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Abstract: The blank’s dimensions are an important focus of blank design as they largely determine the
energy consumption and cost of manufacturing and further processing the blank. To achieve energy
saving and low cost during the optimization of blank dimensions design, we established energy
consumption and cost objectives in the manufacturing and further processing of blanks by optimizing
the parameters. As objectives, we selected the blank’s production and further processing parameters
as optimization variables to minimize energy consumption and cost, then set up a multi-objective
optimization model. The optimal blank dimension was back calculated using the parameters of the
minimum processing energy consumption and minimum cost state, and the model was optimized
using the non-dominated genetic algorithm-II (NSGA-II). The effect of designing blank dimension in
saving energy and costs is obvious compared with the existing methods.

Keywords: blank dimension design; energy saving; low cost; processing parameters

1. Introduction

The manufacturing industry plays an important role in China’s national economy. The manufacturing
industry consumes an enormous amount of energy while promoting rapid development of the economy.
About 70% of China’s primary energy consumption is provided by industrial energy consumption,
and about 60% of China’s total energy consumption is consumed by manufacturing [1]. Liu et al.
studied the complex energy consumption features of discrete manufacturing systems, as well as the
research status of energy efficiency, summarizing several difficulties with energy efficiency for discrete
manufacturing systems [2].

The blank is a production object used for further processing according to the shape, process size,
etc. required by the work [3]. The process from the blank to work is the source of energy consumption
in the manufacturing industry. The blank design stage determines the resource consumption and cost
generation of more than 80% of blank production and processing. Given the importance of optimum
blank dimension design, it has been studied by many scholars from different perspectives. Hou et al.
constructed a set of indicators of energy, gross domestic product (GDP) productivity, carbon index and
so on, and proposed a policy to increase the cross-border renewable energy trade [4]. Kuwabara et al.
optimized the shape of a drawing blank based on a finite element computer program [5]. Lee used the
three-dimensional (3D) multi-step backward analysis finite element method (FEM) to analyze the sheet
metal forming process, and optimized the design of the blank’s shape [6]. Qian proposed four blank
designs and validated the rectangular cross-section design through experiments [7]. In another study,
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to improve product quality, response surface methodology (RSM) and radial basis function (RBF) were
applied to optimize the shape of the blank [8]. Padmanabhan et al. used FEM to predict deformation
behavior and simulate the features of Non-Uniform Rational B-Splines surface to design the blank’s
shape for deep drawing parts [9]. Ku et al. used the FEM of a reverse tracking scheme to design the
blank’s shape for sheet metal forming [10]. Shim developed a design method to ascertain the best
blank shape by iteratively executing the test blank shape corresponding to the required deformation
by changing the required deformation shape [11]. Chamekh et al. used an artificial neural network
(ANN) to forecast the optimal blank shape, and then provided suggestions for the shape design of
the blank [12]. Liu et al. proposed an RSM based on support vector regression to optimize a polygon
blank shape [13]. The different blank structure design methods have different advantages.

In terms of research on energy and cost savings based on designed blank dimension, Cai et al.
presented a set of strategies and criteria through lean energy savings and sustainable development,
and also made a comparison [14–16]. A multi-objective optimization model for high-speed and
energy-saving numerical control of hobbing processing parameters was presented, which significantly
reduced the processing energy consumption and time [17]. Li et al. presented a new short casting-rolling
compound forming process for ring parts, which produced energy savings [18]. Wang et al. established
an optimization model for a cutting process with the goals of low cost, low energy consumption,
and high quality, and solved the model using the non-dominated genetic algorithm-II (NSGA-II) [19].
Li et al. established an optimization model to minimize the energy consumption of workshop operation,
and solved the optimization model using the simulated annealing algorithm [20]. Wei et al. used the
fitness sharing genetic algorithm (FSGA) to minimize welding energy consumption and maximize
thermal efficiency. The FSGA was used to optimize the solution, and the effect was compared with the
general genetic algorithm solution [21]. To lower energy consumption, Albertelli et al. verified the
effectiveness of the proposed energy consumption optimization method for an absorbing and milling
plane through experimental research [22]. Lu et al. aimed to decrease energy consumption while
maintaining high processing quality, and achieved optimization using a multi-objective backtracking
search algorithm [23]. Kant et al. aimed to lower energy consumption and maintain high surface
quality, and used grey correlation analysis, principal component analysis (PCA), and RSM to optimize
the solution [24].

