Towards a Deeper Understanding of Simple Soaps: Influence of Fatty Acid Chain Length on Concentration and Function
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of Potassium Carboxylates (RCOO−K+)
2.3. Extracting Unreacted Oil in Soaps
2.4. Determining Soap Concentration and Water Demand
2.5. Soap Characterization
2.5.1. Foam Stability Measurement
2.5.2. Detergency Measurement
2.5.3. Wetting Ability
2.5.4. Contact Angle
2.5.5. Surface Tension
2.5.6. pH
2.5.7. Density
2.5.8. Soluble Solid Content (Brix)
2.5.9. Differential Scanning Calorimetry
2.5.10. Rheological Behavior
3. Results and Discussion
3.1. Mass Balance and Properties from Saponification
3.2. Soap Concentration and Water Demand
3.3. Reaction Kinetics for Depletion of KOH
3.4. Foam Stability
3.5. Wettability
3.6. Contact Angles
3.7. Detergency
3.8. Viscosity and Flow Type
3.9. Thermal Transition Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Konkol, K.L.; Rasmussen, S.C. An Ancient Cleanser: Soap Production and Use in Antiquity. In Chemical Technology in Antiquity; American Chemical Society: Washington, DC, USA, 2015; pp. 245–266. [Google Scholar]
- Mijaljica, D.; Spada, F.; Harrison, I.P. Skin Cleansing without or with Compromise: Soaps and Syndets. Molecules 2022, 27, 2010. [Google Scholar] [CrossRef]
- Gunstone, F. The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Stonebrook, K. Soap Evolution Revealed; Publifye AS: Oslo, Norway, 2025. [Google Scholar]
- Khalfallah, A. Structure and Applications of Surfactants, in Surfactants-Fundamental Concepts and Emerging Perspectives; Owoseni, O., Ed.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Medoš, Ž; Bešter-Rogač, M. Two-Step Micellization Model: The Case of Long-Chain Carboxylates in Water. Langmuir 2017, 33, 7722–7731. [Google Scholar] [CrossRef]
- Molchanov, V.S.; Philippova, O.E. Effects of concentration and temperature on viscoelastic properties of aqueous potassium oleate solutions. Colloid J. 2009, 71, 239–245. [Google Scholar] [CrossRef]
- Wang, J. Trace Efficient Laundry Detergent and Preparation Method Thereof. 2021: China. Available online: https://patents.google.com/patent/CN113355175A/en?oq=CN202110627556 (accessed on 20 March 2025).
- Shao, X. Low-Foam Easy-Rinsing Laundry Detergent. Prod, Q.S.S., Ed.; 2014. Available online: https://worldwide.espacenet.com/patent/search/family/052368123/publication/CN104312804A?q=CN104312804A (accessed on 1 March 2025).
- Svensson, M. Chapter 1: Surfactants based on natural fatty acids. In Surfactants from Renewable Resources; Kjellin, M., Johansson, I., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 1–19, Chapter 1. [Google Scholar] [CrossRef]
- Kanicky, J.R.; Poniatowski, A.F.; Mehta, N.R.; Shah, D.O. Cooperativity among Molecules at Interfaces in Relation to Various Technological Processes: Effect of Chain Length on the pKa of Fatty Acid Salt Solutions. Langmuir 2000, 16, 172–177. [Google Scholar] [CrossRef]
- Gopalakrishna, A.G.; Gaurav, R.; Ajit Singh, B.; Prasanth Kumar, P.K. Coconut oil: Chemistry, production and its applications-A review. Indian Coconut J. 2010, 15–27. [Google Scholar]
- Zhou, W.; Konar, S.K.; Boocock, D.G. Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils. J. Am. Oil Chem. Soc. 2003, 80, 367–371. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Liau, K.M.; Lee, Y.Y.; Chen, C.K.; Rasool, A.H.G. An Open-Label Pilot Study to Assess the Efficacy and Safety of Virgin Coconut Oil in Reducing Visceral Adiposity. Int. Sch. Res. Not. 2011, 2011, 949686. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Asnaashari, M.; Sayyad, R. Comparison antioxidant activity of Tarom Mahali rice bran extracted from different extraction methods and its effect on canola oil stabilization. J. Food Sci. Technol. 2015, 52, 6385–6394. [Google Scholar] [CrossRef] [PubMed]
