Clinical Diagnosis of COVID-19. A Multivariate Logistic Regression Analysis of Symptoms of COVID-19 at Presentation
Abstract
Introduction
Methods
Data Source
Diagnosis by RT-PCR
Data Analysis
Predictive Models
Results
Data Description
Clinical Features Associated with COVID-19
Logistic Regression Predictive Model
Discussion
Conclusions
Authors’ Contributions Statement
Conflicts of Interest
Supplementary Material
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Novel Coronavirus (2019-nCoV) Situation Report—12. 1 Februar 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200201-sitrep-12-ncov.pdf?sfvrsn=273c5d35_2 (accessed on 4 April 2020).
- Johns Hopkins Coronavirus Resource Center. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online: https://coronavirus.jhu.edu/map.html (accessed on 5 May 2020).
- Ali, I.; Ali, S. Why may COVID-19 overwhelm low-income countries like Pakistan? Disaster Med. Public Health Prep. 2020, 16, 316–320. [Google Scholar] [CrossRef]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 Cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef]
- Xie, J.; Ding, C.; Li, J.; Wang, Y.; Guo, H.; Lu, Z.; Wang, J.; Zheng, C.; Jin, T.; Gao, Y.; et al. Characteristics of patients with coronavirus disease (COVID-19) confirmed using an IgM-IgG antibody test. J. Med. Virol. 2020, 92, 2004–2010. [Google Scholar] [CrossRef]
- Kokkinakis, I.; Selby, K.; Favrat, B.; Genton, B.; Cornuz, J. COVID-19 diagnosis: Clinical recommendations and performance of nasopharyngeal swab-PCR. Rev. Med. Suisse 2020, 16, 699–701. [Google Scholar]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Espejo, A.P.; Akgun, Y.; Al Mana, A.F.; Tjendra, Y.; Millan, N.C.; Gomez-Fernandez, C.; Cray, C. Review of current advances in serologic testing for COVID-19. Am. J. Clin. Pathol. 2020, 154, 293–304. [Google Scholar] [CrossRef]
- Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Spijker, R.; Taylor-Phillips, S.; Adriano, A.; Beese, S.; Dretzke, J.; di Ruffano, L.F.; et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst. Rev. 2020, 2020, CD013652. [Google Scholar] [CrossRef]
- Popov, G.T.; Baymakova, M.; Vaseva, V.; Kundurzhiev, T.; Mutafchiyski, V. Clinical characteristics of hospitalized patients with COVID-19 in Sofia, Bulgaria. Vector-Borne Zoonotic Dis. 2020, 20, 910–915. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Place, S.; Van Laethem, Y.; Cabaraux, P.; Mat, Q.; Hans, S. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J. Intern. Med. 2020, 288, 335–344. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Yang, R.; Gui, X.; Xiong, Y. Comparison of clinical characteristics of patients with asymptomatic vs symptomatic coronavirus disease 2019 in Wuhan, China. JAMA Netw. Open 2020, 3, e2010182. [Google Scholar] [CrossRef]
- Mehta, N.S.; Mytton, O.T.; Mullins, E.W.S.; Fowler, T.A.; Falconer, C.L.; Murphy, O.B.; Langenberg, C.; Jayatunga, W.J.P.; Eddy, D.H.; Nguyen-Van-Tam, J.S. SARS-CoV-2 (COVID-19): What do we know about children? A systematic review. Clin. Infect. Dis. 2020, 71, 2469–2479. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.; Lin, R.; Han, K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J. Infect. 2020, 80, e14–e18. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tian, J.; Yang, F.; Lv, L.; Yu, J.; Sun, G.; Ma, Y.; Yang, X.; Ding, J. Clinical characteristics of 225 patients with COVID-19 in a tertiary Hospital near Wuhan, China. J. Clin. Virol. 2020, 127, 104363. [Google Scholar] [CrossRef]
- Datos Argentina—Casos COVID-19. 2021. Available online: https://datos.gob.ar/dataset/salud-covid-19-casos-registrados-republica-argentina/archivo/salud_fd657d02-a33a-498b-a91b-2ef1a68b8d16 (accessed on 19 May 2021).
