Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies
Abstract
1. Introduction
2. Fabrication Strategies and Performance Optimization of Carbon–Polymer Nanocomposites
2.1. In Situ Polymerization
2.2. Solution Casting and Melt Mixing
2.3. Electrospinning and Electropolymerization
2.4. Advanced and Emerging Techniques
2.5. Dispersion of Carbon Nanomaterials in Polymer Matrices
2.6. Surface Wettability and Stability to the Environment
3. Sensing Mechanisms and Applications
3.1. Sensing Mechanisms
3.2. Sensor Types
3.2.1. Physical Sensors
Piezoresistive Sensors
Capacitive Sensors
Piezoelectric Sensors
3.2.2. Chemical Sensors
3.2.3. Biosensors
3.3. Applications in Sensing
3.3.1. Biosensors in Daily Healthcare and Wearable Monitoring
3.3.2. Sensor for Water Quality and Moisture Detection
3.3.3. Human–Machine Interfaces (Gesture Recognition)
3.3.4. Monitoring Industrial Emission and Toxic Gas Concentrations
3.3.5. Structural Health Monitoring for Smart Infrastructure
3.3.6. Soft Robotics, Prosthetic Actuation
3.3.7. Precision Farming and Soil Management
3.3.8. Energy Harvesters for Self-Powered Devices
3.3.9. Detection of Contaminants and Food Safety
4. Actuation Mechanisms and Applications
4.1. Actuation Mechanisms
4.1.1. Dielectric Elastomers
4.1.2. Ionic Polymer–Metal Composite Actuators
4.1.3. Thermal Actuators
Light-Responsive Actuators (Photo-Thermal Effects)
Magneto-Responsive Actuators (Magnetic Nanoparticle-Doped CPNCs)
4.2. Role of Carbon-Based Polymer Nanocomposites in Actuation
4.3. Applications in Actuation
4.3.1. Soft Robotics
4.3.2. Artificial Muscles for Prosthetics and Exoskeletons
4.3.3. Smart Textiles for Adaptive Clothing and Wearables
4.3.4. Micro-Actuators for Microfluidics and MEMS
5. Sustainability
6. Challenges and Limitations
7. Future Prospects and Research Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siwal, S.S.; Zhang, Q.; Devi, N.; Thakur, V.K. Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers 2020, 12, 505. [Google Scholar] [CrossRef]
- Simões, S. High-Performance Advanced Composites in Multifunctional Material Design: State of the Art, Challenges, and Future Directions. Materials 2024, 17, 5997. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Khan, K.H.; Parvez, M.M.H.; Irizarry, N.; Uddin, M.N. Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications. Processes 2025, 13, 994. [Google Scholar] [CrossRef]
- An, B.W.; Shin, J.H.; Kim, S.-Y.; Kim, J.; Ji, S.; Park, J.; Lee, Y.; Jang, J.; Park, Y.-G.; Cho, E.; et al. Smart Sensor Systems for Wearable Electronic Devices. Polymers 2017, 9, 303. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Zhang, T. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small 2017, 13, 1602790. [Google Scholar] [CrossRef]
- Thacharodi, A.; Singh, P.; Meenatchi, R.; Tawfeeq Ahmed, Z.H.; Kumar, R.R.; Neha, V.; Kavish, S.; Maqbool, M.; Hassan, S. Revolutionizing Healthcare and Medicine: The Impact of Modern Technologies for a Healthier Future—A Comprehensive Review. Health Care Sci. 2024, 3, 329–349. [Google Scholar] [CrossRef]
- Wang, S.; Zhai, H.; Zhang, Q.; Hu, X.; Li, Y.; Xiong, X.; Ma, R.; Wang, J.; Chang, Y.; Wu, L. Trends in Flexible Sensing Technology in Smart Wearable Mechanisms–Materials–Applications. Nanomaterials 2025, 15, 298. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M. Towards Reconfigurable and Adaptive Soft Robots via Hybrid Materials, Designs and Mechanisms; University of California: San Diego, CA, USA, 2021. [Google Scholar]
- Hao, Y.; Zhang, S.; Fang, B.; Sun, F.; Liu, H.; Li, H. A Review of Smart Materials for the Boost of Soft Actuators, Soft Sensors, and Robotics Applications. Chin. J. Mech. Eng. 2022, 35, 37. [Google Scholar] [CrossRef]
- Pishvar, M.; Harne, R.L. Foundations for Soft, Smart Matter by Active Mechanical Metamaterials. Adv. Sci. 2020, 7, 2001384. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Zhao, H.; Huang, W.; Wang, Y.; Hsia, K.J.; Liu, M. Morphing Matter: From Mechanical Principles to Robotic Applications. Soft Sci. 2023, 3, 38. [Google Scholar] [CrossRef]
- Li, T.; Li, Y.; Zhang, T. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors. Acc. Chem. Res. 2019, 52, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Majidi, C. Soft-Matter Engineering for Soft Robotics. Adv. Mater. Technol. 2019, 4, 1800477. [Google Scholar] [CrossRef]
- Gu, C.; Jia, A.B.; Zhang, Y.M.; Zhang, S.X. Emerging Electrochromic Materials and Devices for Future Displays. Chem. Rev. 2022, 122, 14679–14721. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Hu, F.; Liu, D.; Zhang, X.; Ren, J.; Guo, H. An Overview of Polymer-Based Thermally Conductive Functional Materials. J. Mater. Sci. Technol. 2025, 218, 191–210. [Google Scholar] [CrossRef]
- Dinu, R.; Lafont, U.; Damiano, O.; Orange, F.; Mija, A. Recyclable, Repairable, and Fire-Resistant High-Performance Carbon Fiber Biobased Epoxy. ACS Appl. Polym. Mater. 2023, 5, 2542–2552. [Google Scholar]