- Klevens, H.B. The Critical Micelle Concentration of Anionic Soap Mixtures. J. Chem. Phys. 1946, 14, 742. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ghosh, A.K.; Bose, R.N. Dissociation constants of long chain fatty acids in methanol-water and ethanol-water mixtures. J. Chem. Technol. Biotechnol. 1979, 29, 158–162. [Google Scholar] [CrossRef]
- Klevens, H. Critical micelle concentrations as determined by refraction. J. Phys. Chem. 1948, 52, 130–148. [Google Scholar] [CrossRef]
- Kanicky, J.R.; Shah, D.O. Effect of Degree, Type, and Position of Unsaturation on the pKa of Long-Chain Fatty Acids. J. Colloid Interface Sci. 2002, 256, 201–207. [Google Scholar] [CrossRef]
- Malik, W.U.; Jain, A.K. Electrometric determination of critical micelle concentration of soap solutions. J. Electroanal. Chem. Interfacial Electrochem. 1967, 14, 37–41. [Google Scholar] [CrossRef]
- Kanicky, J.R.; Shah, D.O. Effect of Premicellar Aggregation on the pKa of Fatty Acid Soap Solutions. Langmuir 2003, 19, 2034–2038. [Google Scholar] [CrossRef]
- Miranda, P.; Du, Q.; Shen, Y. Interaction of water with a fatty acid Langmuir film. Chem. Phys. Lett. 1998, 286, 1–8. [Google Scholar] [CrossRef]
- Kanicky, J.R. Importance of Molecular Packing at Interfaces as Well as in Pre-Micellar and Micellar Aggregates for Controlling Various Technological Processes; University of Florida: Gainesville, FL, USA, 2002. [Google Scholar]
- Matsuoka, K.; Sato, A.; Ogawa, Y.; Okazaki, K.; Yada, S.; Yoshimura, T. Micelle Formation of Dodecanoic Acid with Alkali Metal Counterions. J. Oleo Sci. 2023, 72, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.F.P.; Valente, A.J.M.; Fernandes, M.; Burrows, H.D. What drives the precipitation of long-chain calcium carboxylates (soaps) in aqueous solution? Phys. Chem. Chem. Phys. 2012, 14, 7517–7527. [Google Scholar] [CrossRef]
- Itsadanont, S.; Scamehorn, J.F.; Soontravanich, S.; Sabatini, D.A.; Chavadej, S. Dissolution of Soap Scum by Surfactant Part I: Effects of Chelant and Type of Soap Scum. J. Surfactants Deterg. 2014, 17, 849–857. [Google Scholar] [CrossRef]
- Cornwell, P.A. A review of shampoo surfactant technology: Consumer benefits, raw materials and recent developments. Int. J. Cosmet. Sci. 2018, 40, 16–30. [Google Scholar] [CrossRef]
- Bondi, C.A.M.; Marks, J.L.; Wroblewski, L.B.; Raatikainen, H.S.; Lenox, S.R.; Gebhardt, K.E. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products. Environ. Health Insights 2015, 9, 27–32. [Google Scholar] [CrossRef]
- Lémery, E.; Briançon, S.; Chevalier, Y.; Bordes, C.; Oddos, T.; Gohier, A.; Bolzinger, M.-A. Skin toxicity of surfactants: Structure/toxicity relationships. Colloids Surf. A Physicochem. Eng. Asp. 2015, 469, 166–179. [Google Scholar] [CrossRef]
- De Jongh, C.M.; Verberk, M.M.; Withagen, C.E.T.; Jacobs, J.J.L.; Rustemeyer, T.; Kezic, S. Stratum corneum cytokines and skin irritation response to sodium lauryl sulfate. Contact Dermat. 2006, 54, 325–333. [Google Scholar] [CrossRef]
- De Jongh, C.M.; Verberk, M.M.; Spiekstra, S.W.; Gibbs, S.; Kezic, S. Cytokines at different stratum corneum levels in normal and sodium lauryl sulphate-irritated skin. Ski. Res. Technol. 2007, 13, 390–398. [Google Scholar] [CrossRef]
- Effendy, I.; Maibach, H.I. Surfactants and experimental irritant contact dermatitis. Contact Dermat. 1995, 33, 217–225. [Google Scholar] [CrossRef]
- Dianti, S.; Kusumayanti, H. Formulation of Antibacterial Liquid Soap Based on Virgin Coconut Oil with Various Concentrations of Carica Concentrate and Potassium Hydroxide Volume. J. Vocat. Stud. Appl. Res. 2022, 4, 13–17. [Google Scholar] [CrossRef]
- Özokan, K.G.; Bilginer, A. Development of Natural Castile Soaps from Vegetable Oils. Experimed 2024, 14, 194–202. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, M.; Lu, Y.; Zhang, Y.; Lin, B.; Von Lau, E. A novel method for the green utilization of waste fried oil. J. Particuol. 2024, 84, 1–11. [Google Scholar] [CrossRef]
- Hair, V. Short Curly Bob Wig. Available online: https://www.amazon.ca/dp/B0CT5N6FVV?ref=fed_asin_title#averageCustomerReviewsAnchor (accessed on 29 April 2025).