- InfoLEG—Ministerio de Justicia y Derechos Humanos—Argentina. Derecho de acceso a la información publica. Ley 27275. Objeto. Excepciones. Alcances. 2021. Available online: http://servicios.infoleg.gob.ar/infolegInternet/anexos/265000-269999/265949/norma.htm (accessed on 19 May 2021).
- Argentina.gob.ar. Proteccion de los datos personales. Ley 25.326. Available online: https://www.argentina.gob.ar/normativa/nacional/ley-25326-64790/actualizacion (accessed on 19 May 2021).
- Chang, T.-H.; Wu, J.-L.; Chang, L.-Y. Clinical characteristics and diagnostic challenges of pediatric COVID-19: A systematic review and meta-analysis. J. Formos. Med Assoc. 2020, 119, 982–989. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Tuszynski, J. Package 'caTools'. 2014. [Google Scholar]
- Chongsuvivatwong, V. epiDisplay: Epidemiological Data Display Package. 2018. [Google Scholar]
- Wu, Y.-C.; Chen, C.-S.; Chan, Y.-J. The outbreak of COVID-19: An overview. J. Chin. Med. Assoc. JCMA 2020, 83, 217–220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Zayet, S.; Klopfenstein, T.; Mercier, J.; Kadiane-Oussou, N.J.; Wah, L.L.C.; Royer, P.-Y.; Toko, L.; Gendrin, V. Contribution of anosmia and dysgeusia for diagnostic of COVID-19 in outpatients. Infection 2020, 49, 361–365. [Google Scholar] [CrossRef]
- Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019. JAMA Neurol. 2020, 77, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; Valdes, A.M.; Freidin, M.B.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Ganesh, S.; Varsavsky, T.; Cardoso, M.J.; El-Sayed Moustafa, J.S.; et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 2020, 26, 1037–1040. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Han, H.; Liu, F.; Lv, Z.; Wu, K.; Liu, Y.; Feng, Y.; Zhu, C. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin. Chim. Acta 2020, 505, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Salud Argentina. Boletín integral de vigilancia. Edición semanal. 499. 2020. Available online: https://www.argentina.gob.ar/sites/default/files/biv_499_se23.pdf (accessed on 7 July 2020).
- Woloshin, S.; Patel, N.; Kesselheim, A.S. False negative tests for SARS-CoV-2 infection—Challenges and implications. N. Engl. J. Med. 2020, 383, e38. [Google Scholar] [CrossRef]