- Datye, A.K.; Votsmeier, M. Opportunities and Challenges in the Development of Advanced Materials for Emission Control Catalysts. Nat. Mater. 2021, 20, 1049–1059. [Google Scholar] [PubMed]
- Roy, N.; Sengupta, R.; Bhowmick, A.K. Modifications of Carbon for Polymer Composites and Nanocomposites. Prog. Polym. Sci. 2012, 37, 781–819. [Google Scholar] [CrossRef]
- Dasari, B.L.; Nouri, J.M.; Brabazon, D.; Naher, S. Graphene and Derivatives–Synthesis Techniques, Properties and Their Energy Applications. Energy 2017, 140, 766–778. [Google Scholar] [CrossRef]
- Wei, L. Purification and Chiral Selective Enrichment of Single-Walled Carbon Nanotubes for Macroelectronic Applications. Ph.D. Thesis, Nanyang Technological University, Singapore, 2010. [Google Scholar]
- Patra, S.; Kiran, N.U.; Mane, P.; Chakraborty, B.; Besra, L.; Chatterjee, S.; Chatterjee, S. Hydrophobic MXene with Enhanced Electrical Conductivity. Surf. Interfaces 2023, 39, 102969. [Google Scholar] [CrossRef]
- Jansen, J. Comparing Thermoplastic Elastomers and Thermoset Rubber; Plastics Engineering, The Madison Group: Madison, WI, USA, 2016. [Google Scholar]
- Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y.-X. Bio-Based Polymers with Performance-Advantaged Properties. Nat. Rev. Mater. 2021, 7, 83–103. [Google Scholar] [CrossRef]
- Mao, H.; Wang, X. Use of In-Situ Polymerization in the Preparation of Graphene/Polymer Nanocomposites. New Carbon Mater. 2020, 35, 336–343. [Google Scholar] [CrossRef]
- Kamal, A.; Ashmawy, M.; Shanmugan, S.; Algazzar, A.M.; Elsheikh, A.H. Fabrication Techniques of Polymeric Nanocomposites: A Comprehensive Review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 4843–4861. [Google Scholar] [CrossRef]
- Lee, D.-K.; Yoo, J.; Kim, H.; Kang, B.-H.; Park, S.-H. Electrical and Thermal Properties of Carbon Nanotube Polymer Composites with Various Aspect Ratios. Materials 2022, 15, 1356. [Google Scholar] [CrossRef]
- Zhong, S.; Yuan, B.; Guang, Z.; Chen, D.; Li, Q.; Dong, L.; Ji, Y.; Dong, Y.; Han, J.; He, W. Recent Progress in Thin Separators for Upgraded Lithium Ion Batteries. Energy Storage Mater. 2021, 41, 805–841. [Google Scholar] [CrossRef]
- Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Akter, M.; Anik, H.R.; Tushar, S.I.; Tania, I.S.; Chowdhury, M.K.H.; Hasan, S.M.M.; Bristy, B.F. Advances in Functionalized Applications of Graphene-Based Wearable Sensors in Healthcare. Adv. Sens. Res. 2024, 3, 2300120. [Google Scholar] [CrossRef]
- Riaz, U.; Ashraf, S.M. Conductive Polymer Composites and Blends. In Nanostructured Polymer Blends; Elsevier: Amsterdam, The Netherlands, 2014; pp. 509–538. ISBN 978-1-4557-3159-6. [Google Scholar]
- Wang, X.; Gao, X.; Wang, Y.; Niu, X.; Wang, T.; Liu, Y.; Qi, F.; Jiang, Y.; Liu, H. Development of High-Sensitivity Piezoresistive Sensors Based on Highly Breathable Spacer Fabric with TPU/PPy/PDA Coating. Polymers 2022, 14, 859. [Google Scholar] [CrossRef]
- Wan, X.; Xiao, Z.; Tian, Y.; Chen, M.; Liu, F.; Wang, D.; Liu, Y.; Bartolo, P.J.D.S.; Yan, C.; Shi, Y.; et al. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. Adv. Mater. 2024, 36, 2312263. [Google Scholar] [CrossRef]
- Shao, J.; Chen, X.; Li, X.; Tian, H.; Wang, C.; Lu, B. Nanoimprint Lithography for the Manufacturing of Flexible Electronics. Sci. China Technol. Sci. 2019, 62, 175–198. [Google Scholar] [CrossRef]
- Cao, X.; Xiong, Y.; Sun, J.; Xie, X.; Sun, Q.; Wang, Z.L. Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. Nano-Micro Lett. 2023, 15, 14. [Google Scholar] [CrossRef]
- Yuan, C.; Tony, A.; Yin, R.; Wang, K.; Zhang, W. Tactile and Thermal Sensors Built from Carbon–Polymer Nanocomposites—A Critical Review. Sensors 2021, 21, 1234. [Google Scholar] [CrossRef]
- Feng, L.; Xie, N.; Zhong, J. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials 2014, 7, 3919–3945. [Google Scholar] [CrossRef]
- Kong, K.T.S.; Mariatti, M.; Rashid, A.A.; Busfield, J.J.C. Enhanced Conductivity Behavior of Polydimethylsiloxane (PDMS) Hybrid Composites Containing Exfoliated Graphite Nanoplatelets and Carbon Nanotubes. Compos. Part B Eng. 2014, 58, 457–462. [Google Scholar] [CrossRef]
- Sahoo, N.G.; Cheng, H.K.F.; Bao, H.; Li, L.; Chan, S.H.; Zhao, J. Nitrophenyl Functionalization of Carbon Nanotubes and Its Effect on Properties of MWCNT/LCP Composites. Macromol. Res. 2011, 19, 660–667. [Google Scholar] [CrossRef]
- Latif, Z.; Ali, M.; Lee, E.-J.; Zubair, Z.; Lee, K.H. Thermal and Mechanical Properties of Nano-Carbon-Reinforced Polymeric Nanocomposites: A Review. J. Compos. Sci. 2023, 7, 441. [Google Scholar] [CrossRef]
- Sandler, J.; Werner, P.; Shaffer, M.S.P.; Demchuk, V.; Altstädt, V.; Windle, A.H. Carbon-Nanofibre-Reinforced Poly(Ether Ether Ketone) Composites. Compos. Part Appl. Sci. Manuf. 2002, 33, 1033–1039. [Google Scholar] [CrossRef]
- Carbon Nanofibers Prepared via Electrospinning–PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/22511357/ (accessed on 11 September 2025).
