Fatty Acids, Tocopherols, and Phytosterol Composition of Seed Oil and Phenolic Compounds and Antioxidant Activity of Fresh Seeds from Three Dalbergia Species Grown in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Oil Extraction
2.3. Analysis of Fatty Acid, Tocopherol, and Sterol Compositions
2.4. Determination of Total Phenolic Compounds
2.5. Determination of Antioxidant Activity with the DPPH Free Radical Scavenging Method
2.6. Statistical Analyses
3. Results and Discussion
3.1. Oil Content
3.2. Fatty Acid, Tocopherol, and Sterol Compositions
3.3. Tocopherol Composition
3.4. Sterol Composition
3.5. Content of Total Phenolic Compounds
3.6. Antioxidant Activity with the DPPH Free Radical Scavenging Method
3.7. Composition of Phenolic Fraction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Merarchi, M.; Sethi, G.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Ahn, K.S. Role of Natural Products in Modulating Histone Deacetylases in Cancer. Molecules 2019, 24, 1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, A.; Munir, S.; Mabkhot, Y.; Badshah, S.L. Bioactivity Profile of the Diterpene Isosteviol and its Derivatives. Molecules 2019, 24, 678. [Google Scholar] [CrossRef] [Green Version]
- Soccio, M.; Laus, M.N.; Flagella, Z.; Pastore, D. Assessment of Antioxidant Capacity and Putative Healthy Effects of Natural Plant Products Using Soybean Lipoxygenase-Based Methods. An Overview. Molecules 2018, 23, 3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed Eliaser, E.; Hui Ho, J.; Mohd Hashim, N.; Rukayadi, Y.; Lian Ee, G.C.; Abdull Razis, A.F. Phytochemical Constituents and Biological Activities of Melicope lunu-ankenda. Molecules 2018, 23, 2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aye, M.M.; Aung, H.T.; Sein, M.M.; Armijos, C. A Review on the Phytochemistry, Medicinal Properties and Pharmacological Activities of 15 Selected Myanmar Medicinal Plants. Molecules 2019, 24, 293. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.N.V.; Nguyen, T. An Overview of the Use of Plants and Animals in Traditional Medicine Systems in Viet Nam; TRAFFIC Southeast Asia, Greater Mekong Programme: Ha Noi, Vietnam, 2008. [Google Scholar]
- Nguyen, Q.V.; Nguyen, V.B.; Eun, J.B.; Wang, S.L.; Nguyen, D.H.; Tran, T.N.; Nguyen, A.D. Anti-oxidant and antidiabetic effect of some medicinal plants belong to Terminalia species collected in Dak Lak Province, Vietnam. Res. Chem. Intermed. 2016, 42, 5859–5871. [Google Scholar] [CrossRef]
- Nguyen, Q.V.; Nguyen, N.H.; Wang, S.L.; Nguyen, V.B.; Nguyen, A.D. Free radical scavenging and antidiabetic activities of Euonymus laxiflorus Champ extract. Res. Chem. Intermed. 2017, 43, 5615–5624. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Nguyen, Q.V.; Nguyen, A.D.; Wang, S.L. Porcine pancreatic α-amylase inhibitors from Euonymus laxiflorus Champ. Res. Chem. Intermed. 2017, 43, 259–269. [Google Scholar] [CrossRef]
- Thang, T.D.; Kuo, P.-C.; Hwang, T.-L.; Yang, M.-L.; Ngoc, N.T.B.; Han, T.T.N.; Lin, C.-W.; Wu, T.-S. Triterpenoids and Steroids from Ganoderma mastoporum and Their Inhibitory Effects on Superoxide Anion Generation and Elastase Release. Molecules 2013, 18, 14285–14292. [Google Scholar] [CrossRef] [Green Version]
- The Plant List. Available online: http://www.theplantlist.org/tpl1.1/search?q=dalbergia (accessed on 7 May 2019).