- ISO 684:1974; Analysis of Soaps—Determination of Total Free Alkali, 1st ed. International Organization for Standardization: Geneva, Switzerland, 1974. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:684:ed-1:v1:en (accessed on 25 August 2025).
- Ross, J.; Miles, G.D. An apparatus for comparison of foaming properties of soaps and detergents. Oil Soap 1941, 18, 99–102. [Google Scholar] [CrossRef]
- Mainkar, A.R.; Jolly, C.I. Evaluation of commercial herbal shampoos. Int. J. Cosmet. Sci. 2000, 22, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Lemaster, C.; Allen, R.; Whittam, J. Evaluation of relative shampoo detergency. J. Soc. Cosmet. Chem. 1985, 36, 271–286. [Google Scholar]
- Weil, J.K.; Koos, R.E.; Linfield, W.M.; Parris, N. Nonionic wetting agents. J. Am. Oil Chem. Soc. 1979, 56, 873–877. [Google Scholar] [CrossRef]
- Ubuo, E.E.; Udoetok, I.A.; Tyowua, A.T.; Ekwere, I.O.; Al-Shehri, H.S. The Direct Cause of Amplified Wettability: Roughness or Surface Chemistry? J. Compos. Sci. 2021, 5, 213. [Google Scholar] [CrossRef]
- Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D.; Blu, T.; Unser, M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 72–81. [Google Scholar] [CrossRef]
- Stalder, A. DropSnake and LB-ADSA User Manual; Biomedical Imaging Group, Ecole Polytechnique Federale de Lausanne: Lausanne, Switzerland, 2006. [Google Scholar]
- Hasibuan, R.; Parsaulian, R.R.; Adventi, F.; Manurung, R.; Hidayati, J. Effect of Impeller Types on Saponification Reaction Using Stirred Tank Reactor. J. Phys. Conf. Ser. 2020, 1542, 012017. [Google Scholar] [CrossRef]
- Kurniawati, Y.; Paramita, V. Optimization of Manufacturing liquid Soap Based on Virgin Coconut Oil with a Combination Potassium Hydroxide and Ammonium Hydroxide. J. Vocat. Stud. Appl. Res. 2022, 4, 7–12. [Google Scholar] [CrossRef]
- Asiagwu, A. Kinetics of saponification of Treculia africana oil using a locally sourced Alkaline. Int. J. Resent Res. Appl. Stud. 2013, 14, 623–629. [Google Scholar]
- Eze, V.C.; Harvey, A.P.; Phan, A.N. Determination of the kinetics of biodiesel saponification in alcoholic hydroxide solutions. Fuel 2015, 140, 724–730. [Google Scholar] [CrossRef]
- Shinoda, K. The Critical Micelle Concentration of Soap Mixtures (Two-Component Mixture). J. Phys. Chem. 1954, 58, 541–544. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena–Chapter 7 Foaming and Antifoaming by Aqueous Solutions of Surfactants; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 308–335. Available online: https://novel-coronavirus.onlinelibrary.wiley.com/doi/pdf/10.1002/9781118228920.ch7 (accessed on 25 August 2025).