- Bedi, H.S.; Padhee, S.S.; Agnihotri, P.K. Effect of Carbon Nanotube Grafting on the Wettability and Average Mechanical Properties of Carbon Fiber/Polymer Multiscale Composites. Polym. Compos. 2018, 39, E1184–E1195. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, S.C. Micro and Nano-Fabrication of Biodegradable Polymers for Drug Delivery. Adv. Drug Deliv. Rev. 2004, 56, 1621–1633. [Google Scholar] [CrossRef]
- Yang, Y.; Dang, Z.-M.; Li, Q.; He, J. Self-Healing of Electrical Damage in Polymers. Adv. Sci. 2020, 7, 2002131. [Google Scholar] [CrossRef]
- Mascia, L.; Kouparitsas, Y.; Nocita, D.; Bao, X. Antiplasticization of Polymer Materials: Structural Aspects and Effects on Mechanical and Diffusion-Controlled Properties. Polymers 2020, 12, 769. [Google Scholar] [CrossRef]
- Bilotti, E.; Zhang, H.; Deng, H.; Zhang, R.; Fu, Q.; Peijs, T. Controlling the Dynamic Percolation of Carbon Nanotube Based Conductive Polymer Composites by Addition of Secondary Nanofillers: The Effect on Electrical Conductivity and Tuneable Sensing Behaviour. Compos. Sci. Technol. 2013, 74, 85–90. [Google Scholar] [CrossRef]
- Adstedt, K.; Buxton, M.L.; Henderson, L.C.; Hayne, D.J.; Nepal, D.; Gogotsi, Y.; Tsukruk, V.V. 2D Graphene Oxide and MXene Nanosheets at Carbon Fiber Surfaces. Carbon 2023, 203, 161–171. [Google Scholar] [CrossRef]
- Tian, M.; Yang, Q.; Jin, Y.; Hu, B. 3D Graphene/Carbon Nanotube Composites: Synthesis, Properties, and Applications. ChemNanoMat 2025, 11, 2400675. Available online: https://www.researchgate.net/publication/392026453_3D_GrapheneCarbon_Nanotube_Composites_Synthesis_Properties_and_Applications (accessed on 15 July 2025). [CrossRef]
- Fiorillo, A.S.; Critello, C.D.; Pullano, S.A. Theory, Technology and Applications of Piezoresistive Sensors: A Review. Sens. Actuators Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Liao, H.; Tong, W. Dielectric Enhancement by Inorganic Nano-Fillers for Triboelectric Optimization. J. Mater. Chem. A 2025, 13. Available online: https://www.researchgate.net/publication/389081254_Dielectric_enhancement_by_inorganic_nano-fillers_for_triboelectric_optimization (accessed on 15 July 2025). [CrossRef]
- Wu, C.; Wang, A.C.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Facilitating Ion Storage and Transport Pathways by In Situ Constructing 1D Carbon Nanotube Electric Bridges Between 2D MXene Interlayers|ACS Nano. Available online: https://pubs.acs.org/doi/abs/10.1021/acsnano.4c09475 (accessed on 10 September 2025).
- Zhou, F.; Liu, Q.; Kang, D.; Gu, J.; Zhang, W.; Zhang, D. A 3D Hierarchical Hybrid Nanostructure of Carbon Nanotubes and Activated Carbon for High-Performance Supercapacitors. J. Mater. Chem. A 2014, 2, 3505–3512. [Google Scholar] [CrossRef]
- Salek-Maghsoudi, A.; Vakhshiteh, F.; Torabi, R.; Hassani, S.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.; Abdollahi, M. Recent Advances in Biosensor Technology in Assessment of Early Diabetes Biomarkers. Biosens. Bioelectron. 2018, 99, 122–135. [Google Scholar] [CrossRef]
- Parida, K.; Bhavanasi, V.; Kumar, V.; Bendi, R.; Lee, P.S. Self-Powered Pressure Sensor for Ultra-Wide Range Pressure Detection. Nano Res. 2017, 10, 3557–3570. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, F.; Di, C.; Zhu, D. Advances of Flexible Pressure Sensors toward Artificial Intelligence and Health Care Applications. Mater. Horiz. 2015, 2, 140–156. [Google Scholar] [CrossRef]
- Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z.L. Recent Progress in Electronic Skin. Adv. Sci. 2015, 2, 1500169. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High Performance Piezoelectric Devices Based on Aligned Arrays of Nanofibers of Poly(Vinylidenefluoride-Co-Trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef]
- Akiyama, M.; Morofuji, Y.; Kamohara, T.; Nishikubo, K.; Tsubai, M.; Fukuda, O.; Ueno, N. Flexible Piezoelectric Pressure Sensors Using Oriented Aluminum Nitride Thin Films Prepared on Polyethylene Terephthalate Films. J. Appl. Phys. 2006, 100, 114318. [Google Scholar] [CrossRef]
- Inobeme, A.; Natarajan, A.; Pradhan, S.; Adetunji, C.O.; Ajai, A.I.; Inobeme, J.; Tsado, M.J.; Jacob, J.O.; Pandey, S.S.; Singh, K.R.; et al. Chemical Sensor Technologies for Sustainable Development: Recent Advances, Classification, and Environmental Monitoring. Adv. Sens. Res. 2024, 3, 2400066. [Google Scholar] [CrossRef]
- Kim, Y.; Jeon, Y.; Na, M.; Hwang, S.-J.; Yoon, Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. Sensors 2024, 24, 431. [Google Scholar] [CrossRef] [PubMed]
- Balaji, T.; El-Safty, S.A.; Matsunaga, H.; Hanaoka, T.; Mizukami, F. Optical Sensors Based on Nanostructured Cage Materials for the Detection of Toxic Metal Ions. Angew. Chem. Int. Ed. 2006, 45, 7202–7208. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Darabi, R.; Baghayeri, M.; Karimi, F.; Fu, L.; Rouhi, J.; Niculina, D.E.; Gündüz, E.S.; Dragoi, E.N. Recent Developments in Carbon Nanomaterials-Based Electrochemical Sensors for Methyl Parathion Detection. J. Food Meas. Charact. 2023, 17, 5371–5389. [Google Scholar] [CrossRef]
- Qazi, H.; Mohammad, A.; Akram, M. Recent Progress in Optical Chemical Sensors. Sensors 2012, 12, 16522–16556. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Viry, L.; Levi, A.; Totaro, M.; Mondini, A.; Mattoli, V.; Mazzolai, B.; Beccai, L. Flexible Three-Axial Force Sensor for Soft and Highly Sensitive Artificial Touch. Adv. Mater. Deerfield Beach Fla 2014, 26, 2659–2664. [Google Scholar] [CrossRef]
- Improving the Accuracy of Temperature Measurements|PicoTech Library 2020. Available online: https://www.picotech.com/library/articles/application-note/improving-the-accuracy-of-temperature-measurements (accessed on 20 July 2025).
