Vinification Technique Matters: Kinetic Insight into Color, Phenolics, Volatiles, and Aging Potential of Babica Wines
Abstract
1. Introduction
2. Materials and Methods
2.1. Grapes and Vinification
2.2. Spectrophotometric Measurements of Color and Phenolics
2.3. High-Performance Liquid Chromatography (HPLC) Analysis of Individual Phenolics
2.4. Solid-Phase Microextraction (SPME) of Volatiles
2.5. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis of Volatiles
2.6. Sensory Descriptive Analysis of Wines
2.7. Statistical Analysis
3. Results and Discussion
3.1. Color Parameters Evaluation During Vinification
3.2. Phenolic Compounds Evaluation During Vinification
3.3. Wine Individual Phenolics
3.4. Wine Volatile Components
3.5. Wine Sensory Descriptive Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KMW | Klosterneuburg must weight |
CI | Color intensity |
H | Hue |
GAEs | Gallic acid equivalents |
REs | Rutin equivalents |
CEs | Catechin equivalents |
M-3-gl | Malvidin 3-O-glucoside |
HPLC | High-performance liquid chromatography |
PVDF | Polyvinylidene fluoride |
UV–Vis | Ultraviolet–visible |
SPME | Solid-phase microextraction |
DVB/CAR/PDMS | Divinylbenzene/Carboxen/Polydimethylsiloxane |
PTFE | Polytetrafluoroethylene |
GC | Gas chromatograph |
MS | Mass spectrometry |
ANOVA | Analysis of variance |
OD | Optical density |
RIs | Retention indices |
References
- Bautista-Ortín, A.B.; Fernández-Fernández, J.I.; López-Roca, J.M.; Gómez-Plaza, E. The effects of enological practices in anthocyanins, phenolic compounds and wine colour and their dependence on grape characteristics. J. Food Compos. Anal. 2007, 20, 546–552. [Google Scholar] [CrossRef]
- Durner, D. 12—Improvement and Stabilization of Red Wine Color, In Woodhead Publishing Series in Food Science, Technology and Nutrition, Handbook on Natural Pigments in Food and Beverages; Carle, R., Schweiggert, R.M., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 239–264. [Google Scholar] [CrossRef]
- Pavez, C.; Gonzalez-Muñoz, B.; O’Brien, J.A.; Laurie, V.F.; Osorio, F.; Núñez, E.; Vega, R.E.; Bordeu, E.; Brossard, N. Red wine astringency: Correlations between chemical and sensory features. LWT 2022, 154, 112656. [Google Scholar] [CrossRef]
- Weilack, I.; Mehren, L.; Schieber, A.; Weber, F. Grape-derived pectic polysaccharides alter the tannin and pigment composition of Cabernet Sauvignon red wines. Curr. Res. Food Sci. 2023, 6, 100506. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Toledo-Gil, R.; Bautista-Ortin, A.B.; Gómez-Plaza, E.; Yuste, J.E.; Vallejo, F. Exploring the Impact of Extended Maceration on the Volatile Compounds and Sensory Profile of Monastrell Red Wine. Fermentation 2024, 10, 343. [Google Scholar] [CrossRef]
- Cerpa-Calderon, F.K.; Kennedy, J.A. Berry integrity and extraction of skin and seed proanthocyanidins during red wine fermentation. J. Agric. Food Chem. 2008, 19, 9006–9014. [Google Scholar] [CrossRef] [PubMed]
- Borazan, A.A.; Bozan, B. The influence of pectolytic enzyme addition and prefermentative mash heating during the winemaking process on the phenolic composition of Okuzgozu red wine. Food Chem. 2013, 138, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, T.; Loyola, C.; de Bruijn, J.; Bustamante, L.; Vergara, C.; von Baer, D.; Mardones, C.; Serra, I. Effect of thermomaceration and enzymatic maceration on phenolic compounds of grape must enriched by grape pomace, vine leaves and canes. Eur. Food. Res. Technol. 2016, 242, 1149–1158. [Google Scholar] [CrossRef]
- El Darra, N.E.; Turk, M.F.; Ducasse, M.A.; Grimi, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Changes in polyphenol profiles and colour composition of freshly fermented model wine due to pulsed electric field, enzymes and thermovinification pretreatments. Food Chem. 2016, 194, 944–950. [Google Scholar] [CrossRef]
- Santos Silva, I.; Barros, A.P.A.; Correa, L.C.; de Souza, C.O.; Biasoto, A.C.T. Effect of Thermovinification Temperature on Phenolic Compounds and Colour of Syrah Wine. Beverages 2024, 10, 117. [Google Scholar] [CrossRef]
- Geffroy, O.; Lopez, R.; Serrano, E.; Dufourcq, T.; Gracia-Moreno, E.; Cacho, J.; Ferreira, V. Changes in analytical and volatile compositions of red wines induced by pre-fermentation heat treatment of grapes. Food Chem. 2015, 187, 243–253. [Google Scholar] [CrossRef]
- Maza, M.; Álvarez, I.; Raso, J. Thermal and non-thermal physical methods for improving polyphenol extraction in red winemaking. Beverages 2019, 5, 47. [Google Scholar] [CrossRef]
- Geffroy, O.; Feilhès, C.; Favarel, J.L.; Lopez, R. Pre-fermentation heat treatment: A multitool technique to keep the pot boiling. In Ives—Technical Reviews, Vine & Wine; 2021; Available online: https://ut3-toulouseinp.hal.science/hal-04996143 (accessed on 10 August 2025).