To summarize, to increase energy savings and reduce the cost of blank production and processing,
many scholars have analyzed blank dimension design via the optimization of process factors during the
production stage of the blank and selected the blank’s dimensions based on experience. Considerable
research has been conducted on the optimization of processing parameters during further processing of
the blank. However, at present, the traditional blank dimensions determination method only considers
the factors of the blank production stage in the design process, and the appropriate blank dimensions
are selected for further blank processing after blank design and production. The blank dimensions
optimized by single production process factors can guarantee optimization of the objectives during
production stage, but cannot guarantee the optimization of the comprehensive objectives during the
production and further processing of the blank. Few studies have considered the influence of different
factors of blank production and further processing on the total process energy consumption and cost
during the blank design process.

Based on the above review, we propose an optimum design method for the blank’s dimension
based on a model of energy and cost savings during blank production and further processing. In this
method, energy consumption and cost are set as optimization objectives. The blank rolling mill pass
parameters include width, height, arc radius, corner radius; the blank turning parameters include
cutting speed, feed, and back feed as independent variables; and the constraints include the limits of
the rolling machine and the turning machine, and product specifications. NSGA-II was applied to
optimize model. The blank’s dimensions can be calculated using minimum energy consumption and
cost state parameters.
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2. Establishment of Blank Dimension Design Using Multi-Objective Optimization Model

2.1. Impacts of Blank Dimension Design on Energy Consumption and Cost

The blank’s dimensions are the basis for determining the process plan. The features and
characteristics of the work form the implementation of the processing plan. Manufacturing requirements,
including manufacturing equipment, tools, and operating conditions for each process, usually depend
on process planning. Taking energy consumption and cost as additional objectives in process planning
may result in a different outcome than that based on traditional objectives. In the planning process
from raw materials to manufacturing, the specific operations and blank dimensions impact the total
energy consumption and cost.

2.2. Energy Objective

Blank production and further processing are optimized with the goal of reducing energy
consumption. So, Equation (1) can be used to determine the total energy consumption:

E = EZ + EU (1)

where EZ and EU represent the rolling energy consumption in the blank production stage and turning
energy consumption in the blank further processing stage, respectively; and E represents the total
energy consumption.

According to Zhang et al. [25], rolling energy consumption EZ can be expressed as

EZ =
n∑

t=1

qt =
n∑

t=1

Mtvtτt/Dt (2)

where Mt is the rolling moment of the t pass, vt is the rolling speed of the t pass, τt is the rolling time of
the t pass, Dt is the working diameter of the t roll, a is the coefficient, qt denotes the rolling energy
consumption of the t pass, and n denotes the rolling pass. Rolling pass n is a variable related to the
total elongation coefficient and the average elongation coefficient, in which uz is the total elongation
coefficient and up is the average elongation coefficient. n and uz can be expressed as shown in Equations
(3) and (4), respectively:

n =
log(uz)

log
(
up

) (3)

uz =
F0

Fn
=

(atAt)
2
− 0.86× (0.1× atAt)

2

π× (Dat)
2/4

(4)

where at is the thermal expansion coefficient, At is the billet side length, D is the blank diameter, F0 is
the section area of the red billet, and Fn is the section area of the finished product and thermal state.

In general, Equation (5) can be used to indicate the energy consumption of the turning
operation [26]:

EU = ES + EK + EM (5)

where ES, EK, and EM represent the startup energy consumption, no-load energy consumption, and
processing energy consumption of machine tools, respectively.