- Khatib, M.; Haick, H. Sensors for Volatile Organic Compounds. ACS Nano 2022, 16, 7080–7115. [Google Scholar] [CrossRef]
- Zhi-yu, Y.; Ning-ning, D.; Rui-tao, L.; Zheng-hong, H.; Fei-yu, K. A Review of Graphene Composite-Based Sensors for Detection of Heavy Metals. Xinxing Tan CailiaoNew Carbon Mater. 2015, 30, 511–518. [Google Scholar] [CrossRef]
- Leads, P. Understanding High Accuracy Humidity Sensors: Their Importance and Applications. SEMEQ 2024. Available online: https://semeq.com/en/blog/understanding-high-accuracy-humidity-sensors-their-importance-and-applications/ (accessed on 15 July 2025).
- Wang, C.; Tan, X.; Chen, S.; Yuan, R.; Hu, F.; Yuan, D.; Xiang, Y. Highly-Sensitive Cholesterol Biosensor Based on Platinum–Gold Hybrid Functionalized ZnO Nanorods. Talanta 2012, 94, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Wei, D.; Yao, Y.; Liu, B.; Liu, J.; Hu, Y.; Yang, H.; Fu, Y.; Zhang, Y.; Wan, S.; et al. Ultrahigh-Sensitivity Fiber Biosensor for C-Reactive Protein Detection in Blood Sample. IEEE Sens. J. 2025, 25, 8309–8316. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Jiang, N.; Yetisen, A.K. Wearable Artificial Intelligence Biosensor Networks. Biosens. Bioelectron. 2023, 219, 114825. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Rab, S.; Pratap Singh, R.; Suman, R. Sensors for Daily Life: A Review. Sens. Int. 2021, 2, 100121. [Google Scholar] [CrossRef]
- Ailamaki, A.; Faloutos, C.; Fischbeck, P.S.; Small, M.J.; VanBriesen, J. An Environmental Sensor Network to Determine Drinking Water Quality and Security. ACM SIGMOD Rec. 2003, 32, 47–52. [Google Scholar] [CrossRef]
- Tchantchane, R.; Zhou, H.; Zhang, S.; Alici, G. A Review of Hand Gesture Recognition Systems Based on Noninvasive Wearable Sensors. Adv. Intell. Syst. 2023, 5, 2300207. [Google Scholar] [CrossRef]
- Onyinye Okechukwu, V.; Olayiwola Idris, A.; Umukoro, E.H.; Azizi, S.; Maaza, M. Exploring the Contribution of Intelligent Nanomaterials in Gas Sensing. ChemistrySelect 2024, 9, e202304703. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jadon, N.; Jain, R. Next-Generation Polymer Nanocomposite-Based Electrochemical Sensors and Biosensors: A Review. TrAC Trends Anal. Chem. 2016, 82, 55–67. [Google Scholar] [CrossRef]
- Vavouliotis, A.; Kostopoulos, V. On the Use of Electrical Conductivity for the Assessment of Damage in Carbon Nanotubes Enhanced Aerospace Composites. Solid Mech. Its Appl. 2013, 188, 21–55. Available online: https://link.springer.com/chapter/10.1007/978-94-007-4246-8_2 (accessed on 15 July 2025).