- Sun, S.; Zeng, X.; Zhang, D.; Guo, S. Diverse fungi associated with partial irregular heartwood of Dalbergia odorifera. Sci. Rep. 2015, 5, 8464. [Google Scholar] [CrossRef]
- Choi, C.W.; Choi, Y.H.; Cha, M.-R.; Yoo, D.S.; Kim, Y.S.; Yon, G.H.; Hong, K.S.; Kim, Y.H.; Ryu, S.Y. Yeast α-Glucosidase Inhibition by Isoflavones from Plants of Leguminosae as an in Vitro Alternative to Acarbose. J. Agric. Food Chem. 2010, 58, 9988–9993. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-S.; Jeong, G.-S. Arylbenzofuran isolated from Dalbergia odorifera suppresses lipopolysaccharide-induced mouse BV2 microglial cell activation, which protects mouse hippocampal HT22 cells death from neuroinflammation-mediated toxicity. Eur. J. Pharmacol. 2014, 728, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.B.; Wang, S.-L.; Nhan, N.T.; Nguyen, T.H.; Nguyen, N.P.D.; Nghi, D.H.; Cuong, N.M. New Records of Potent In-Vitro Antidiabetic Properties of Dalbergia tonkinensis Heartwood and the Bioactivity-Guided Isolation of Active Compounds. Molecules 2018, 23, 1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valette, N.; Perrot, T.; Sormani, R.; Gelhaye, E.; Morel-Rouhier, M. Antifungal activities of wood extractives. Fungal Biol. Rev. 2017, 31, 113–123. [Google Scholar] [CrossRef]
- Zhao, X.; Mei, W.; Gong, M.; Zuo, W.; Bai, H.; Dai, H. Antibacterial Activity of the Flavonoids from Dalbergia odorifera on Ralstonia solanacearum. Molecules 2011, 16, 9775–9782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninh, T.S.; Masataka, O.; Naoki, H.; Daiki, Y.; Yu, K.; Fumi, T.; Kenichi, H.; Nguyen, M.C.; Yoshiyasu, F. Antimicrobial Activity of the Constituents of Dalbergia tonkinensis and Structural-Bioactive Highlights. Nat. Prod. Commun. 2018, 13, 157–161. [Google Scholar]
- Ninh, T.S.; Kenichi, H.; Nguyen, M.C.; Yoshiyasu, F. Two New Carboxyethylflavanones from the Heartwood of Dalbergia tonkinensis and Their Antimicrobial Activities. Nat. Prod. Commun. 2017, 12, 1721–1723. [Google Scholar]
- Cuong, N.M.; Nhan, N.T.; Son, N.T.; Nghi, D.H.; Cuong, T.D. Daltonkins A and B, Two New Carboxyethylflavanones from the Heartwood of Dalbergia tonkinensis. Bull. Korean Chem. Soc. 2017, 38, 1511–1514. [Google Scholar] [CrossRef]
- Ngu, T.N.; Ninh, T.S.; To, D.C.; Nguyen, P.D.N.; Pham, N.K.; Tran, T.H.; Nguyen, M.C. Further study on chemical constituents from the heartwood of Dalbergia tonkinensis collected in Daklak province. Vietnam J. Sci. Technol. 2018, 56, 252–258. [Google Scholar]
- Augustus, G.D.P.S.; Seiler, G.J. Promising oil producing seed species of Western Ghats (Tamil Nadu, India). Ind. Crop. Prod. 2001, 13, 93–100. [Google Scholar] [CrossRef]
- Badami, R.C.; Shivamurthy, S.C.; Joshi, M.S.; Patil, K.B.; Subba Rao, Y.V.; Sastri, G.S.R.; Viswanatha Rao, G.K. Characterisation of fifteen varieties of genotype peanuts for yield, oil content and fatty acid composition. J. Oil Technol. Assoc. India 1979, 11, 85–87. [Google Scholar]
- Kittur, M.H.; Mahajanshetti, C.S.; Lakshminarayana, G. Characteristcs and composition of some convolvulaceae and Leguminosae seeds and the oils. Fat Sci. Technol. 1987, 89, 269–270. [Google Scholar]
- Lianhe, Z.; Li, W.; Guo, X.; Li, X. Chen, Essential oil composition from the seeds of Dalbergia odorifera T. Chen grown in Hainan, China. J. Food, Agric. Environ. 2011, 9, 26–28. [Google Scholar]
- Lianhe, Z.; Li, W.; Xing, H.; Zhengxing, C. Antioxidant activities of seed extracts from Dalbergia odorifera T. Chen. Afr. J. Biotechnol. 2011, 10, 11658–11667. [Google Scholar]
- Lianhe, Z.; Xing, H.; Li, W.; Zhengxing, C. Physicochemical Properties, Chemical Composition and Antioxidant Activity of Dalbergia odorifera T. Chen Seed Oil. J. Am. Oil Chem. Soc. 2012, 89, 883–890. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Nguyen, Q.V.; Nguyen, A.D.; Wang, S.-L. Screening and evaluation of α-glucosidase inhibitors from indigenous medicinal plants in Dak Lak Province, Vietnam. Res. Chem. Intermed. 2017, 43, 3599–3612. [Google Scholar] [CrossRef]
- WCMC. Dalbergia odorifera. The IUCN Red List of Threatened Species. 1998. Available online: http://www.iucnredlist.org/details/32398/0 (accessed on 8 December 2017).