- Fameau, A.-L.; Saint-Jalmes, A. Non-aqueous foams: Current understanding on the formation and stability mechanisms. Adv. Colloid Interface Sci. 2017, 247, 454–464. [Google Scholar] [CrossRef]
- Asaro, F.; Coppola, L.; Gentile, L. Micellar crowding and branching in a versatile catanionic system. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 202–209. [Google Scholar] [CrossRef]
- Broze, G. Handbook of Detergents, Part A: Properties; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Groenendijk, D.J.; van Wunnik, J.N.M. The Impact of Micelle Formation on Surfactant Adsorption–Desorption. ACS Omega 2021, 6, 2248–2254. [Google Scholar] [CrossRef]
- Shah, S.K.; Chakraborty, G.; Bhattarai, A.; De, R. Synergistic and antagonistic effects in micellization of mixed surfactants. J. Mol. Liq. 2022, 368, 120678. [Google Scholar] [CrossRef]
- Cirin, D.; Posa, M.; Krstonosic, V.; Milanovic, M. Conductometric study of sodium dodecyl sulfate-nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85) mixed micelles in aqueous solution. Hem. Ind. 2012, 66, 21–28. [Google Scholar] [CrossRef]
- Ramírez-de-Santiago, M. Viscosity of Binary Liquid Mixtures: A Comparative Analysis of Mixing Rules. Ind. Eng. Chem. Res. 2024, 63, 22470–22480. [Google Scholar] [CrossRef]
- Bui, L.H.; de Klerk, A. Thermal Behavior of Potassium C1–C12 n-Alkanoates and Its Relevance to Fischer–Tropsch. J. Chem. Eng. Data 2014, 59, 400–411. [Google Scholar] [CrossRef]
Oil Ratio (%) (Coconut–Canola) | Molar Mass (g mol−1) | Oil Mass (g) | KOH Pellets (g) | Water Used to Dissolve KOH (g) | Approx. KOH Molarity (M) | |
---|---|---|---|---|---|---|
Coconut Oil | Canola Oil | |||||
100:0 | 670.0 | 600.0 | -- | 153.8 | 1056.0 | 2.6 |
75:25 | 721.8 | 450.0 | 150.0 | 145.1 | 1110.0 | 2.3 |
50:50 | 773.5 | 300.0 | 300.0 | 130.6 | 1182.0 | 2.0 |
25:75 | 825.2 | 150.0 | 350.0 | 125.6 | 1239.0 | 1.8 |
0:100 | 877.0 | -- | 600.0 | 115.1 | 3108.0 | 0.6 |
Coconut–Canola oil Ratio | Total Initial Mass (g) | Total Final Mass (g) | Mass of Oil Layer (g) | Mass of Soap Layer (g) | Water Loss from Rxn (g) | Unreacted Oil in Top Layer (w/w%) |
---|---|---|---|---|---|---|
100:0 | 1788.9 | 1735.6 | 119.6 | 1615.9 | 57.5 | 1.1 |
75:25 | 1855.3 | 1797.8 | 66.6 | 1731.5 | 326.4 | 2.4 |
50:50 | 1912.6 | 1908.0 | 156.1 | 1762.4 | 387.3 | 1.4 |
25:75 | 1961.6 | 1958.6 | 225.3 | 1733.6 | 173.7 | 4.3 |
0:100 | 3837.9 | 3836.6 | 389.7 | 3446.9 | 245.8 | 1.7 |
Coconut–Canola oil Ratio | Total Soluble Solids (% Brix) | Soap Concentration (Soap in Water + Glycerol) | pH | Density (g/mL) | Surface Tension (mN/m) | ||
---|---|---|---|---|---|---|---|
w/w% | M | ~CMC (M) [19,44] | |||||
100:0 | 58.3 ± 0.2 | 51.9 | 2.1 | 0.03–0.05 | 9.8 ± 0.10 | 1.016 ± 0.002 | 29.45 ± 2.70 |
