Sustainable Extraction of Chitin from Spent Pupal Shell of Black Soldier Fly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Microorganism and Cultivation
2.3. Chitin Extraction by Biological Method
2.4. Decoloration
2.5. Deacetylation
2.6. Determination of the Degree of Deacetylation (DDA)
2.7. X-ray Diffraction (XRD) Analysis
2.8. Fourier Transformation Infrared Spectroscopy (FTIR)
2.9. Scanning Electron Microscopy (SEM)
2.10. Metal Content Analysis
2.11. Antimicrobial Activity Assay
3. Results
3.1. Extract Chitin by Fermentation
3.2. FTIR Analysis
3.3. XRD Analysis
3.4. SEM
3.5. Metal Content
3.6. Antimicrobial Effect of BSF Chitosan
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, S.; Dhillon, G.S. Recent trends in biological extraction of chitin from marine shell wastes: A review. Crit. Rev. Biotechnol. 2015, 35, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Arbia, W.; Arbia, L.; Adour, L.; Amrane, A. Chitin extraction from crustacean shells using biological methods—A review. Food Tech. Biotechnol. 2013, 51, 12–25. [Google Scholar]
- Mincea, M.; Negrulescu, A.; Ostafe, V. Preparation, modification, and applications of chitin nanowhiskers: A review. Rev. Adv. Mater. Sci. 2012, 30, 225–242. [Google Scholar]
- Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Hamed, I.; Özogul, F.; Regenstein, J.M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 2016, 48, 40–50. [Google Scholar] [CrossRef]
- Philibert, T.; Lee, B.H.; Fabien, N. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314–1337. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, C.; Revathi, N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 2020, 105, 17–42. [Google Scholar] [CrossRef]
- D’Hondt, E.; Soetemans, L.; Bastiaens, L.; Maesen, M.; Jespers, V.; Bosch, B.V.D.; Voorspoels, S.; Elst, K. Simplified determination of the content and average degree of acetylation of chitin in crude black soldier fly larvae samples. Carbohydr. Res. 2020, 488, 107899. [Google Scholar] [CrossRef]
- Bulak, P.; Polakowski, C.; Nowak, K.; Wako, A.; Wicek, D.; Bieganowski, A. Hermetia illucens as a new and promising species for use in entomoremediation. Sci. Total Environ. 2018, 633, 912–919. [Google Scholar] [CrossRef]
- Mertenat, A.; Diener, S.; Zurbrügg, C. Black Soldier Fly biowaste treatment–Assessment of global warming potential. Waste Manag. 2019, 84, 173–181. [Google Scholar] [CrossRef]
- Yuan, Y.; Chesnutt, B.M.; Haggard, W.O.; Bumgardner, J.D. Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 2011, 4, 1399–1416. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Haga, A.; Sekiguchi, H.; Hirano, S. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int. J. Biol. Macromol. 2000, 27, 99–105. [Google Scholar] [CrossRef]
- Kaya, M.; Baran, T.; Menteş, A.; Asaroglu, M.; Sezen, G.; Tozak, K.O. Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food Biophys. 2014, 9, 145–157. [Google Scholar] [CrossRef]
- Waśko, A.; Bulak, P.; Polak-Berecka, M.; Nowak, K.; Polakowski, C.; Bieganowski, A. The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int. J. Biol. Macromol. 2016, 92, 316–320. [Google Scholar] [CrossRef]
- Purkayastha, D.; Sarkar, S. Physicochemical structure analysis of chitin extracted from pupa exuviae and dead imago of wild black soldier fly (Hermetia illucens). J. Polym. Environ. 2020, 28, 445–457. [Google Scholar] [CrossRef]
- Cutting, S.M. Bacillus probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef]
- Nithya, V.; Halami, P.M. Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Ann. Microbiol. 2013, 63, 129–137. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Valadez-Blanco, R.; Salas-Coronado, R.; Sustaita-Rivera, F.; Hernández-Carlos, B.; García-Ortega, S.; Santos-Sánchez, N.F. Effect of nitrogen fertilization and Bacillus licheniformis biofertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Sci. Hortic. 2016, 201, 338–345. [Google Scholar] [CrossRef]
- Liu, P.; Liu, S.; Guo, N.; Mao, X.; Lin, H.; Xue, C.; Wei, D. Cofermentation of Bacillus licheniformis and Gluconobacter oxydans for chitin extraction from shrimp waste. Biochem. Eng. J. 2014, 91, 10–15. [Google Scholar] [CrossRef]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Zheng, L.Y.; Zhu, J.F. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym. 2003, 54, 527–530. [Google Scholar] [CrossRef]
- Costa, E.M.; Silva, S.; Pina, C.; Tavaria, F.K.; Pintado, M.M. Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Anaerobe 2012, 18, 305–309. [Google Scholar] [CrossRef] [PubMed]
Protein (%) | Ash (%) | DP (%) | DM (%) | DDA (% dt) | |
---|---|---|---|---|---|
Pupal shell | 62.10 | 8.21 | ------- | ------- | ------- |
Biological fermentation | 7.51 | 1.48 | 87.9 | 97.2 | 81.5 |
BSF Chitosan (PPM) | Guide Requirement (PPM) | Limit of Quantification (PPM) | |
---|---|---|---|
arsenic (As) | 0.08 | 12 | 0.01 |
lead (Pb) | 2.89 | 50 | 0.01 |
cadmium (Cd) | 0.40 | 10 | 0.01 |
mercury (Hg) | N.D. | 0.5 | 0.01 |
Test Component | Bacterial Strain | MBC (mg/mL) | MIC (mg/mL) |
---|---|---|---|
BSF Chitosan | Staphylococcus aureus (ATCC 25923) | 1.25 | 0.60 |
BSF Chitosan | Pseudomonas aeruginosa (ATCC 27853) | 0.16 | 0.04 |
Sigma-MMW Chitosan (190 kDa~310 kDa) | Pseudomonas aeruginosa (ATCC 27853) | 0.35 | 0.13 |
Sigma-LMW Chitosan (50 kDa~190 kDa) | Pseudomonas aeruginosa (ATCC 27853) | 0.20 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-S.; Liang, S.-H.; Lai, W.-L.; Lee, J.-X.; Wang, Y.-P.; Liu, Y.-T.; Wang, S.-H.; Lee, M.-H. Sustainable Extraction of Chitin from Spent Pupal Shell of Black Soldier Fly. Processes 2021, 9, 976. https://doi.org/10.3390/pr9060976
Lin Y-S, Liang S-H, Lai W-L, Lee J-X, Wang Y-P, Liu Y-T, Wang S-H, Lee M-H. Sustainable Extraction of Chitin from Spent Pupal Shell of Black Soldier Fly. Processes. 2021; 9(6):976. https://doi.org/10.3390/pr9060976
Chicago/Turabian StyleLin, Yin-Shen, Shih-Hsiang Liang, Wen-Lin Lai, Ja-Xin Lee, Ya-Peng Wang, Yi-Tsz Liu, Szu-Han Wang, and Meng-Hwan Lee. 2021. "Sustainable Extraction of Chitin from Spent Pupal Shell of Black Soldier Fly" Processes 9, no. 6: 976. https://doi.org/10.3390/pr9060976