- Matthäus, B.; Vosmann, K.; Long, P.Q.; Aitzetmüller, K. Fatty acid and Tocopherol Composition of Vietnamese Oilseeds. J. Am. Oil Chem. Soc. 2003, 80, 1013–1020. [Google Scholar] [CrossRef]
- International Organization for Standardization. Oil Seeds—Determination of Oil Content; Standard No. 659:2009; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- International Organization for Standardization. Animal and Vegetable Fats and Oils-Preparation of Methyl Esters of Fatty Acids; Standard No. 5509:2000; ISO: Geneva, Switzerland, 2000. [Google Scholar]
- International Organization for Standardization. Animal and Vegetable Fats and Oils-Determination of Tocopherol and Tocotrienol Contents by High-Performance Liquid Chromatography; Standard No. 9936; ISO: Geneva, Switzerland, 2006, 2006. [Google Scholar]
- DGF, Deutsche Gesellschaft für Fettwissenschaft. Deutsche Einheitsmethoden zur Untersuchung von Fetten, Fettprodukten, Tensiden und Verwandten Stoffen; Wissenschaftliche: Stuttgart, Germany, 2015. [Google Scholar]
- Saeed, N.; Khan, M.R.L.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 16, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Grosso, N.R.; Zygadlo, J.A.; Lamarque, A.L.; Damián, M.; Maestri, C.; Guzmán, A. Proximate, fatty acid and sterol compositions of aboriginal peanut (Arachis hypogaea L.) seeds from Bolivia. J. Sci. Food Agric. 1997, 73, 349–356. [Google Scholar] [CrossRef]
- Ganesan, S.; Vadivel, K.; Jayaraman, J. Sustainable Crop Disease Management Using Natural Products; CABI: Wallingford, UK, 2015; p. 310. [Google Scholar]
- Kumari, A.; Kakkar, P. Screening of antioxidant potential of selected barks of Indian medicinal plants by multiple in vitro assay. Biomed. Enviro. Sci. 2008, 21, 24–29. [Google Scholar] [CrossRef]
- Wang, W.; Weng, X.; Cheng, D. Antioxidant activities of natural phenolic components from Dalbergia odorifera T. Chen. Food Chem. 2000, 71, 45–49. [Google Scholar] [CrossRef]
- Hou, J.P.; Wu, H.; Ho, C.T.; Weng, X.C. Antioxidant activity of polyphenolic compounds from Dalbergia odorifera T. Chen. Pak. J. Nutr. 2011, 10, 694–701. [Google Scholar]
Code | Scientific Name | Collecting Place | |
---|---|---|---|
1 | VNMN-B2016.109 | D. entadoides | Phu Quoc-Kien Giang Province |
2 | VNMN-B2016.114 | D. mammosa | Cat Tien-Đong Nai Province |
3 | VNMN-B2016.1 | D. tonkinensis | Dau Tieng-Binh Duong Province |
Fatty Acid Composition | D. entadoides | D. mammosa | D. tonkinensis |
---|---|---|---|
Total lipid content * | 2.7b ± 0.13 | 8.2a ± 0.09 | 2.5b ± 0.11 |
