thevis, M. Fully Automated Dried Blood Spot Sample Preparation Enables the Detection of Lower Molecular Mass Peptide and Non-Peptide Doping Agents by Means of LC-HRMS. Anal. Bioanal. Chem. 2020, 412, 3765–3777. [Google Scholar] [CrossRef]
- Judák, P.; Esposito, S.; Coppieters, G.; van Eenoo, P.; Deventer, K. Doping control analysis of small peptides: A decade of progress. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1173, 122551. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; Kong, F.; Wang, Y.; Shi, Q.; Zhang, L. Selective molecular characterization of olefins in hydrocarbon mixtures by Ag+ complexation ESI high-resolution mass spectrometry. Fuel 2022, 319, 123760. [Google Scholar] [CrossRef]
- Medvedovici, A.; Lazou, K.; D’Oosterlinck, A.; Zhao, Y.; Sandra, P. Analysis of jojoba oil by LC-coordination ion spray-MS (LC-CIS-MS). J. Sep. Sci. 2002, 25, 173–178. [Google Scholar] [CrossRef]
- Gómez-Guerrero, N.A.; González-López, N.M.; Zapata-Velásquez, J.D.; Martínez-Ramírez, J.A.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Synthesis of polysulfanes with 20 or more sulfur atoms with characterization by UPLC-(Ag+)-coordination ion spray-MS. J. Sulfur. Chem. 2013, 34, 55–66. [Google Scholar]
- Cha, E.; Kim, S.; Kim, H.J.; Lee, K.M.; Kim, K.H.; Kwon, O.S.; Lee, J. Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag+ CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control. Drug Test. Anal. 2015, 7, 1040–1049. [Google Scholar] [CrossRef]
- Cha, E.; Lee, K.M.; Park, K.D.; Park, K.S.; Lee, K.W.; Kim, S.M.; Lee, J. Hydroxycholesterol levels in the serum and cerebrospinal fluid of patients with neuromyelitis optica revealed by LC-Ag+CIS/MS/MS and LC-ESI/MS/MS with picolinic derivatization: Increased levels and association with disability during acute attack. PLoS ONE 2016, 11, 0167819. [Google Scholar] [CrossRef]
- Virus, E.D.; Sobolevsky, T.G.; Rodchenkov, G.M. “Wrong-Way-Round Ionization” and Screening for Doping Substances in Human Urine by High-Performance Liquid Chromatography/Orbitrap Mass Spectrometry. J. Mass. Spectrom. 2012, 47, 381–391. [Google Scholar] [CrossRef]
- Venter, P.; van Onselen, R. Evaluating the “Wrong-Way-Round” Electrospray Ionization of Antiretroviral Drugs for Improved Detection Sensitivity. Anal. Bioanal. Chem. 2023, 415, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Seal, J.R.; Havrilla, C.M.; Porter, N.A.; Hachey, D.L. Analysis of unsaturated compounds by Ag+ coordination ionspray mass spectrometry: Studies of the formation of the Ag+/lipid complex. J. Am. Soc. Mass. Spectrom. 2003, 14, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, T.; Pucciarelli, F.; Passamonti, P.; Ferraro, S. Influence of metal impurities sorption onto a silica based C18 stationary phase on the HPLC of metal chelating analytes. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 429–440. [Google Scholar] [CrossRef]
- de Pra, M.; Greco, G.; Krajewski, M.P.; Martin, M.M.; George, E.; Bartsch, N.; Steiner, F. Effects of titanium contamination caused by iron-free high-performance liquid chromatography systems on peak shape and retention of drugs with chelating properties. J. Chromatogr. A 2020, 1611, 460619. [Google Scholar] [CrossRef]
- FDA Guidance Document M10 Bioanalytical Method Validation and Study Sample Analysis. Available online: https://www.fda.gov/media/162903/download (accessed on 19 April 2024).
- European Medicine Academy Guideline on Bioanalytical Method Validation. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 19 April 2024).