- Generalić Mekinić, I.; Skračić, Ž.; Kokeza, A.; Soldo, B.; Ljubenkov, I.; Banović, M.; Skroza, D. Effect of winemaking on phenolic profile, colour components and antioxidants in Crljenak kaštelanski (sin. Zinfandel, Primitivo, Tribidrag) wine. J. Food Sci. Technol. 2019, 56, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Generalić Mekinić, I.; Skračić, Ž.; Kokeza, A.; Soldo, B.; Ljubenkov, I.; Banović, M.; Šimat, V.; Skroza, D. Effect of Enzyme-Assisted Vinification on Wine Phenolics, Colour Components, and Antioxidant Capacity. Pol. J. Food Nutr. Sci. 2020, 70, 113–123. [Google Scholar] [CrossRef]
- Espejo, F. Role of commercial enzymes in wine production: A critical review of recent research. J. Food Sci. Technol. 2021, 58, 9–21. [Google Scholar] [CrossRef]
- Kuhlman, B.; Hansen, J.; Jørgensen, B.; du Toit, W.; Moore, J.P. The effect of enzyme treatment on polyphenol and cell wall polysaccharide extraction from the grape berry and subsequent sensory attributes in Cabernet Sauvignon wines. Food Chem. 2022, 385, 132645. [Google Scholar] [CrossRef]
- Boulton, R. Red Wines. In Fermented Beverage Production; Lea, A.G.H., Piggott, J.R., Eds.; Springer: Boston, MA, USA, 2003; pp. 107–137. [Google Scholar] [CrossRef]
- Geffroy, O.; Siebert, T.; Silvano, A.; Herderich, M. Impact of winemaking techniques on classical enological parameters and rotundone in red wine at the laboratory scale. Am. J. Enol. Vitic. 2017, 68, 141–146. [Google Scholar] [CrossRef]
- Mucalo, A.; Maletić, E.; Zdunić, G. Positive Impact of late harvest date on polyphenolic composition of Plavac Mali (Vitis vinifera L.) wine depends on location. Foods 2024, 13, 2695. [Google Scholar] [CrossRef]
- Maletić, E.; Kontić, J.; Ilijaš, I. (Eds.) Green Book: Indigenous Grapevine Varieties of Croatia; Ministarstvo Zaštite Okoliša i Prirode, Državni zavod za Zaštitu Prirode: Zagreb, Croatia, 2015.
