Effects of Non-Ionic Surfactant Tween 80 on Enzymatic Saccharification of Avicel and Steam-Exploded Poplar at High Solid Loading
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Effects of Tween 80 on ESHSL of Avicel and SEP
2.2.1. ESHSL of Avicel Under Different Tween 80 Concentrations
2.2.2. ESHSL of Avicel and SEP with Different Cellulase Loading and Feed Strategy
2.3. Effects of Tween 80 on Rheological Properties of ESHSL of SEP
2.4. Effects of Tween 80 on Non-Productive Adsorption of Cellulase on Lignin
2.5. Mechanisms of Tween 80 on Non-Productive Adsorption of Cellulase on Lignin
3. Results and Discussion
3.1. Effects of Tween 80 Concentration on ESHSL of Avicel
3.2. Effects of Tween 80 on ESHSL of Avicel and SEP with Different Cellulase Loading and Feed Strategy
3.3. Effect of Tween 80 on Rheological Properties of ESHSL of SEP
3.4. Effects and Mechanism of Tween 80 on Reducing the Non-Productive Adsorption of Cellulase on Lignin
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ES | Enzymatic saccharification |
ESR | Enzymatic saccharification rate |
ESHSL | Enzymatic saccharification at high solids loading |
LCB | Lignocellulosic biomass |
SEP | Steam-exploded poplar |
LSEP | Lignin derived from SEP |
References
- Qian, Q.; Luo, Z.; Sun, H.; Wei, Q.; Shi, J.; Li, L. Life cycle assessment and techno-economic analysis of wood-based biorefineries for cellulosic ethanol production. Bioresour. Technol. 2024, 399, 130595. [Google Scholar] [CrossRef]
- Kazmi, A.; Sultana, T.; Ali, A.; Nijabat, A.; Li, G.; Hou, H. Innovations in bioethanol production: A comprehensive review of feedstock generations and technology advances. Energy Strategy Rev. 2025, 57, 101634. [Google Scholar] [CrossRef]
- Woo, W.X.; Tan, J.P.; Wu, T.Y.; Yeap, S.K.; Indera Luthfi, A.A.; Abdul Manaf, S.F.; Jamali, N.S.; Hui, Y.W. An overview on the factors affecting enzymatic saccharification of lignocellulosic biomass into fermentable sugars. Rev. Chem. Eng. 2024, 40, 279–303. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z. Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng. Life Sci. 2017, 17, 489–499. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Raj, T.; Tsai, M.-L.; Chen, C.-W.; Dong, C.D. Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production. Catalysts 2022, 12, 615. [Google Scholar] [CrossRef]
- Baral, P.; Kumar, V.; Agrawal, D. Emerging trends in high-solids enzymatic saccharification of lignocellulosic feedstocks for developing an efficient and industrially deployable sugar platform. Crit. Rev. Biotechnol. 2022, 42, 873–891. [Google Scholar] [CrossRef] [PubMed]
- Shiva; Rodríguez-Jasso, R.M.; López-Sandin, I.; Aguilar, M.A.; López-Badillo, C.M.; Ruiz, H.A. Intensification of enzymatic saccharification at high solid loading of pretreated agave bagasse at bioreactor scale. J. Environ. Chem. Eng. 2023, 11, 109257. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, X.; Bao, J. High solids loading pretreatment: The core of lignocellulose biorefinery as an industrial technology—An overview. Bioresour. Technol. 2023, 369, 128334. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.S.A.; Espinheira, R.P.; Teixeira, R.S.S.; de Souza, M.F.; Ferreira-Leitão, V.; Bon, E.P.S. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: A critical review. Biotechnol. Biofuels 2020, 13, 58. [Google Scholar] [CrossRef]
- Arora, R.; Singh, P.; Sarangi, P.K.; Kumar, S.; Chandel, A.K. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: Challenges and solutions. Crit. Rev. Biotechnol. 2024, 44, 218–235. [Google Scholar] [CrossRef]
- Sánchez Muñoz, S.; Rocha Balbino, T.; Mier Alba, E.; Gonçalves Barbosa, F.; Tonet De Pier, F.; Lazuroz Moura De Almeida, A.; Helena Balan Zilla, A.; Antonio Fernandes Antunes, F.; Terán Hilares, R.; Balagurusamy, N.; et al. Surfactants in biorefineries: Role, challenges & perspectives. Bioresour. Technol. 2022, 345, 126477. [Google Scholar] [CrossRef]