| Total Population | Infected Population | Ratio Between Infected Population and Total Population | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0–17 Years (n = 10,653) | 18–44 Years (n = 28,909) | 45–64 Years (n = 14,712) | 65–103 Years (n = 13,044) | p Value | 0–17 Years (n = 842) | 18–44 Years (n = 4336) | 45–64 Years (n = 1880) | 65–103 Years (n = 910) | p Value | 0–17 Years | 18–44 Years | 45–64 Years | 65–103 Years | |
| Sex (male) | 5630 | 13,480 | 7268 | 6670 | <0.001 | 412 | 2118 | 966 | 466 | 0.220 | 0.07 | 0.16 | 0.13 | 0.07 |
| (52.8%) | (46.7%) | (49.4%) | (51.3%) | (48.9%) | (48.4%) | (51.4%) | (51.2%) | |||||||
| Comorbidities | ||||||||||||||
| Hypertension | 23 | 865 | 3120 | 6071 | <0.001 | 0 | 95 | 341 | 420 | <0.001 | 0.00 | 0.11 | 0.11 | 0.07 |
| (0.2%) | (2.9%) | (21.2%) | (46.5%) | (0%) | (2.1%) | (18.1%) | (46.1%) | |||||||
| Heart failure | 64 | 121 | 586 | 2457 | <0.001 | 4 | 10 | 34 | 120 | <0.001 | 0.06 | 0.08 | 0.06 | 0.05 |
| (0.6%) | (0.4%) | (3.9%) | (18.8%) | (0.4%) | (0.2%) | (1.8%) | (13.1%) | |||||||
| Diabetes | 38 | 620 | 1673 | 2441 | <0.001 | 0 | 100 | 216 | 152 | <0.001 | 0.00 | 0.16 | 0.13 | 0.06 |
| (0.3%) | (2.1%) | (11.3%) | (18.7%) | (0%) | (2.3%) | (11.4%) | (16.7%) | |||||||
| Neurological disease | 296 (2.7%) | 400 (1.3%) | 460 (3.1%) | 1972 (15.1%) | <0.001 | 11 (1.3%) | 27 (0.6%) | 35 (1.8%) | 125 (13.7%) | <0.001 | 0.04 | 0.07 | 0.08 | 0.06 |
| Chronic obstructive pulmonary disease | 46 (0.4%) | 167 (0.5%) | 864 (5.8%) | 1847 (14.1%) | <0.001 | 1 (0.1%) | 8 (0.1%) | 32 (1.7%) | 90 (9.8%) | <0.001 | 0.02 | 0.05 | 0.04 | 0.05 |
| Cancer | 179 (1.6%) | 328 (1.1%) | 791 (5.3%) | 1272 (9.7%) | <0.001 | 5 (0.5%) | 13 (0.2%) | 49 (2.6%) | 50 (5.4%) | <0.001 | 0.03 | 0.04 | 0.06 | 0.04 |
| Obesity | 71 (0.6%) | 923 (3.1%) | 1274 (8.6%) | 1190 (9.1%) | <0.001 | 5 (0.5%) | 137 (3.1%) | 13 9(7.3%) | 72 (7.9%) | <0.001 | 0.07 | 0.15 | 0.11 | 0.06 |
| Renal insufficiency | 39 (0.3%) | 254 (0.8%) | 470 (3.1%) | 966 (7.4%) | <0.001 | 1 (0.1%) | 11 (0.2%) | 29 (1.5%) | 54 (5.9%) | <0.001 | 0.03 | 0.04 | 0.06 | 0.06 |
| Asthma | 529 (4.9%) | 1329 (4.5%) | 616 (4.1%) | 411 (3.1%) | <0.001 | 29 (3.4%) | 141 (3.2%) | 52 (2.7%) | 29 (3.1%) | 0.729 | 0.05 | 0.11 | 0.08 | 0.07 |
| Immune disease | 164 (1.5%) | 669 (2.3%) | 606 (4.1%) | 401 (3%) | <0.001 | 2 (0.2%) | 38 (0.8%) | 32 (1.7%) | 16 (1.7%) | 0.001 | 0.01 | 0.06 | 0.05 | 0.04 |
| Chronic liver disease | 9 (0.1%) | 87 (0.3%) | 197 (1.3%) | 190 (1.4%) | <0.001 | 0(0%) | 6 (0.1%) | 17 (0.9%) | 7 (0.7%) | <0.001 | 0.00 | 0.07 | 0.09 | 0.04 |