- Skroza, D.; Skračić, Ž.; Generalić Mekinić, I.; Kokeza, A.; Ivandić, L.; Šutalo, M.; Soldo, B.; Ljubenkov, I.; Banović, M. The evaluation of colour components and anthocyanins in Babica and Crljenak kaštelanski wines. In Proceedings of the 10th International Scientific and Professional Conference with Food to Health, Osijek, Tuzla, 12–13 October 2017; pp. 186–194. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D.; Donèche, B. The Chemistry of Wine, Stabilization and Treatments. In Handbook of Enology, 2nd ed.; Wiley: Chichester, UK, 2006; Volume 2, pp. 178–181. [Google Scholar]
- Katalinic, V.; Mozina, S.S.; Generalic, I.; Skroza, D.; Ljubenkov, I.; Klancnik, A. Phenolic profile, antioxidant capacity, and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. Int. J. Food Prop. 2013, 16, 45–60. [Google Scholar] [CrossRef]
- Yang, J.; Meyers, K.J.; Van Der Heide, J.; Rui, H.L. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. J. Agric. Food Chem. 2004, 52, 6787–6793. [Google Scholar] [CrossRef]
- Julkunen-Titto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Amerine, M.A.; Ough, C.S. Methods for Analysis of Musts and Wines; John Wiley & Sons: New York, NY, USA, 1980; pp. 181–200. [Google Scholar]
- Boban, A.; Milanović, V.; Veršić Bratinčević, M.; Botta, C.; Ferrocino, I.; Cardinali, F.; Ivić, S.; Rampanti, G.; Budić-Leto, I. Spontaneous fermentation of Maraština wines: The correlation between autochthonous mycobiota and phenolic compounds. Food Res. Inter. 2024, 180, 114072. [Google Scholar] [CrossRef] [PubMed]
- Sagratini, G.; Maggi, F.; Caprioli, G.; Cristalli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S. Comparative study of aroma profile and phenolic content of Montepulciano monovarietal red wines from the Marches and Abruzzo regions of Italy using HS-SPME-GC-MS and HPLC-MS. Food Chem. 2012, 132, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Noble, A.C.; Arnold, R.A.; Buechsenstein, J.; Leach, E.J.; Schmidt, J.O.; Stern, P.M. Modification of a Standardized System of Wine Aroma Terminology. Am. J. Enol. Vitic. 1987, 38, 143–146. [Google Scholar] [CrossRef]
- Glories, Y. La couleur des vins rouges. 2e partie: Mesure, origine et interpretation. J. Int. Sci. Vigne Vin 1984, 18, 253–271. (In French) [Google Scholar] [CrossRef]
- Kelebek, H.; Canbas, A.; Cabaroglu, T.; Selli, S. Improvement of anthocyanin content in the cv. Öküzgözü wines by using pectolytic enzymes. Food Chem. 2007, 105, 334–339. [Google Scholar] [CrossRef]
- Mojsov, K. Use of enzymes in wine making: A review. Int. J. Mark. Technol. 2013, 3, 112–127. [Google Scholar]
- de Andrade Neves, N.; de Araújo Pantoja, L.; dos Santos, A.S. Thermovinification of grapes from the Cabernet Sauvignon and Pinot Noir varieties using immobilized yeasts. Eur. Food Res. Technol. 2014, 238, 79–84. [Google Scholar] [CrossRef]
- Lukić, I.; Budić-Leto, I.; Bubola, M.; Damijanić, K.; Staver, M. Pre-fermentative cold maceration, saignée, and various thermal treatments as options for modulating volatile aroma and phenol profiles of red wine. Food Chem. 2017, 224, 251–261. [Google Scholar] [CrossRef]
- Pardo, F.; Salinas, M.R.; Alonso, G.L.; Navarro, G.; Huerta, M.D. Effect of diverse enzyme preparations on the extraction and evolution of phenolic compounds in red wines. Food Chem. 1999, 67, 135–142. [Google Scholar] [CrossRef]
- Babincev, L.; Gurešić, D.; Simonovic, R. Spectrophotometric characterization of red wine color from the vineyard region of Metohia. J. Agric. Sci. Belgrade 2016, 61, 281–290. [Google Scholar] [CrossRef]