- Zheng, T.; Jiang, J.; Yao, J. Surfactant-promoted hydrolysis of lignocellulose for ethanol production. Fuel Process. Technol. 2021, 213, 106660. [Google Scholar] [CrossRef]
- Liu, T.; Wang, P.; Tian, J.; Guo, J.; Zhu, W.; Bushra, R.; Huang, C.; Jin, Y.; Xiao, H.; Song, J. Emerging role of additives in lignocellulose enzymatic saccharification: A review. Renew. Sust. Energy Rev. 2024, 197, 114395. [Google Scholar] [CrossRef]
- Gao, L.; Li, W.; Wang, W.; Zhang, Y.; Wang, M.; Liang, C.; Xing, S.; Qi, W. Relation between structural feature and non-ionic surfactant improving enzymatic hydrolysis of lignocellulose. Biomass Conv. Bioref. 2025, 15, 12949–12958. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Han, X.; Zeng, Y.; Zhang, J.; Gao, Z.; Xie, J. Intensification of sugar production by using Tween 80 to enhance metal-salt catalyzed pretreatment and enzymatic hydrolysis of sugarcane bagasse. Bioresour. Technol. 2021, 339, 125522. [Google Scholar] [CrossRef]
- Li, R.; Ruan, H.; Zhang, D.; Zhu, C.; Lai, C.; Yong, Q. Tween 80 reversed adverse effects of combined autohydrolysis and p-toluenesulfonic acid pretreatment on enzymatic hydrolysis of poplar. Bioresour. Technol. 2024, 393, 130056. [Google Scholar] [CrossRef]
- de Oliveira Rodrigues, P.; Moreira, F.S.; Cardoso, V.L.; Santos, L.D.; Gurgel, L.V.A.; Pasquini, D.; Baffi, M.A. Combination of High Solid Load, On-site Enzyme Cocktails and Surfactant in the hydrolysis of Hydrothermally Pretreated Sugarcane Bagasse and Ethanol Production. Waste Biomass Valor. 2022, 13, 3085–3094. [Google Scholar] [CrossRef]
- Qi, W.; Feng, Q.; Wang, W.; Zhang, Y.; Hu, Y.; Shakeel, U.; Xiao, L.; Wang, L.; Chen, H.; Liang, C. Combination of surfactants and enzyme cocktails for enhancing woody biomass saccharification and bioethanol production from lab-scale to pilot-scale. Bioresour. Technol. 2023, 384, 129343. [Google Scholar] [CrossRef]
- Liang, Y.; Tong, D.; Hou, K.; Li, Z.; Zhang, L.; Shao, L.; Wu, Z.; Huang, Y.; Zhan, P. Mechanisms of surfactant JFC-M-assisted dilute phosphoric acid plus steam explosion of poplar wood. Biomass Conv. Bioref. 2025, 1–12. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, W.; Wang, F.; Bao, H.; Zhan, P.; Chen, J.; Tong, Z. Fractionation and quantitative structural analysis of lignin from a lignocellulosic biorefinery process by gradient acid precipitation. Fuel 2022, 309, 122153. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Crocker, D. Laboratory Analytical Procedure. In Determinatin of Structural Carbohydrates and Lignin in Biomass: NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2010. [Google Scholar]
- Zhang, J.; Wang, L.; Chen, H. Effect of periodic high-frequency vibration with rigid spheres added on high solids enzymatic hydrolysis of steam-exploded corn straw. Process Biochem. 2020, 94, 99–109. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, C.; Lin, W.; Bian, B.; Lai, C.; Ling, Z.; Yong, Q. A structure–activity understanding of the interaction between lignin and various cellulase domains. Bioresour. Technol. 2022, 351, 127042. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, S.; Huang, C.; Yong, Q.; Elder, T.; Tu, M. Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity. Biotechnol. Biofuels 2017, 10, 162. [Google Scholar] [CrossRef]
- Lin, W.; Yang, J.; Zheng, Y.; Huang, C.; Yong, Q. Understanding the effects of different residual lignin fractions in acid-pretreated bamboo residues on its enzymatic digestibility. Biotechnol. Biofuels 2021, 14, 143. [Google Scholar] [CrossRef]