| Previous bronchitis | 643 (6%) | 76 (0.2%) | 83 (0.5%) | 104 (0.7%) | <0.001 | 17 (2%) | 1 (0.1%) | 8 (0.4%) | 6 (0.6%) | <0.001 | 0.03 | 0.01 | 0.10 | 0.06 |
| Tuberculosis | 27 (0.2%) | 227 (0.7%) | 152 (1%) | 92 (0.7%) | <0.001 | 4 (0.4%) | 50 (1.1%) | 23 (1.2%) | 7 (0.7%) | 0.227 | 0.15 | 0.22 | 0.15 | 0.08 |
| Symptoms | ||||||||||||||
| High fever | 8863 (83.2%) | 18,260 (63.2%) | 9067 (61.6%) | 7571 (58.0%) | <0.001 | 508 (60.3%) | 2371 (54.7%) | 1092 (58.1%) | 588 (64.6%) | <0.001 | 0.06 | 0.13 | 0.12 | 0.08 |
| Cough | 4967 (46.7%) | 15,272 (52.8%) | 8288 (56.3%) | 6971 (53.4%) | <0.001 | 411 (48.8%) | 2431 (56.1%) | 1171 (62.3%) | 584 (64.2%) | <0.001 | 0.08 | 0.16 | 0.14 | 0.08 |
| Odynophagia | 4816 (42.5%) | 15,627 (54.1%) | 6220 (42.3%) | 2066 (15.8%) | <0.001 | 316 (37.5%) | 2099 (48.4%) | 780 (41.5%) | 223 (24.5%) | <0.001 | 0.07 | 0.13 | 0.13 | 0.11 |
| Headache | 1643 (15.5%) | 10,893 (37.7%) | 4213 (28.6%) | 1143 (8.8%) | <0.001 | 227 (27.0%) | 1903 (43.9%) | 637 (33.9%) | 104 (11.4%) | <0.001 | 0.14 | 0.17 | 0.15 | 0.09 |
| Malaise | 1926 (18.1%) | 11,312 (39.1%) | 5790 (39.4%) | 4701 (36.0%) | <0.001 | 118 (14%) | 1304 (30.1%) | 635 (33.8%) | 283 (31.1%) | <0.001 | 0.06 | 0.12 | 0.11 | 0.06 |
| Anosmia | 105 (1.0%) | 1569 (5.4%) | 476 (3.2%) | 94 (0.7%) | <0.001 | 69 (8.2%) | 975 (22.5%) | 250 (13.3%) | 26 (2.9%) | <0.001 | 0.66 | 0.62 | 0.52 | 0.28 |
| Myalgia | 790 (7.4%) | 7835 (27.1%) | 3647 (24.8%) | 1431 (11.7%) | <0.001 | 68 (8.1%) | 991 (22.9%) | 429 (22.8%) | 114 (12.5%) | <0.001 | 0.09 | 0.13 | 0.12 | 0.08 |
| Low fever | 443 (4.2%) | 1507 (5.2%) | 645 (4.4%) | 528 (4.0%) | <0.001 | 66 (7.8%) | 396 (9.1%) | 178 (9.5%) | 48 (5.3%) | 0.001 | 0.15 | 0.26 | 0.28 | 0.09 |
| Diarrhea | 1221 (11.5%) | 3163 (10.9%) | 1537 (10.4) | 943 (7.2%) | <0.001 | 57 (6.8%) | 302 (7.0%) | 159 (8.5%) | 62 (6.8%) | 0.163 | 0.05 | 0.10 | 0.10 | 0.09 |
| Dysgeusia | 105 (1.0%) | 1290 (4.5%) | 408 (2.8%) | 86 (0.6%) | <0.001 | 46 (5.5) | 718 (16.6%) | 187 (9.9%) | 18 (2.0%) | <0.001 | 0.44 | 0.56 | 0.46 | 0.21 |
| Abdominal pain | 1015 (9.5%) | 2288 (7.9%) | 1185 (8.1%) | 931 (7.13%) | <0.001 | 45 (5.3%) | 178 (4.1%) | 94 (5.0%) | 46 (5.1%) | 0.203 | 0.04 | 0.08 | 0.08 | 0.05 |
| Tachypnea | 1349 (12.7%) | 3890 (13.5%) | 3310 (22.5%) | 5698 (43.7%) | <0.001 | 34 (4.0%) | 330 (7.6%) | 254 (13.5%) | 281 (30.9%) | <0.001 | 0.03 | 0.08 | 0.08 | 0.05 |