Reference [27] provided another form of energy consumption for turning operations, as shown in
Equation (6):

EU = p0t1 +

p0 + (1 + a1)
CFc(

D− d
2

)xFc f yFc vnFc
c KFcvc

6× 104
+ a2(

CFc(
D− d

2
)xFc f yFcvnFc

c KFcvc

6× 104
)

2t2 + p0t3(
t2

T
) + yE(

t2

T
) (6)
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where, p0 is the cutting power, t1 is the no-load time, t2 is the cutting time, a1, a2 is the additional load
loss factor, CFc, xFc, yFc, nFc is represent the coefficient related to the material and cutting conditions of
the workpiece, yE is the average energy of each cutting edge, T represents the tool life, and d represents
the dimension of d-blank after use.

Equation (7) can be used to express the total energy consumption of processes.

E =
n∑

t=1

Mtvtτt

Dt
+ EU (7)

2.3. Cost Objective

The cost objective is calculated according to the processing conditions; cost can be expressed as

C = CZ + CU (8)

where C is the total cost objectives during the production and further processing of the blank; CZ is the
cost objective of the blank production stage, which is expressed by Equation (9); and CU is the cost
objective of further blank processing, which is expressed by Equation (10) [28]:

CZ =
n∑

i=1

ci (9)

CU = x×
(
t1 + t2 + t3 ×

t2

T

)
+

t3

T
× yc (10)

where x is the equipment cost rate, t3 is the tool changing time, and yc is the average cost per cutting
edge.

From the above discussion, the total cost of blank production and further processing can be
represented by

C =
n∑

i=1

ci + x×
(
t1 + t2 + t3 ×

t2

T

)
+

t3

T
× yc (11)

3. Constraints

The optimization of the design of a blank’s dimension is limited by production process equipment,
further processing equipment, and related requirements, so the value within the limited conditions
must be selected:

α ≤ αmax (12)

where α is the actual bite angle and αmax is the maximum bite angle.

βmin < β < βmax (13)

π× d0 × nmin
1000

≤ v ≤
π× d0 × nmax

1000
(14)

where nmin and nmax represent the minimum and maximum speed of the machine tool spindle,
respectively.

fmin < f < fmax (15)

where fmin and fmax represent the minimum and maximum feed of the machine tool, respectively.

F < Fmax (16)

where Fmax is the maximum cutting force.
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P ≤ µPmax (17)

where µ is the power effective coefficient and Pmax is the maximum effective cutting power.

R ≤ Rmax (18)

where R represents the actual surface roughness and Rmax represents the maximum allowable surface
roughness.

4. Solving Optimization Model Based on NSGA-II

4.1. Analysis of NSGA-II Algorithm

In practical engineering applications, multiple items are often needed. Decision-making problems
are marked as optimal in a given feasible region. At present, many scholars have studied the
multi-objective optimization method. However, among these methods, NSGA-II is commonly used to
obtain the best processing parameters [29,30]. The fast non-dominated sorting in NSGA-II stratifies
the population according to the individual’s non-inferior solution level and then guides the search to
the Pareto optimal solution set. NSGA-II incorporates the concept of individual crowding distance to
selectively rank individuals with the same non-dominant ordering value. To distribute the calculation
results more evenly in the target space and maintain the diversity of the population, individuals with
larger crowding distance are preferred. To prevent the Pareto optimal solution from losing, the best
individuals in the parent generation are reserved to directly enter the next generation. NSGA-II in
MATLAB (MathWorks, Natick, MA, USA, 2009) was used to solve the multi-objective optimization
problems in this study. Considering the above, the specific implementation steps of NSGA-II are shown
in Figure 1.
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4.2. Basic Parameter Setting of NSGA-II

Generally, no standard calculation method exists for population size and genetic algebra.
The calculation method is based on experiments. The standard population range is generally 10 to
100. After many experiments, a population size of 100 was selected. The range of genetic algebra is
generally 100 to 1000. After many experiments, the maximum genetic algebra of 100 was, and we
found 100 was appropriate in actual operation. The crossover method was analog binary crossover,
and the crossover coefficient was 20. The variation method was polynomial variation with a variation
distribution coefficient of 20. The crossover probability was 1 and the mutation probability was 1/2.