75:25 | 52.5 ± 0.2 | 49.9 | 1.9 | 0.02–0.04 | 9.8 ± 0.05 | 1.009 ± 0.002 | 33.52 ± 1.80 |
50:50 | 46.8 ± 0.3 | 47.4 | 1.7 | 0.01–0.03 | 10.2 ± 0.10 | 1.010 ± 0.007 | 34.28 ± 0.79 |
25:75 | 40.9 ± 0.3 | 45.6 | 1.6 | 0.005–0.015 | 10.2 ± 0.10 | 1.009 ± 0.002 | 34.37 ± 1.21 |
0:100 | 21.9 ± 0.2 | 18.8 | 0.6 | 0.001–0.002 | 13.1 ± 0.10 | 0.996 ± 0.002 | 33.00 ± 2.00 |
Coconut–Canola Oil Ratio | R2 | b |
---|---|---|
100:0 | 0.998 | 1.572 |
75:25 | 0.993 | 1.302 |
50:50 | 0.999 | 0.054 |
25:75 | 0.998 | 0.035 |
0:100 | 0.990 | 0.532 |
Coconut–Canola Oil Ratio (%) | Contact Angles (°) | |||||
---|---|---|---|---|---|---|
Undiluted Soap | 20 w/v% Soap | |||||
Glass | PTFE | Artificial Sebum | Glass | PTFE | Artificial Sebum | |
100:0 | 38.54 ± 1.42 | 76.57 ± 1.34 | 12.47 ± 0.70 | 15.67 ± 0.93 | 72.69 ± 1.71 | 11.20 ± 0.43 |
75:25 | 31.05 ± 1.96 | 77.59 ± 3.30 | 16.63 ± 0.85 | 15.68 ± 0.29 | 80.76 ± 0.54 | 6.49 ± 0.42 |
50:50 | 32.58 ± 2.50 | 76.98 ± 0.37 | 15.29 ± 1.40 | 22.60 ± 1.54 | 80.96 ± 1.53 | 13.77 ± 0.2 |
25:75 | 31.74 ± 2.49 | 81.41 ± 3.22 | 17.16 ± 1.59 | 15.92 ± 0.19 | 76.04 ± 0.76 | 12.73 ± 0.04 |
0:100 | 31.74 ± 2.50 | 78.64 ± 0.98 | 21.53 ± 0.09 | 21.97 ± 1.39 | 84.1 ± 3.06 | 16.91 ± 0.19 |
Soaps (10 w/v%) | Detergency (%) | Surfactants (10 w/v%) | Detergency (%) |
---|---|---|---|
0 w/v% Coconut Oil | 29.7 ± 2.1 | Sodium cocyl glutimate | 6.1 ± 1.0 |
25 w/v% Coconut Oil | 26.9 ± 3.7 | Sodium lauryl sulfate | 8.1 ± 2.7 |
50 w/v% Coconut Oil | 16.9 ± 4.9 | Cocoa amidopropane betaine | 8.6 ± 2.7 |
75 w/v% Coconut Oil | 21.2 ± 2.8 | Sodium lauryl ether sulfate | 13.2 ± 3.0 |
100 w/v% Coconut Oil | 24.3 ± 1.8 | Sodium cocyl isethionate | 34.2 ± 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soodoo, N.; Deonarine, S.; James, S.O.; Narine, S.S. Towards a Deeper Understanding of Simple Soaps: Influence of Fatty Acid Chain Length on Concentration and Function. Processes 2025, 13, 2770. https://doi.org/10.3390/pr13092770
Soodoo N, Deonarine S, James SO, Narine SS. Towards a Deeper Understanding of Simple Soaps: Influence of Fatty Acid Chain Length on Concentration and Function. Processes. 2025; 13(9):2770. https://doi.org/10.3390/pr13092770
Chicago/Turabian StyleSoodoo, Navindra, Shaveshwar Deonarine, Stacy O. James, and Suresh S. Narine. 2025. "Towards a Deeper Understanding of Simple Soaps: Influence of Fatty Acid Chain Length on Concentration and Function" Processes 13, no. 9: 2770. https://doi.org/10.3390/pr13092770
APA StyleSoodoo, N., Deonarine, S., James, S. O., & Narine, S. S. (2025). Towards a Deeper Understanding of Simple Soaps: Influence of Fatty Acid Chain Length on Concentration and Function. Processes, 13(9), 2770. https://doi.org/10.3390/pr13092770