| Vomiting | 1286 (12.1%) | 1697 (5.9%) | 803 (5.5%) | 778 (6.0%) | <0.001 | 34 (4.0%) | 127 (2.9%) | 55 (2.9%) | 31 (3.4%) | 0.339 | 0.03 | 0.07 | 0.07 | 0.04 |
| Dyspnea | 943 (8.9%) | 3143 (10.9%) | 2624 (17.8%) | 4624 (35.4%) | <0.001 | 33 (3.9%) | 302 (7.0%) | 217 (11.5%) | 234 (25.7%) | <0.001 | 0.03 | 0.10 | 0.08 | 0.05 |
| Food refusal | 859 (8.1%) | 1352 (4.7%) | 818 (5.6%) | 1341 (10.3%) | <0.001 | 31 (3.7%) | 124 (2.9%) | 74 (3.9%) | 72 (7.9%) | <0.001 | 0.04 | 0.09 | 0.09 | 0.05 |
| Arthralgia | 432 (4.1%) | 5172 (17.9%) | 2578 (17.5%) | 1214 (9.3%) | <0.001 | 23 (2.7%) | 578 (13.3%) | 280 (14.9%) | 83 (9.1%) | <0.001 | 0.05 | 0.11 | 0.11 | 0.07 |
| Conjunctival injection | 315 (3.0%) | 1161 (4.0%) | 523 (3.6%) | 289 (2.2%) | <0.001 | 11 (1.3%) | 115 (2.7%) | 48 (2.6%) | 22 (2.4%) | 0.144 | 0.03 | 0.10 | 0.09 | 0.08 |
| Respiratory failure | 275 (2.6%) | 905 (3.1%) | 1133 (7.7%) | 2918 (22.4%) | <0.001 | 11 (1.3%) | 100 (2.3%) | 103 (5.5%) | 135 (14.8%) | <0.001 | 0.04 | 0.11 | 0.09 | 0.05 |
| Chest pain | 252 (2.4%) | 2472 (8.6%) | 1462 (9.9%) | 1084 (8.3%) | <0.001 | 10 (1.2%) | 218 (5.0%) | 131 (7.0%) | 55 (6.0%) | <0.001 | 0.04 | 0.09 | 0.09 | 0.05 |
| Irritability | 170 (1.6%) | 413 (1.4%) | 303 (2.1%) | 1029 (7.9%) | <0.001 | 8 (1.0%) | 35 (0.8%) | 19 (1.0%) | 35 (3.8%) | <0.001 | 0.05 | 0.08 | 0.06 | 0.03 |
| UAMB | 674 (6.3%) | 414 (1.4%) | 555 (3.8%) | 1626 (12.5%) | <0.001 | 7 (0.8%) | 19 (0.4%) | 26 (1.4%) | 60 (6.6%) | <0.001 | 0.01 | 0.05 | 0.05 | 0.04 |
| Seizures | 189 (1.7%) | 135 (0.5%) | 99 (0.7%) | 123 (0.9%) | <0.001 | 5 (0.6%) | 6 (0.1%) | 2 (0.1%) | 3 (0.3%) | 0.030 | 0.03 | 0.04 | 0.02 | 0.02 |
| Mental confusion | 63 (0.6%) | 173 (0.6%) | 209 (1.4%) | 984 (7.5%) | <0.001 | 2 (0.2%) | 13 (0.3%) | 11 (0.6%) | 32 (3.5%) | <0.001 | 0.03 | 0.08 | 0.05 | 0.03 |
| Pediatric (0–17 Years) | Young Adult (18–44 Years) | Adult (45–64 Years) | Elderly (65–103 Years) | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Variable | Sensitivity | Specificity | +LR | −LR | Sensitivity | Specificity | +LR | −LR | Sensitivity | Specificity | +LR | −LR | Sensitivity | Specificity | +LR | −LR |
| Anosmia | 8.2 (6.3, 10.1) | 99.6 (99.5, 99.8) | 22.3 (15.0, 33.2) | 0.92 (0.90, 0.94) | 22.5 (21.2, 23.7) | 97.6 (97.4, 97.8) | 9.3 (8.4, 10.3) | 0.79 (0.78, 0.81) | 13.3 (11.8, 14.8) | 98.2 (98.0, 98.4) | 7.5 (6.3, 9.0) | 0.88 (0.87, 0.90) | 2.9 (1.8, 3.9) | 99.4 (99.3, 99.6) | 5.1 (3.3, 8.0) | 0.98 (0.97, 0.99) |