- Atanacković, M.; Petrović, A.; Jović, S.; Gojković-Bukarica, L.; Bursać, M.; Cvejić, J. Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines. Food Chem. 2012, 131, 513–518. [Google Scholar] [CrossRef]
- Wang, J.; Huo, S.; Zhang, Y.; Liu, Y.; Fan, W. Effect of different prefermentation treatments on polyphenols, color, and volatile compounds of three wine varieties. Food Sci. Biotechnol. 2016, 25, 735–743. [Google Scholar] [CrossRef]
- Dimitrovska, M.; Bocevska, M.; Dimitrovski, D.; Doneva-Sapceska, D. Evolution of anthocyanins during vinification of Merlot and Pinot Noir grapes to wines. Acta Aliment. 2015, 44, 259–267. [Google Scholar] [CrossRef]
- Koyama, K.; Goto-Yamamoto, N.; Hashizume, K. Influence of Maceration Temperature in Red Wine Vinification on Extraction of Phenolics from Berry Skins and Seeds of Grape (Vitis vinifera L.). Biosci. Biotechnol. Biochem. 2007, 71, 958–965. [Google Scholar] [CrossRef]
- Río Segade, S.; Pace, C.; Torchio, F.; Giacosa, S.; Gerbi, V.; Rolle, L. Impact of maceration enzymes on skin softening and relationship with anthocyanin extraction in wine grapes with different anthocyanin profiles. Food Res. Int. 2015, 71, 50–57. [Google Scholar] [CrossRef]
- Fischer, U.; Löchner, M.; Wolz, S. Red Wine Authenticity: Impact of Technology on Anthocyanin Composition. In Authentication of Food and Wine; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2006; pp. 239–253. [Google Scholar] [CrossRef]
- Orbanić, F.; Rossi, S.; Bestulić, E.; Budić-Leto, I.; Kovačević Ganić, K.; Horvat, I.; Plavša, T.; Bubola, M.; Lukić, I.; Kovačević Ganić, K.; et al. Applying different vinification techniques in Teran red wine production: Impact on bioactive compounds and sensory attributes. Foods 2023, 12, 3838. [Google Scholar] [CrossRef]
- Geffroy, O.; Lopez, R.; Feilhes, C.; Violleau, F.; Kleiber, D.; Favarel, J.-L.; Ferreira, V. Modulating analytical characteristics of thermovinified Carignan musts and the volatile composition of the resulting wines through the heating temperature. Food Chem. 2018, 257, 7–14. [Google Scholar] [CrossRef]
- Ayestarán, B.; Martínez-Lapuente, L.; Guadalupe, Z.; Canals, C.; Adell, E.; Vilanova, M. Effect of the winemaking process on the volatile composition and aromatic profile of Tempranillo Blanco wines. Food Chem. 2019, 276, 187–194. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Ntuli, R.G.; Saltman, Y.; Ponangi, R.; Jeffery, D.W.; Bindon, K.; Wilkinson, K.L. Impact of fermentation temperature and grape solids content on the chemical composition and sensory profiles of Cabernet Sauvignon wines made from flash détente treated must fermented off-skins. Food Chem. 2002, 369, 130861. [Google Scholar] [CrossRef]
- Beltran, G.; Novo, M.; Leberre, V.; Sokol, S.; Labourdette, D.; Guillamon, J.M.; Mas, A.; François, J.; Rozes, N. Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Res. 2006, 6, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Molina, A.M.; Swiegers, J.H.; Varela, C.; Pretorius, I.S.; Agosinet, E. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl. Microbiol. Biotechnol. 2007, 77, 675–687. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Li, Y.; Liu, S.; Tu, Q.; Yuan, C. Characterization of wine volatile compounds from different regions and varieties by HS-SPME/GC-MS coupled with chemometrics. Curr. Res. Food Sci. 2023, 6, 100418. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Quek, S.Y. Free and glycosidically bound aroma compounds in fruit: Biosynthesis, transformation, and practical control. Crit. Rev. Food Sci. Nutr. 2023, 63, 9052–9073. [Google Scholar] [CrossRef] [PubMed]