- Lan, T.; Lin, T.; Qin, Y. Enhancement of enzyme hydrolysis by increasing the zeta potential to reduce non-productive cellulase adsorption on sugarcane bagasse treated with liquid hot water. BioResources 2020, 15, 5965–5974. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Ge, X.; Zhang, J. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnol. Biofuels 2016, 9, 20. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, W.; Zhang, J.; Quan, X.; Chu, J.; Meng, X.; Pu, Y.; Ragauskas, A.J. Beneficial effect of surfactant in adsorption/desorption of lignocellulose-degrading enzymes on/from lignin with different structure. Ind. Crops Prod. 2023, 191, 115904. [Google Scholar] [CrossRef]
- Nababan, M.Y.S.; Fatriasari, W.; Wistara, N.J. Response surface methodology for enzymatic hydrolysis optimization of jabon alkaline pulp with Tween 80 surfactant addition. Biomass Convers. Biorefinery 2022, 12, 2165–2174. [Google Scholar] [CrossRef]
- Parnthong, J.; Kungsanant, S.; Chavadej, S. The Influence of Nonionic Surfactant Adsorption on Enzymatic Hydrolysis of Oil Palm Fruit Bunch. Appl. Biochem. Biotechnol. 2018, 186, 895–908. [Google Scholar] [CrossRef]
- Brethauer, S.; Antczak, A.; Balan, R.; Zielenkiewicz, T.; Studer, M.H. Steam Explosion Pretreatment of Beechwood. Part 2: Quantification of Cellulase Inhibitors and Their Effect on Avicel Hydrolysis. Energies 2020, 13, 3638. [Google Scholar] [CrossRef]
- Mou, H.; Tang, L.; Wu, T.; Feng, L.; Liu, Y. Study on the mechanism of lignin non-productive adsorption on cellobiohydrolase. Int. J. Biol. Macromol. 2024, 273, 133003. [Google Scholar] [CrossRef]
- Ying, W.; Zhu, J.; Xu, Y.; Zhang, J. High solid loading enzymatic hydrolysis of acetic acid-peroxide/acetic acid pretreated poplar and cellulase recycling. Bioresour. Technol. 2021, 340, 125624. [Google Scholar] [CrossRef]
- Li, B.; Feng, S.; Huang, J.; Hu, Y.; Chen, X.; Fu, X.; Lin, X. Facile fractionation of poplar by a novel ternary deep eutectic solvent (DES) for cellulosic ethanol production under mild pretreatment conditions. Ind. Crops Prod. 2025, 223, 120132. [Google Scholar] [CrossRef]
- Wang, L.; Yin, M.; Li, M.; Chen, H. Salt-frost pretreatment disrupts the dense structure of poplar coupled with hydrothermal processing to enhance enzymatic hydrolysis. Ind. Crops Prod. 2025, 231, 121146. [Google Scholar] [CrossRef]
- Knutsen, J.S.; Liberatore, M.W. Rheology Modification and Enzyme Kinetics of High Solids Cellulosic Slurries. Energy Fuels 2010, 24, 3267–3274. [Google Scholar] [CrossRef]
- Charpentier Alfaro, C.; Méndez Arias, J. Enzymatic conversion of treated oil palm empty fruit bunches fiber into fermentable sugars: Optimization of solid and protein loadings and surfactant effects. Biomass Conv. Biorefinery 2021, 11, 2359–2368. [Google Scholar] [CrossRef]
- da Conceição Gomes, A.; Moysés, D.N.; Santa Anna, L.M.M.; de Castro, A.M. Fed-batch strategies for saccharification of pilot-scale mild-acid and alkali pretreated sugarcane bagasse: Effects of solid loading and surfactant addition. Ind. Crops Prod. 2018, 119, 283–289. [Google Scholar] [CrossRef]
- Javed, M.R.; Rashid, M.H.; Riaz, M.; Nadeem, H.; Qasim, M.; Ashiq, N. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis. Protein Pept. Lett. 2018, 25, 208–219. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, X.; Li, X.; Zhao, J. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. Biotechnol. Biofuels 2016, 9, 118. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Zhang, A.; Pang, Y.; Yang, D.; Lou, H.; Qiu, X. Unveiling the role of long-range and short-range forces in the non-productive adsorption between lignin and cellulases at different temperatures. J. Colloid Interf. Sci. 2023, 647, 318–330. [Google Scholar] [CrossRef]