- Ciliberti, D.; Della Vecchia, P.; Memmolo, V.; Nicolosi, F.; Wortmann, G.; Ricci, F. The Enabling Technologies for a Quasi-Zero Emissions Commuter Aircraft. Aerospace 2022, 9, 319. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, W. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. Nanomaterials 2023, 13, 316. [Google Scholar] [CrossRef] [PubMed]
- Pogorielov, M.; Smyrnova, K.; Kyrylenko, S.; Gogotsi, O.; Zahorodna, V.; Pogrebnjak, A. MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials 2021, 11, 3412. [Google Scholar] [CrossRef]
- Bouhamed, A.; Missaoui, S.; Ben Ayed, A.; Attaoui, A.; Missaoui, D.; Jeder, K.; Guesmi, N.; Njeh, A.; Khemakhem, H.; Kanoun, O. A Comprehensive Review of Strategies toward Efficient Flexible Piezoelectric Polymer Composites Based on BaTiO3 for Next-Generation Energy Harvesting. Energies 2024, 17, 4066. [Google Scholar] [CrossRef]
- Narvaez, D.; Newell, B. A Review of Electroactive Polymers in Sensing and Actuator Applications. Actuators 2025, 14, 258. [Google Scholar] [CrossRef]
- Maksimkin, A.V.; Dayyoub, T.; Telyshev, D.V.; Gerasimenko, A.Y. Electroactive Polymer-Based Composites for Artificial Muscle-like Actuators: A Review. Nanomaterials 2022, 12, 2272. [Google Scholar] [CrossRef]
- Medina, H.; Farmer, C.; Liu, I. Dielectric Elastomer-Based Actuators: A Modeling and Control Review for Non-Experts. Actuators 2024, 13, 151. [Google Scholar] [CrossRef]
- Shankar, R.; Ghosh, T.K.; Spontak, R.J. Dielectric Elastomers as Next-Generation Polymeric Actuators. Soft Matter 2007, 3, 1116. [Google Scholar] [CrossRef]
- Lu, C.; Yang, Y.; Wang, J.; Fu, R.; Zhao, X.; Zhao, L.; Ming, Y.; Hu, Y.; Lin, H.; Tao, X. High-Performance Graphdiyne-Based Electrochemical Actuators. Nat. Commun. 2018, 9, 752. [Google Scholar] [CrossRef]
- Dipta, S.D.; Rahman, M.M.; Ansari, M.J.; Uddin, M.N. A Comprehensive Review of Sustainable and Green Additive Manufacturing: Technologies, Practices, and Future Directions. J. Manuf. Mater. Process. 2025, 9, 269. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Zahiri, B.; Noroozi, M. Graphene-Based Composite for Dielectric Elastomer Actuator: A Comprehensive Review. Sens. Actuators Phys. 2019, 293, 222–241. [Google Scholar] [CrossRef]
- Souri, H.; Banerjee, H.; Jusufi, A.; Radacsi, N.; Stokes, A.A.; Park, I.; Sitti, M.; Amjadi, M. Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications. Adv. Intell. Syst. 2020, 2, 2000039. [Google Scholar] [CrossRef]
- Chang, E.; Ameli, A.; Alian, A.R.; Mark, L.H.; Yu, K.; Wang, S.; Park, C.B. Percolation Mechanism and Effective Conductivity of Mechanically Deformed 3-Dimensional Composite Networks: Computational Modeling and Experimental Verification. Compos. Part B Eng. 2021, 207, 108552. [Google Scholar] [CrossRef]
- Engel, K.E.; Kilmartin, P.A.; Diegel, O. Recent Advances in the 3D Printing of Ionic Electroactive Polymers and Core Ionomeric Materials. Polym. Chem. 2022, 13, 456–473. [Google Scholar] [CrossRef]
- You, L.; Liu, B.; Hua, H.; Jiang, H.; Yin, C.; Wen, F. Energy Storage Performance of Polymer-Based Dielectric Composites with Two-Dimensional Fillers. Nanomaterials 2023, 13, 2842. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.; Cebeci, H.; de Villoria, R.G.; Lin, J.-H.; Wardle, B.L.; Zhang, Q. Conductive Filler Morphology Effect on Performance of Ionic Polymer Conductive Network Composite Actuators. In Electroactive Polymer Actuators and Devices; SPIE: Bellingham, WA, USA, 2010; Volume 7642, pp. 374–383. [Google Scholar]
- Leng, J.; Lan, X.; Liu, Y.; Du, S. Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications. Prog. Mater. Sci. 2011, 56, 1077–1135. [Google Scholar] [CrossRef]
- Pisani, S.; Genta, I.; Modena, T.; Dorati, R.; Benazzo, M.; Conti, B. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. Int. J. Mol. Sci. 2022, 23, 1290. [Google Scholar] [CrossRef]
- Xu, J.; Song, J. Thermal Responsive Shape Memory Polymers for Biomedical Applications. In Biomedical Engineering-Frontiers and Challenges; Fazel, R., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-309-5. [Google Scholar]
- Small, W., IV; Singhal, P.; Wilson, T.S.; Maitland, D.J. Biomedical Applications of Thermally Activated Shape Memory Polymers. J. Mater. Chem. 2010, 20, 3356. [Google Scholar] [CrossRef]
- Devi, R.; Gupta, P.; Khatua, C.; Naskar, K.; Chattopadhyay, S. Thermoplastic Polyurethane-Based Stimuli-Responsive Nanocomposites: A Review on Self-Healing and Shape Memory Properties. Polym. Eng. Sci. 2025. [Google Scholar] [CrossRef]
- Fang, L.; Wan, Y.; Chen, S.; Duan, Q.; Herath, M.; Epaarachchi, J.; Liu, Y.; Lu, C. Light and shape-memory polymers: Characterization, preparation, stimulation, and application. Macromol. Mater. Eng. 2023, 308, 2300158. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Z.; Wang, P.; Huang, F.; Sun, J.-L. Measurement of the Photothermal Conversion Efficiency of CNT Films Utilizing a Raman Spectrum. Nanomaterials 2022, 12, 1101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, B.-W.; Dong, L.; Liu, H.; Chen, W.; Shen, Y.; Nan, C.W. Superior Energy Storage Performances of Polymer Nanocomposites via Modification of Filler/Polymer Interfaces. Adv. Mater. Interfaces 2018, 5, 1800096. [Google Scholar] [CrossRef]