16:0 | 16.9a ± 0.04 | 12.0c ± 0.02 | 13.2b ± 0.02 |
16:1(n − 7) | 0.5a ± 0.01 | 0.2b ± 0.001 | 0.2b ± 0.05 |
17:0 | 0.7a ± 0.30 | 0.2b ± 0.002 | 0.1b ± 0.03 |
18:0 | 6.5b ± 0.02 | 6.6a ± 0.01 | 4.5c ± 0.04 |
18:1(n − 9) | 25.1b ± 0.01 | 51.2a ± 0.30 | 11.6c ± 0.10 |
18:1(n − 11) | 0.5b ± 0.004 | 0.6b ± 0.002 | 3.6a ± 0.20 |
18:2(n − 6) | 23.0b ± 0.02 | 20.1c ± 0.01 | 64.7a ± 0.05 |
18:3(n − 3) | 7.3a ± 0.03 | 1.2c ± 0.02 | 1.5b ± 0.03 |
20:0 | 1.4b ± 0.05 | 1.9a ± 0.03 | 0.1c ± 0.004 |
20:1(n − 9) | 0.5b ± 0.002 | 1.3a ± 0.04 | 0.1c ± 0.002 |
22:0 | 15.3a ± 0.10 | 3.4b ± 0.002 | 0.3c ± 0.001 |
24:0 | 2.5a ± 0.003 | 1.3b ± 0.01 | <LOQ |
SFA | 43.3a ± 0.01 | 25.5b ± 0.04 | 18.2c ± 0.04 |
UFA | 56.7c ± 0.05 | 74.5b ± 0.01 | 81.8a ± 0.05 |
Omega-3 (n − 3) | 7.3a ± 0.02 | 1.2c ± 0.03 | 1.5b ± 0.01 |
Omega-6 (n − 6) | 23.0c ± 0.30 | 20.1b ± 0.04 | 64.7a ± 0.05 |
Omega-9 (n − 9) | 25.5b ± 0.01 | 52.5a ± 0.04 | 11.7c ± 0.01 |
Species | α-T | α-T3 | β-T | γ-T | β-T3 |
---|---|---|---|---|---|
D. entadoides | 3.8c ± 0.05 | 1.1 ± 0.03 | 0.9b ± 0.003 | 2.7b ± 0.01 | <LOQ |
D. mammosa | 14.9b ± 0.02 | <LOQ | 0.3c ± 0.02 | 20.3a ± 0.05 | <LOQ |
D. tonkinensis | 20.9a ± 0.04 | <LOQ | 2.1a ± 0.01 | <LOQ | 2.1 ± 0.01 |
Species | P8 | γ-T3 | δ-T | δ-T3 | Sum |
D. entadoides | <LOQ | <LOQ | <LOQ | <LOQ | 8.5c ± 0.04 |
D. mammosa | 0.8 ± 0.03 | <LOQ | <LOQ | <LOQ | 36.2a ± 0.05 |
D. tonkinensis | <LOQ | <LOQ | 1.0 ± 0.02 | <LOQ | 26.1b ± 0.03 |
Phytosterol | D. entadoides | D. mammosa | D. tonkinensis |
---|---|---|---|
Cholesterol | 19.9c ± 0.01 | 46.7a ± 0.01 | 23.6b ± 0.01 |
Brassicasterol | 38.4a ± 0.05 | 7.6c ± 0.04 | 14.1b ± 0.03 |
24-methylenecholesterol | 41.1a ± 0.01 | 6.5c ± 0.01 | 8.5a ± 0.01 |
Campesterol | 266.3a ± 0.02 | 162.0b ± 0.01 | 29.6c ± 0.01 |
Campestanol | <LOQ | 12.3 ± 0.04 | <LOQ |
Stigmasterol | 274.3a ± 0.03 | 234.3b ± 0.03 | 50.2c ± 0.02 |
Δ7-Campesterol | 50.3a ± 0.04 | 19.6b ± 0.01 | 8.5c ± 0.04 |
Δ5,23-Stigmastadienol | 1735a ± 0.01 | 29.7c ± 0.04 | 180.60b ± 0.03 |
Chlerosterol | 64.3a ± 0.03 | 6.7c ± 0.02 | 49.5b ± 0.02 |
β-Sitosterol | 1781b ± 0.01 | 1878a ± 0.01 | 156.6c ± 0.01 |
Sitostanol | 347.2a ± 0.02 | 72.6b ± 0.03 | <LOQ |
Δ5-Avenasterol | 152.4a ± 0.04 | 127.8b ± 0.01 | 13.4c ± 0.02 |
Δ5,24-Stigmastadienol | 479.8 ± 0.03 | <LOQ | <LOQ |
Δ7-Stigmastenol | 1298a ± 0.01 | 68.6b ± 0.02 | <LOQ |
Δ7-Avenastenol | 84.0a ± 0.01 | 14.3b ± 0.03 | <LOQ |
Total amount | 6658.0a | 2686.7b | 534.6c |