4.3. Background of the Optimization Problem

A factory receives the blank dimension design of the axle, as shown in Figure 2. The axle mainly
bears torsion, hardly bears any bending moment, and the number is 10,000. These dimensions are the
dimension after the use of the blank, as shown in Figure 2.
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4.4. Experimental Conditions

The blank’s designed dimensions must be based on actual factory conditions. The equipment
used for the blank is the machine tool. According to the actual factory, the machine tool CJK6140
(Huazhong CNC Co., Ltd., Wuhan, China, 2015) was selected as the tool to further process the blank.
The experimental conditions for the design of the blank’s dimensions are shown in Figure 3.
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The blank production equipment was as follows: A continuous rolling mill from a wire rod plant
of a steel company is equipped with 22 rolling mills, which are divided into rough rolling, medium
rolling, and finishing rolling mills. Each rolling mill is driven separately by a direct current (DC) motor,
and the rolling mill is arranged in alternating horizontal and vertical directions with 45 steel with
165 × 165 mm billet. The rolling mill consists of roughing mill, intermediate mill, first finishing mill
and second finishing mill, which are respectively 4–6–6–6 stand mill.

4.5. Simulation Results

The two-dimensional view (Figure 4) obtained by optimizing the processing parameters using
NSGA-II is parabola-shaped. From the simulation, the corresponding process parameters were
determined using a background program, and the optimized objective function values were 460.82
and 5.52, respectively. The blank dimension was 53.7.
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4.6. Discussion and Practical Implications

Compared with traditional blank design dimensions of 53 and 55, the optimal functions values
are 487.7 and 6.56, and 511.5 and 7.11, which shows that the proposed optimization method results
in energy and cost savings. Compared with the existing standard blank dimensions of 53 and 55,
the energy consumption of the designed blank dimension is 94.5% and 90.1% of the original marked
dimension, and the cost is 84.1% and 77.6% of the standard dimension. Therefore, the dimensions of the
blank designed using this method can reduce the process energy consumption and the process costs.

This method provides new ideas for scholars and enterprise managers when designing the blank’s
dimensions and indicates the required direction for the manufacturing industry to improve the use
rate of raw materials and energy. In particular, we considered the influence of further blank processing
factors in the multi-objective optimization design process of the blank’s dimensions. Therefore, both in
theory and in practice, we created a design method that can ensure the optimal target value in the
production and further processing of the blank.

4.7. Comparison of the Proposed Method and Methods in the Literature

Various studies [14–24] have reported many methods to optimize processing parameters using
different algorithms to reduce further blank processing energy consumption and costs. These methods
and algorithms effectively achieve those goals. However, these methods only start from the further
processing of the blank. As such, guaranteeing the lowest energy consumption and cost during
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the production process and the further processing is difficult due to the previously produced blank
dimensions. Whether the blank dimensions are suitable depends on the blank design process to a large
extent. In this study, the influence of the production and additional processes was considered during
the design of the blank’s dimensions.

5. Conclusions

An optimization design approach of the blank’s dimensions to reduce energy consumption and
costs during the blank’s manufacturing and further processing was proposed in this paper. With this
method, total energy consumption and cost are set as the objective functions, considering the width,
height, arc radius, and corner radius of each pass in bar rolling. Bar turning parameters, including
cutting speed, feed, and back feed, were set as independent variables, then NSGA-II was used to
optimize the solution Finally, the effectiveness of the proposed method was verified by case analysis.

Optimizing the design of the blank’s dimensions is an important basis for the sustainable
development of the manufacturing industry. We designed the blank’s dimensions from the perspective
of energy consumption and cost optimization, and enriched the research on blank dimensions design
to a certain extent, providing a theoretical reference for enterprises to achieve energy savings and
emissions reduction. However, we only verified the influence of radial dimension optimization design
on energy consumption and cost. Future research should comprehensively and deeply evaluate the
influence of the blank’s diameters and length on energy consumption, cost, other objectives, and the
use of the new parameter optimization calculation method.
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