- Mishra, B.; Sharma, S. Shape Memory Materials with Reversible Shape Change and Self-Healing Abilities: A Review. Mater. Today Proc. 2021, 44, 4563–4568. [Google Scholar] [CrossRef]
- Jessen, S.L.; Friedemann, M.C.; Mullen, A.E.; Ginn-Hedman, A.; Herting, S.M.; Maitland, D.J.; Clubb, F.J. Micro-CT and Histopathology Methods to Assess Host Response of Aneurysms Treated with Shape Memory Polymer Foam-coated Coils versus Bare Metal Coil Occlusion Devices. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 2238–2249. [Google Scholar] [CrossRef]
- Shen, K.Y.; Wang, X.J.; Chen, H.J. Advances in Light-Activated Shape Memory Polymer: A Brief Review. Mater. Today Commun. 2024, 41, 110247. [Google Scholar] [CrossRef]
- Leungpuangkaew, S.; Amornkitbamrung, L.; Phetnoi, N.; Sapcharoenkun, C.; Jubsilp, C.; Ekgasit, S.; Rimdusit, S. Magnetic- and Light-Responsive Shape Memory Polymer Nanocomposites from Bio-Based Benzoxazine Resin and Iron Oxide Nanoparticles. Adv. Ind. Eng. Polym. Res. 2023, 6, 215–225. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Liu, D.; Wang, W.; Liu, Y.; Zhou, S. pH-Responsive Shape Memory Poly(Ethylene Glycol)–Poly(ε-Caprolactone)-Based Polyurethane/Cellulose Nanocrystals Nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 12988–12999. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Z.; Liu, Z.; Kang, H.; Liu, Y. Cellulose Nanofibers/Polyurethane Shape Memory Composites with Fast Water-Responsivity. J. Mater. Chem. B 2018, 6, 1668–1677. [Google Scholar] [CrossRef]
- Joo, Y.-S.; Cha, J.-R.; Gong, M.-S. Biodegradable Shape-Memory Polymers Using Polycaprolactone and Isosorbide Based Polyurethane Blends. Mater. Sci. Eng. C 2018, 91, 426–435. [Google Scholar] [CrossRef]
- Islam, R.; Maparathne, S.; Chinwangso, P.; Lee, T.R. Review of Shape-Memory Polymer Nanocomposites and Their Applications. Appl. Sci. 2025, 15, 2419. [Google Scholar] [CrossRef]
- Sutar, R.S.; Latthe, S.S.; Wu, X.; Nakata, K.; Xing, R.; Liu, S.; Fujishima, A. Design and Mechanism of Photothermal Soft Actuators and Their Applications. J. Mater. Chem. A 2024, 12, 17896–17922. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Q.; Cui, X.; Liu, Y.; Liu, Y.; Yang, Y. Photothermal-Driven Soft Actuator Capable of Alternative Control Based on Coupled-Plasmonic Effect. Chem. Eng. J. 2024, 498, 155057. [Google Scholar] [CrossRef]
- Zanoni, M.; Cremonini, A.; Toselli, M.; Montalti, M.; Natali, D.; Focarete, M.L.; Masiero, S.; Gualandi, C. Amplification of Photothermally Induced Reversible Actuation in Non-Woven Fabrics Compared to Bulk Films. Sens. Actuators B Chem. 2024, 418, 136231. [Google Scholar] [CrossRef]
- Behrens, S.; Appel, I. Magnetic Nanocomposites. Curr. Opin. Biotechnol. 2016, 39, 89–96. [Google Scholar] [CrossRef]
- Cresta, V.; Romano, G.; Kolpak, A.; Zalar, B.; Domenici, V. Nanostructured Composites Based on Liquid-Crystalline Elastomers. Polymers 2018, 10, 773. [Google Scholar] [CrossRef]
- Yarali, E.; Baniasadi, M.; Zolfagharian, A.; Chavoshi, M.; Arefi, F.; Hossain, M.; Bastola, A.; Ansari, M.; Foyouzat, A.; Dabbagh, A.; et al. Magneto-/Electro-responsive Polymers toward Manufacturing, Characterization, and Biomedical/ Soft Robotic Applications. Appl. Mater. Today 2022, 26, 101306. [Google Scholar] [CrossRef]
- Shin, M.; Lim, J.; Park, Y.; Lee, J.-Y.; Yoon, J.; Choi, J.-W. Carbon-Based Nanocomposites for Biomedical Applications. RSC Adv. 2024, 14, 7142–7156. [Google Scholar] [CrossRef]
- Dewang, Y.; Sharma, V.; Baliyan, V.K.; Soundappan, T.; Singla, Y.K. Research Progress in Electroactive Polymers for Soft Robotics and Artificial Muscle Applications. Polymers 2025, 17, 746. [Google Scholar] [CrossRef]
- Vohrer, U.; Kolaric, I.; Haque, M.H.; Roth, S.; Detlaff-Weglikowska, U. Carbon Nanotube Sheets for the Use as Artificial Muscles. Carbon 2004, 42, 1159–1164. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I.; Zhao, T.; Aldaghri, O.; Ibnaouf, K.H.; Eisa, M.H. Multifunctional Polymeric Nanocomposites for Sensing Applications—Design, Features, and Technical Advancements. Crystals 2023, 13, 1144. [Google Scholar] [CrossRef]
- Olawumi, M.A.; Omigbodun, F.T.; Oladapo, B.I. Integration of Sustainable and Net-Zero Concepts in Shape-Memory Polymer Composites to Enhance Environmental Performance. Biomimetics 2024, 9, 530. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Obisesan, O.B.; Oluwole, B.; Adebiyi, V.A.; Usman, H.; Khan, A. Mechanical Characterization of a Polymeric Scaffold for Bone Implant. J. Mater. Sci. 2020, 55, 9057–9069. [Google Scholar] [CrossRef]
- Sharifi, M.; Pothu, R.; Boddula, R.; Bardajee, G.R. Trends of Biofuel Cells for Smart Biomedical Devices. Int. J. Hydrog. Energy 2021, 46, 3220–3229. [Google Scholar] [CrossRef]
- Digital Health Center of Excellence. Available online: https://www.fda.gov/medical-devices/digital-health-center-excellence (accessed on 9 September 2025).