No | Species | EC | PC | DPPH Free Radical Scavenging Activity |
---|---|---|---|---|
1 | D. entadoides | 87.3c | 23.0b | 15.4c |
2 | D. mammosa | 144.1b | 24.8a | 18.5b |
3 | D. tonkinensis | 469.1a | 19.5c | 11.9d |
4 | Vitamin C | 26.3a |
Phenolic Acid | D. entadoides | D. mammosa | D. tonkinensis |
---|---|---|---|
Chlorogenic acid | 1.8b ± 0.04 | 0.4c ± 0.03 | 19.8a ± 0.02 |
Gallic acid | 0.7a ± 0.01 | <LOQ | 0.7a ± 0.03 |
Caffeic acid | <LOQ | <LOQ | <LOQ |
Vanillic acid | 2.6a ± 0.05 | 0.4c ± 0.04 | 0.6b ± 0.01 |
Isovanillic acid | <LOQ | <LOQ | 2.0 ± 0.04 |
Vanillin | 0.7a ± 0.002 | <LOQ | 0.2b ± 0.02 |
p-Coumaric acid | 2.3b ± 0.04 | 6.7a ± 0.02 | 0.6c ± 0.05 |
Ferulic acid | 23.8a ± 0.4 | 21.8b ± 0.01 | 0.8c ± 0.002 |
Taxifolin | 34.5a ± 0.3 | 3.2c ± 0.01 | 9.8b ± 0.4 |
Rosmarinic acid | 0.7c ± 0.01 | 27.4a ± 0.3 | 10.6b ± 0.2 |
Daidzein | 2.3a ± 0.04 | 1.9b ± 0.04 | 1.6c ± 0.01 |
Cinnamic acid | 0.6b ± 0.004 | 0.7a ± 0.001 | 0.2c ± 0.03 |
Naringinin | 6.0a ± 0.01 | 1.2c ± 0.03 | 1.4b ± 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Doan, L.P.; Trinh Thi, T.H.; Tran, H.H.; Pham, Q.L.; Pham Thi, H.H.; Bach, L.G.; Matthäus, B.; Tran, Q.T. Fatty Acids, Tocopherols, and Phytosterol Composition of Seed Oil and Phenolic Compounds and Antioxidant Activity of Fresh Seeds from Three Dalbergia Species Grown in Vietnam. Processes 2020, 8, 542. https://doi.org/10.3390/pr8050542
Nguyen TT, Doan LP, Trinh Thi TH, Tran HH, Pham QL, Pham Thi HH, Bach LG, Matthäus B, Tran QT. Fatty Acids, Tocopherols, and Phytosterol Composition of Seed Oil and Phenolic Compounds and Antioxidant Activity of Fresh Seeds from Three Dalbergia Species Grown in Vietnam. Processes. 2020; 8(5):542. https://doi.org/10.3390/pr8050542
Chicago/Turabian StyleNguyen, Thi Thuy, Lan Phuong Doan, Thu Huong Trinh Thi, Hong Ha Tran, Quoc Long Pham, Hai Ha Pham Thi, Long Giang Bach, Bertrand Matthäus, and Quoc Toan Tran. 2020. "Fatty Acids, Tocopherols, and Phytosterol Composition of Seed Oil and Phenolic Compounds and Antioxidant Activity of Fresh Seeds from Three Dalbergia Species Grown in Vietnam" Processes 8, no. 5: 542. https://doi.org/10.3390/pr8050542
APA StyleNguyen, T. T., Doan, L. P., Trinh Thi, T. H., Tran, H. H., Pham, Q. L., Pham Thi, H. H., Bach, L. G., Matthäus, B., & Tran, Q. T. (2020). Fatty Acids, Tocopherols, and Phytosterol Composition of Seed Oil and Phenolic Compounds and Antioxidant Activity of Fresh Seeds from Three Dalbergia Species Grown in Vietnam. Processes, 8(5), 542. https://doi.org/10.3390/pr8050542