- Huang, C.; Jiang, X.; Shen, X.; Hu, J.; Tang, W.; Wu, X.; Ragauskas, A.; Jameel, H.; Meng, X.; Yong, Q. Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew. Sust. Energy Rev. 2022, 154, 111822. [Google Scholar] [CrossRef]
- Jiang, F.; Qian, C.; Esker, A.R.; Roman, M. Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin. J. Phys. Chem. B 2017, 121, 9607–9620. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, X.; Zheng, Y.; Lin, W.; Lai, C.; Yong, Q.; Ragauskas, A.J.; Meng, X. Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo. Bioresour. Technol. 2022, 360, 127524. [Google Scholar] [CrossRef]
- Han, L.; Jiang, B.; Wang, W.; Wang, G.; Tan, Y.; Niu, K.; Fang, X. Alleviating Nonproductive Adsorption of Lignin on CBM through the Addition of Cationic Additives for Lignocellulosic Hydrolysis. ACS Appl. Bio Mater. 2022, 5, 2253–2261. [Google Scholar] [CrossRef] [PubMed]
Pretreatment Method | Enzymatic Saccharification Process | Enzymatic Saccharification Efficiency | Reference |
---|---|---|---|
Acetic acid-peroxide/acetic acid pretreatment | Strategy: Batch, Solid loading: 20% (w/v), Cellulase: Cellic CTec 2, 20 FPU/g dry biomass, Additive: 1 g/L Tween 80, Time: 72 h | ESR: 78.4% | [33] |
Dernary deep eutectic solvent (triethylbenzyl ammonium chloride+p-toluene sulfonic acid+ethylene glycol) pretreatment | Strategy: Batch, Solid loading: 20% (w/w), Cellulase: Celluclast 2.0 L, 15 FPU/g poplar, Additive: None, Time: 120 h | ESR: 38.5%, Glucose: 80.77 g/L | [34] |
Salt-frost pretreatment combined with hydrothermal pretreatment | Strategy: Batch, Solid loading: 20% (w/v), Cellulase: Cellic CTec2, 20 FPU/g dry biomass, Time: 24 h | Glucose: ~52.0 g/L | [35] |
Hydrothermal and acetic acid pretreatment | Strategy: Fed-batch, Solid loading: 20% (w/w), Cellulase: cocktail (LLC02+CTec2, 8:2), 10 FPU/g glucan, Xylanase: 30 IU/g biomass, Additive: 2 g/L Tween 80, 2.4 g/L PEG 8000, and 2 g/L sophorolipid, Time: 120 h | Glucose: 65.3 g/L | [17] |
Steam explosion pretreatment | Strategy: Fed-batch, Solid loading: 15% (w/w), Cellulase: cocktail (LLC02+β-glucosidase), 20 FPU/g glucan, Additive: 1.0% Tween 80, Time: 96 h | ESR: 86.4%, Glucose: 93.9 g/L | This work |
ESHSL Strategy | ESHSL Time (h) | Complex Viscosity (Pa·s) | |
---|---|---|---|
Without Tween 80 | Tween 80 Added | ||
Batch | 0 | 29,905.6 ± 42.8 | 21,606.7 ± 53.5 |
48 | 15,921.5 ± 35.7 | 12,777.0 ± 24.7 | |
72 | 7511.3 ± 62.4 | 6009.3 ± 19.8 | |
96 | 5792.1 ± 58.0 | 4249.8 ± 34.5 | |
Fed-batch | 48 | 11,282.6 ± 68.9 | 9026.1 ± 21.4 |
72 | 5045.8 ± 19.6 | 4204.8 ± 24.2 | |
96 | 3870.2 ± 13.6 | 2292.6 ± 53.4 |
LSEP | LSEP+Tween 80 | |
---|---|---|
Cellulase adsorption rate (%) | 39.1 ± 0.75 | 33.6 ± 0.49 |
Hydrophobicity * (g/L) | 0.33 | 0.25 |
Zeta potential (mV) | −18.8 ± 0.96 | −19.3 ± 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, P.; Tan, Y.; Wang, H.; Liu, J.; Shao, L.; Wu, Z. Effects of Non-Ionic Surfactant Tween 80 on Enzymatic Saccharification of Avicel and Steam-Exploded Poplar at High Solid Loading. Processes 2025, 13, 2960. https://doi.org/10.3390/pr13092960
Zhan P, Tan Y, Wang H, Liu J, Shao L, Wu Z. Effects of Non-Ionic Surfactant Tween 80 on Enzymatic Saccharification of Avicel and Steam-Exploded Poplar at High Solid Loading. Processes. 2025; 13(9):2960. https://doi.org/10.3390/pr13092960
Chicago/Turabian StyleZhan, Peng, Yuxin Tan, Hui Wang, Jin Liu, Lishu Shao, and Zhiping Wu. 2025. "Effects of Non-Ionic Surfactant Tween 80 on Enzymatic Saccharification of Avicel and Steam-Exploded Poplar at High Solid Loading" Processes 13, no. 9: 2960. https://doi.org/10.3390/pr13092960
APA StyleZhan, P., Tan, Y., Wang, H., Liu, J., Shao, L., & Wu, Z. (2025). Effects of Non-Ionic Surfactant Tween 80 on Enzymatic Saccharification of Avicel and Steam-Exploded Poplar at High Solid Loading. Processes, 13(9), 2960. https://doi.org/10.3390/pr13092960