| Dysgeusia | 5.5 (3.9, 7.1) | 99.4 (99.2, 99.6) | 9.1 (6.2, 13.3) | 0.95 (0.94, 0.97) | 16.6 (15.4, 17.7) | 97.7 (97.5, 97.9) | 7.1 (6.4, 7.9) | 0.85 (0.84, 0.87) | 9.9 (8.6, 11.2) | 98.3 (98.1, 98.5) | 5.8 (4.8, 7.0) | 0.92 (0.90, 0.93) | 2.0 (1.1, 2.9) | 99.4 (99.3, 99.6) | 3.5 (2.1, 5.9) | 0.99 (0.98, 0.99) |
| Low fever | 36.3 (33.6, 39.0) | 96.2 (95.8, 96.5) | 9.5 (8.4, 10.7) | 0.66 (0.63, 0.69) | 9.1 (8.3, 10.0) | 95.5 (95.2, 95.7) | 2.0 (1.8, 2.3) | 0.95 (0.94, 0.96) | 9.5 (8.1, 10.8) | 96.4 (96.0, 96.7) | 2.6 (2.2, 3.1) | 0.94 (0.93, 0.95) | 5.3 (3.8, 6.7) | 96.0 (95.7, 96.4) | 1.3 (1.0, 1.8) | 0.99 (0.97, 1.00) |
| Headache | 27.0 (23.9, 30.0) | 85.6 (84.9, 86.3) | 1.9 (1.7, 2.1) | 0.85 (0.82, 0.89) | 43.9 (42.4, 45.4) | 63.4 (62.8, 64.0) | 1.2 (1.1, 1.3) | 0.88 (0.86, 0.91) | 33.9 (31.7, 36.0) | 72.1 (71.4, 72.9 | 1.2 (1.1, 1.3) | 0.92 (0.89, 0.95) | 11.4 (9.4, 13.5) | 91.4 (90.9, 91.9) | 1.3 (1.1, 1.6) | 0.97 (0.95, 0.99) |
| Malaise | 14.0 (11.6, 16.4) | 81.6 (80.8, 82.3) | 0.8 (0.6, 0.9) | 1.05 (1.02, 1.08) | 30.1 (28.7, 31.4) | 59.3 (58.7, 59.9) | 0.7 (0.7, 0.8) | 1.18 (1.15, 1.21) | 33.8 (31.6, 35.9) | 59.8 (59.0, 0.61) | 0.8 (0.7, 0.9) | 1.11 (1.07, 1.15) | 31.1 (28.1, 34.1) | 63.6 (62.7, 64.4) | 0.9 (0.8, 0.9) | 1.08 (1.04, 1.13) |
| Odynophagia | 37.5 (34.2, 40.9) | 54.1 (53.1, 55.1) | 0.8 (0.7, 0.9) | 1.15 (1.09, 1.22) | 48.4 (46.9, 49.9) | 44.9 (44.3, 45.6) | 0.88 (0.85, 0.91) | 1.15 (1.11, 1.19) | 41.5 (39.3, 43.7) | 57.6 (56.8, 58.4) | 1.0 (0.9, 1.0) | 1.02 (0.98, 1.06) | 24.5 (21.7, 27.3) | 84.8 (84.2, 85.4) | 1.6 (1.4, 1.8) | 0.89 (0.86, 0.92) |
| Cough | 48.8 (45.4, 52.3) | 53.6 (52.6, 54.6) | 1.1 (1.0, 1.2) | 0.96 (0.89, 1.02) | 56.1 (54.6, 57.5) | 47.7 (47.1, 48.4) | 1.1 (1.0, 1.2) | 0.92 (0.89, 0.95) | 62.3 (60.0, 64.5) | 44.5 (43.7, 45.4) | 1.1 (1.0, 1.2) | 0.85 (0.80, 0.90) | 64.2 (61.0, 67.3) | 47.4 (46.5, 48.2) | 1.2 (1.1, 1.3) | 0.76 (0.69, 0.83) |
| Variable | Estimate | Std Error | Odds Ratio | p Value |
|---|---|---|---|---|
| Anosmia | 2.24000 | 0.07 | 173.78 | <0.001 |
| Headache | 1.64000 | 0.15 | 43.65 | <0.001 |
| Dysgeusia | 1.27000 | 0.08 | 18.62 | <0.001 |
| Cough | 1.07000 | 0.12 | 11.75 | <0.001 |
| Low fever | 0.99900 | 0.07 | 9.98 | <0.001 |
| Dysgeusia: Tachypnea | 0.74300 | 0.22 | 5.53 | <0.001 |
| Anosmia: Conjunctival injection | 0.73600 | 0.34 | 5.45 | 0.030 |
| Dyspnea: Conjunctival injection | 0.67700 | 0.22 | 4.75 | 0.002 |
| Diarrhea: Chest pain | 0.60300 | 0.18 | 4.01 | <0.001 |