- Afolabi, O.A.; Ndou, N. Synergy of Hybrid Fillers for Emerging Composite and Nanocomposite Materials—A Review. Polymers 2024, 16, 1907. [Google Scholar] [CrossRef]
- Wu, X.; Steiner, P.; Raine, T.; Pinter, G.; Kretinin, A.; Kocabas, C.; Bissett, M.; Cataldi, P. Hybrid Graphene/Carbon Nanofiber Wax Emulsion for Paper-Based Electronics and Thermal Management. Adv. Electron. Mater. 2020, 6, 2000232. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. Carbon-Based Polymer Nanocomposites for High-Performance Applications. Polymers 2020, 12, 872. [Google Scholar] [CrossRef]
- Li, J.-W.; Chen, H.-F.; Huang, P.-H.; Kuo, C.-F.J.; Cheng, C.-C.; Chiu, C.-W. Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors. Polymers 2023, 15, 4706. [Google Scholar] [CrossRef]
- Alshammari, A.H.; Alshammari, M.; Ibrahim, M.; Alshammari, K.; Taha, T.A. New Hybrid PVC/PVP Polymer Blend Modified with Er2O3 Nanoparticles for Optoelectronic Applications. Polymers 2023, 15, 684. [Google Scholar]
- Liu, Y.; Wu, H.; Chen, G. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content Based on in Situ Ball Milling. Polym. Compos. 2014, 37, 1190–1197. [Google Scholar] [CrossRef]
- Sharifi, S.; Behzadi, S.; Laurent, S.; Laird Forrest, M.; Stroeve, P.; Mahmoudi, M. Toxicity of Nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343. [Google Scholar] [CrossRef]
- Subramanian, V.; Semenzin, E.; Hristozov, D.; Marcomini, A.; Linkov, I. Sustainable Nanotechnology: Defining, Measuring and Teaching. Nano Today 2014, 9, 6–9. [Google Scholar] [CrossRef]
- Kolahdouz, M.; Xu, B.; Nasiri, A.F.; Fathollahzadeh, M.; Manian, M.; Aghababa, H.; Wu, Y.; Radamson, H.H. Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines 2022, 13, 1257. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Uddin, M.N.; Parvez, M.M.H.; Mohotadi, M.A.A.; Ferdush, J. Bio-Based Nanomaterials for Groundwater Arsenic Remediation: Mechanisms, Challenges, and Future Perspectives. Nanomaterials 2025, 15, 933. [Google Scholar] [CrossRef] [PubMed]
- Logakannan, K.P.; Guven, I.; Odegard, G.; Wang, K.; Zhang, C.; Liang, Z.; Spear, A. A Review of Artificial Intelligence (AI)-Based Applications to Nanocomposites. Compos. Part Appl. Sci. Manuf. 2025, 197, 109027. [Google Scholar] [CrossRef]
- Carroccio, S.C.; Scarfato, P.; Bruno, E.; Aprea, P.; Dintcheva, N.T.; Filippone, G. Impact of Nanoparticles on the Environmental Sustainability of Polymer Nanocomposites Based on Bioplastics or Recycled Plastics—A Review of Life-Cycle Assessment Studies. J. Clean. Prod. 2022, 335, 130322. [Google Scholar] [CrossRef]
- He, J.; Qian, S.; Niu, X.; Zhang, N.; Qian, J.; Hou, X.; Mu, J.; Geng, W.; Chou, X. Piezoelectric-Enhanced Triboelectric Nanogenerator Fabric for Biomechanical Energy Harvesting. Nano Energy 2019, 64, 103933. [Google Scholar] [CrossRef]
- Musa, A.A.; Bello, A.; Adams, S.M.; Onwualu, A.P.; Anye, V.C.; Bello, K.A.; Obianyo, I.I. Nano-Enhanced Polymer Composite Materials: A Review of Current Advancements and Challenges. Polymers 2025, 17, 893. [Google Scholar] [CrossRef]
- Dananjaya, V.; Marimuthu, S.; Yang, R. (Chunhui); Grace, A.N.; Abeykoon, C. Synthesis, Properties, Applications, 3D Printing and Machine Learning of Graphene Quantum Dots in Polymer Nanocomposites. Prog. Mater. Sci. 2024, 144, 101282. [Google Scholar] [CrossRef]
Method | Typical Workflow | Relative Advantages | Challenges | Scalability | Reproducibility | Interfacial Adhesion | Applications | References |
---|---|---|---|---|---|---|---|---|
In situ polymerization | Disperse nanocarbon in a monomer (or monomer solution), then polymerize so the network forms during cure. | Simple overall workflow; often achieves good, uniform networks because the polymer forms around the filler. | Only applicable to certain monomers/polymers; aggregation can still occur and generally must be mitigated (e.g., ultrasonics/surfactants). | Generally good for batch and scale-up if the target polymer system supports in situ routes. | Moderate–high if mixing/dispersion protocol is controlled; still filler aggregation limited. | Often benefits from chemical/physical compatibilization; functionalization of carbons or matrix can strengthen interfaces. (Examples across systems show property gains when interfacial interactions are improved.) | Structural/functional coatings, sensors, and energy devices where uniform networks are desired. | [1,24,35] |
Solution casting (solution method) | Dissolve polymer; disperse nanocarbon in the same solvent; mix/sonicate; cast and evaporate solvent. | Tends to distribute fillers more homogeneously than melt routes (lower viscosity aids dispersion). | Multi-step/solvent-intensive; solvent selection critical; aggregation still possible; cooling/ultrasonics often needed. | Moderate (solvent handling/evaporation can bottleneck scale). | Moderate (sensitive to solvent residue and dispersion history; aggregation is an intrinsic risk). | Interfacial strength can be boosted via filler functionalization or compatibilizers during solution processing, improving dispersion and bonding. | Thin films/coatings; flexible sensor skins; membranes; electrodes. | [35,36,37] |
Melt mixing (melt compounding) | Add nanocarbon to molten polymer (e.g., extrusion, roll-mill); high-shear mixing; shape/cool. | Low cost, simple, industrially ubiquitous; compatible with thermoplastics (extrusion, rheometers, etc.). | High shear promotes dispersion but shortens aspect ratio, degrading properties; difficult to achieve uniform nanoscale dispersion; not suited to thermosets. | High (standard plastics tooling, continuous processing). | Moderate (sensitive to shear history; breakage of high-aspect fillers affects batch-to-batch properties). | Often requires surface treatments/compatibilizers to maintain dispersion and improve matrix–filler bonding. | Bulk structural/EMI parts; conductive/antistatic thermoplastic components. | [35,38] |