Compound | Relative Peak Area of the Analytes with Different Dopants, % | ||
---|---|---|---|
CIS-MS (Ag+) | CIS-MS (Li+) | CIS-MS (K+) | |
GHRP-6 | 100 | 62 | 75 |
GHRP-2 | 100 | 68 | 88 |
Compound | CIS-MS (Ag+) | ESI-MS (SPE) | ESI-MS (“Dilute-and-Shoot”) | |||
---|---|---|---|---|---|---|
LOD, ng/mL | LLOQ, ng/mL | LOD, ng/mL | LLOQ, ng/mL | LOD, ng/mL | LLOQ, ng/mL | |
GHRP-6 | 0.2 | 0.5 | 1 | 2 | 10 | 20 |
GHRP-2 | 0.2 | 0.5 | 1 | 2 | 10 | 20 |
Compound | ESI-MS (SPE) | ESI-MS (“Dilute-and-Shoot”) | CIS-MS (Ag+) | ||||||
---|---|---|---|---|---|---|---|---|---|
QC Low, ng/mL | QC Med, ng/mL | QC High, ng/mL | QC Low, ng/mL | QC Med, ng/mL | QC High, ng/mL | QC Low, ng/mL | QC Med, ng/mL | QC High, ng/mL | |
GHRP-6 | 5.6 ± 0.6 | 27 ± 2 | 52 ± 5 | 28 ± 3 | 51 ± 5 | 106 ± 8 | 2.2 ± 0.3 | 21 ± 2 | 52 ± 5 |
GHRP-2 | 5.3 ± 0.6 | 24 ± 3 | 54 ± 5 | 29 ± 3 | 53 ± 5 | 104 ± 8 | 2.3 ± 0.3 | 22 ± 2 | 53 ± 5 |
Compound | CIS-MS (Ag+) | ESI-MS (SPE) | ESI-MS (“Dilute-and-Shoot”) |
---|---|---|---|
ME, % | ME, % | ME, % | |
GHRP-6 | 116 ± 13 | 112 ± 12 | 119 ± 22 |
GHRP-2 | 114 ± 11 | 108 ± 9 | 118 ± 22 |
Compound | tR, Min | ESI-MS | CIS-MS | ||||||
---|---|---|---|---|---|---|---|---|---|
Tube Lens, V | Q1, m/z | Q3, m/z | CE, eV | Tube Lens, V | Q1, m/z | Q3, m/z | CE, eV | ||
DSIP | 2.82 | 81 | [M+2H]2+ 389.0 | 159.0 | 31 | 72 | [M+Ag]+ 955.0 | 159.0 | 43 |
171.0 | 29 | 171.0 | 38 | ||||||
255.0 | 22 | 255.0 | 34 | ||||||
GHRP-2 | 3.24 | 70 | [M+2H]2+ 409.7 | 170.1 | 34 | 88 | [M+Ag]+ 924.0 | 170.1 | 57 |
269.1 | 15 | 269.1 | 52 | ||||||
550.2 | 10 | 550.2 | 61 | ||||||
GHRP-6 | 3.35 | 76 | [M+2H]2+ 437.2 | 248.0 | 32 | 81 | [M+Ag]+ 993.0 | 248.0 | 58 |
324.0 | 28 | 324.0 | 50 | ||||||
129.1 | 23 | 129.1 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temerdashev, A.; Gashimova, E.; Azaryan, A.; Feng, Y.-Q.; Atapattu, S.N. Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study. Separations 2024, 11, 155. https://doi.org/10.3390/separations11050155
Temerdashev A, Gashimova E, Azaryan A, Feng Y-Q, Atapattu SN. Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study. Separations. 2024; 11(5):155. https://doi.org/10.3390/separations11050155
Chicago/Turabian StyleTemerdashev, Azamat, Elina Gashimova, Alice Azaryan, Yu-Qi Feng, and Sanka N. Atapattu. 2024. "Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study" Separations 11, no. 5: 155. https://doi.org/10.3390/separations11050155
APA StyleTemerdashev, A., Gashimova, E., Azaryan, A., Feng, Y.-Q., & Atapattu, S. N. (2024). Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study. Separations, 11(5), 155. https://doi.org/10.3390/separations11050155