| Myalgia | 0.43800 | 0.06 | 2.74 | <0.001 |
| High fever: Tachypnea | 0.41900 | 0.09 | 2.62 | <0.001 |
| Food refusal | 0.26900 | 0.09 | 1.86 | 0.003 |
| Arthralgia | 0.26800 | 0.07 | 1.85 | <0.001 |
| High fever | 0.24500 | 0.05 | 1.76 | <0.001 |
| Malaise | 0.23300 | 0.05 | 1.71 | <0.001 |
| Dyspnea | 0.18100 | 0.07 | 1.52 | 0.008 |
| Diarrhea | 0.14800 | 0.08 | 1.41 | 0.051 |
| Conjunctival injection | 0.08890 | 0.11 | 1.23 | 0.423 |
| Age | 0.03420 | 0.01 | 1.08 | <0.001 |
| Age: Sex (M) | 0.01810 | 0.00 | 1.04 | <0.001 |
| Chest pain | 0.01540 | 0.08 | 1.04 | 0.845 |
| Age : NS | 0.01490 | 0.00 | 1.03 | <0.001 |
| Age2: Headache | 0.00026 | 0.00 | 1.00 | 0.002 |
| Age2: Cough | 0.00015 | 0.00 | 1.00 | 0.009 |
| Age: Age2 | 0.00001 | 0.00 | 1.00 | <0.001 |
| Age2: NS | −0.00012 | 0.00 | 1.00 | <0.001 |
| Age2: Sex (M) | −0.00020 | 0.00 | 1.00 | <0.001 |
| Age2 | −0.00113 | 0.00 | 1.00 | <0.001 |
| Age:Cough | −0.01410 | 0.01 | 0.97 | 0.009 |
| Age:Headache | −0.03390 | 0.01 | 0.92 | <0.001 |
| Sex (M) | −0.18100 | 0.10 | 0.66 | 0.066 |
| Tachypnea | −0.33600 | 0.09 | 0.46 | <0.001 |
| Seizures | −0.58700 | 0.29 | 0.26 | 0.041 |
| NS | −0.79500 | 0.06 | 0.16 | <0.001 |
| (Intercept) | −2.14000 | 0.12 | 0.01 | <0.001 |
© GERMS 2021.
Share and Cite
Fleitas, P.E.; Paz, J.A.; Simoy, M.I.; Vargas, C.; Cimino, R.O.; Krolewiecki, A.J.; Aparicio, J.P. Clinical Diagnosis of COVID-19. A Multivariate Logistic Regression Analysis of Symptoms of COVID-19 at Presentation. GERMS 2021, 11, 221-237. https://doi.org/10.18683/germs.2021.1259
Fleitas PE, Paz JA, Simoy MI, Vargas C, Cimino RO, Krolewiecki AJ, Aparicio JP. Clinical Diagnosis of COVID-19. A Multivariate Logistic Regression Analysis of Symptoms of COVID-19 at Presentation. GERMS. 2021; 11(2):221-237. https://doi.org/10.18683/germs.2021.1259
Chicago/Turabian StyleFleitas, Pedro E., Jorge A. Paz, Mario I. Simoy, Carlos Vargas, Rubén O. Cimino, Alejandro J. Krolewiecki, and Juan P. Aparicio. 2021. "Clinical Diagnosis of COVID-19. A Multivariate Logistic Regression Analysis of Symptoms of COVID-19 at Presentation" GERMS 11, no. 2: 221-237. https://doi.org/10.18683/germs.2021.1259
APA StyleFleitas, P. E., Paz, J. A., Simoy, M. I., Vargas, C., Cimino, R. O., Krolewiecki, A. J., & Aparicio, J. P. (2021). Clinical Diagnosis of COVID-19. A Multivariate Logistic Regression Analysis of Symptoms of COVID-19 at Presentation. GERMS, 11(2), 221-237. https://doi.org/10.18683/germs.2021.1259