Electrospinning | Spin polymer solutions into nano/microfibers, then (optionally) carbonize to CNF mats; embed or use as freestanding architectures. | Produces porous, interconnected fibrous networks (good ion transport, large surface area); mat/web forms are ideal for electrochemical electrodes and sensors. | Multi-step (spinning + thermal treatment); morphology sensitive to solution/processing parameters. | Moderate (scalable with multi-jet/needleless systems, but slower than melt compounding). | Good when parameters are fixed; fiber morphology is parameter-sensitive (batch variation if controls drift). | Fiber/mat architectures offer large contact area; interfacial effects governed by fiber surface chemistry and post-treatments. | Battery/supercapacitor electrodes; flexible/porous sensors; conductive mats. | [36,39] |
Electropolymerization | Electrochemically grow a conducting polymer (e.g., polypyrrole, polyaniline, polythiophene) on a conductive substrate or carbon network. | Conformal coatings and intimate contact at the interface; enhances charge storage and interfacial coupling; can increase adhesion with suitable primers (e.g., PEI). | Requires conductive substrate/path; thickness/uniformity depend on mass transport and potential control. | Good at device scale (wafer/electrode batches) but less suited for bulk parts. | High when deposition parameters are controlled (electrochemical processes are recipe-driven). | Demonstrated adhesion gains for polypyrrole on Au using polyethyleneimine; strong interfacial coupling with carbons improves electrochemical performance. | Supercapacitor/battery electrodes; electrochemical sensors; hybrid CP–carbon energy devices. | [39,40,41] |
Sensor Category | Target Analytes/Stimuli | Representative Detection Limit | Reference |
---|---|---|---|
Physical sensors | Strain, Pressure, Touch, Flex | Strain: <0.1% Pressure: <1 Pa | [57] |
Pressure, Proximity, Touch | Force: ~10 mg | [67] | |
Temperature, Heat Flow | Temperature Δ: <0.1 °C | [68] | |
Chemical sensors | Volatile Organic Compounds (VOCs), NH3, NO2, CO, H3 | VOCs/Gases: 0.1–10 ppm NH3: <1 ppm | [69] |
Heavy Metals (Pb2+, Cd2+, Hg2+), Toxins | Heavy Metals: <1 ppb | [70] | |
Humidity, Specific Vapors | Relative Humidity: <1% RH | [71] | |
Biosensors | Glucose, Cholesterol, Uric Acid, Neurotransmitters (Dopamine) | Glucose: <10 µM Dopamine: <1 nM | [72] |
Proteins, DNA, Viruses, Cancer Biomarkers | Proteins < 1 pg/mL | [73] | |
Bacterial Pathogens (E. coli, S. aureus), Cells | Bacteria: 10–100 CFU/mL | [73] |
Stimuli-Responsive Behavior | Types | Activation Mechanism | Core Materials | Reference |
---|---|---|---|---|
Chemically induced SMPs | Thermally induced SMPs | Induced by direct heating and hardware-based one if the applied temperature goes over the polymer transition temperature (Ttrans). | Integrating SMPs with other stimuli-responsive materials (nanofillers) including Fe3O4, AuNPs and AgNPs, CNTs, GO, and cellulose nanocrystals. | [98] |
Light-induced SMPs | Laminating under external tension with short-wavelength UV light fixes the temporary shape, while longer-wavelength exposure restores the polymer shape. | Typical fillers for thermal conductivity are carbon-based, metallic, or organic compounds. | [107] | |
Electric/magnetic-induced SMPs | SMPs recover shape via Joule heating, where applied voltage generates heat above the transition temperature. | SMPs incorporate conductive fillers like CNTs, graphene, or silver nanoparticles for Joule heating under electric fields, as well as magnetic particles (Fe3O4, CoFe2O4) for alternating magnetic field activation. | [108] | |
Physically induced SMPs | pH-induced SMPs | pH-sensitive SMPs are designed based on reversible bonds (e.g., β-cyclodextrin—alginate inclusion complex or protonatable groups like pyridine) that disintegrate or are formed at different pH. | The pH-responsive SMP, made of poly (ethylene glycol)–poly(-caprolactone)-based polyurethane with pyridine-functionalized CNCs (CNC–C6H4NO2), used the functional groups as switching units to enable effective shape-memory behavior. | [109] |
Water-induced SMPs | Water-responsive SMPs absorb moisture, leading to plasticization, hydrogen bond cleavage, and lowered glass transition temperature (Tg), enabling shape recovery at body temperature (such as 37 °C). Hydrophilic fillers like cellulose nanowhiskers (CNWs) enhance this sensitivity. | Hydro-responsive SMPs use hydrophilic polymers (PVA, PVAc) and cellulose-related derivatives (CNWs) that either expand or break H-bonds upon wetting. | [110] | |
Enzymatically triggered SMPs | Enzyme-responsive SMPs recover their shape through enzymatic degradation, enabling controlled activation in biological environments. | By choosing PCL (enzyme degradable), Pellethane (stable matrix), and natural/synthetic biopolymers (polysaccharides, polyamino acids), the enzymatic shape-memory activation under physiological conditions can be allowed. | [111] | |
Multi-stimuli responsive SMPs | Multifunctional SMPs | Multi-stimuli SMPs are activated under stress conditions, which may include heat, light, chemicals, etc. Metal–ligand bonds cleave upon stimuli, while thiol-ene photocrosslinking can fix a permanent shape allowing for precise and reversible transformations. | Soft poly(butadiene), soft metal–ligand moieties, and PVA-graft-polyurethane-based multi-stimulus responsive networks for multi-step shape recovery using UV/heat/water triggers. | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubasshira; Rahman, M.M.; Uddin, M.N.; Rhaman, M.; Roy, S.; Sarker, M.S. Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies. Processes 2025, 13, 2991. https://doi.org/10.3390/pr13092991
Mubasshira, Rahman MM, Uddin MN, Rhaman M, Roy S, Sarker MS. Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies. Processes. 2025; 13(9):2991. https://doi.org/10.3390/pr13092991
Chicago/Turabian StyleMubasshira, Md. Mahbubur Rahman, Md. Nizam Uddin, Mukitur Rhaman, Sourav Roy, and Md Shamim Sarker. 2025. "Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies" Processes 13, no. 9: 2991. https://doi.org/10.3390/pr13092991
APA StyleMubasshira, Rahman, M. M., Uddin, M. N., Rhaman, M., Roy, S., & Sarker, M. S. (2025). Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies. Processes, 13(9), 2991. https://doi.org/10.3390/pr13092991