(A) | ||||||
Compound | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Rack |
Delphinidin-3-O-glucoside | n.d. | 0.17 ± 0.02 | 2.19 ± 0.04 | 3.39 ± 0.01 | 1.81 ± 0.01 | 3.23 ± 0.10 |
Cyanidin-3-O-glucoside | n.d. | 0.03 ± 0.00 | 0.15 ± 0.01 | 0.20 ± 0.00 | 0.13 ± 0.00 | 0.09 ± 0.00 |
Petunidin-3-O-glucoside | n.d. | 0.37 ± 0.02 | 3.81 ± 0.02 | 6.12 ± 0.01 | 3.83 ± 0.03 | 6.27 ± 0.20 |
Peonidin-3-O-glucoside | n.d. | 0.61 ± 0.02 | 1.88 ± 0.01 | 2.66 ± 0.01 | 1.91 ± 0.02 | 1.62 ± 0.06 |
Malvidin-3-O-glucoside | n.d. | 13.01 ± 0.23 a | 48.10 ± 0.02 b | 79.94 ± 0.15 c | 61.59 ± 0.07 d | 72.24 ± 2.05 e |
Delphinidin-3-O-acetylglucoside | 0.56 ± 0.00 | 8.71 ± 0.10 | 5.09 ± 0.12 | 5.46 ± 0.00 | 2.99 ± 0.06 | 1.43 ± 0.00 |
Cyanidin-3-O-acetylglucoside | n.d. | 0.10 ± 0.00 | 0.26 ± 0.01 | 0.74 ± 0.02 | 0.98 ± 0.01 | 0.51 ± 0.08 |
Petunidin-3-O-acetylglucoside | n.d. | 0.07 ± 0.00 | 0.32 ± 0.00 | 0.78 ± 0.00 | 0.78 ± 0.00 | 0.57 ± 0.06 |
Peonidin-3-O-acetylglucoside | 0.11 ± 0.00 | 1.00 ± 0.03 | 1.10 ± 0.06 | 0.96 ± 0.40 | 0.20 ± 0.01 | 0.39 ± 0.04 |
Malvidin-3-O-acetylglucoside | n.d. | 0.83 ± 0.02 | 3.41 ± 0.03 | 5.53 ± 0.19 | 4.32 ± 0.01 | 5.33 ± 0.11 |
Delphinidin-(6-O-coumaryoyl)glucoside | n.d. | 0.13 ± 0.00 | 0.52 ± 0.00 | 0.94 ± 0.00 | 0.56 ± 0.00 | 0.97 ± 0.00 |
Cyanidin-(6-O-coumaryoyl)glucoside | n.d. | n.d. | 0.04 ± 0.01 | 0.14 ± 0.00 | 0.04 ± 0.02 | 0.16 ± 0.00 |
Petunidin-3-(6-O-coumaroyl)glucoside | n.d. | 0.03 ± 0.00 | 0.37 ± 0.02 | 0.62 ± 0.04 | 0.29 ± 0.01 | 0.82 ± 0.06 |
Peonidin-3-(6-O-coumaroyl)glucoside | n.d. | 0.09 ± 0.02 | 0.05 ± 0.00 | 0.18 ± 0.01 | 0.19 ± 0.00 | 0.15 ± 0.04 |
Malvidin-3-(6-O-coumaroyl)glucoside | n.d. | 1.23 ± 0.13 | 6.21 ± 0.05 | 9.67 ± 0.04 | 6.28 ± 0.02 | 11.19 ± 0.00 |
(B) | ||||||
Compound | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Rack |
Delphinidin-3-O-glucoside | n.d. | n.d. | 2.45 ± 0.00 | 3.17 ± 0.01 | 2.65 ± 0.01 | 3.40 ± 0.01 |
Cyanidin-3-O-glucoside | n.d. | n.d. | 0.18 ± 0.00 | 0.22 ± 0.00 | 0.16 ± 0.00 | 0.11 ± 0.00 |
Petunidin-3-O-glucoside | n.d. | n.d. | 4.30 ± 0.03 | 6.01 ± 0.07 | 5.30 ± 0.04 | 6.57 ± 0.02 |
Peonidin-3-O-glucoside | n.d. | n.d. | 2.42 ± 0.01 | 2.92 ± 0.07 | 2.33 ± 0.04 | 2.06 ± 0.01 |
Malvidin-3-O-glucoside | 0.02 ± 0.00 a | 0.03 ± 0.00 a | 55.63 ± 0.03 b | 83.69 ± 0.79 c | 77.51 ± 0.23 d | 78.95 ± 0.14 e |
Delphinidin-3-O-acetylglucoside | 0.34 ± 0.01 | 1.28 ± 0.01 | 6.18 ± 0.01 | 4.79 ± 0.03 | 3.09 ± 0.02 | 2.00 ± 0.01 |
Cyanidin-3-O-acetylglucoside | n.d. | n.d. | 0.28 ± 0.00 | 0.55 ± 0.00 | 0.59 ± 0.00 | 0.33 ± 0.08 |
Petunidin-3-O-acetylglucoside | n.d. | n.d. | 0.38 ± 0.00 | 0.67 ± 0.00 | 0.71 ± 0.00 | 0.52 ± 0.04 |
Peonidin-3-O-acetylglucoside | 0.07 ± 0.00 | 0.28 ± 0.02 | 1.43 ± 0.01 | 0.93 ± 0.06 | 0.59 ± 0.00 | 0.39 ± 0.08 |
Malvidin-3-O-acetylglucoside | n.d. | n.d. | 3.90 ± 0.00 | 5.85 ± 0.09 | 5.29 ± 0.01 | 5.94 ± 0.03 |
Delphinidin-(6-O-coumaryoyl)glucoside | n.d. | n.d. | 0.60 ± 0.00 | 0.96 ± 0.00 | 0.84 ± 0.00 | 0.64 ± 0.52 |
Cyanidin-(6-O-coumaryoyl)glucoside | n.d. | n.d. | 0.05 ± 0.02 | 0.15 ± 0.01 | 0.14 ± 0.00 | 0.09 ± 0.04 |
Petunidin-3-(6-O-coumaroyl)glucoside | n.d. | n.d. | 0.38 ± 0.04 | 0.64 ± 0.01 | 0.57 ± 0.05 | 0.84 ± 0.01 |
Peonidin-3-(6-O-coumaroyl)glucoside | n.d. | n.d. | 0.06 ± 0.00 | 0.10 ± 0.00 | 0.15 ± 0.00 | 0.10 ± 0.00 |
Malvidin-3-(6-O-coumaroyl)glucoside | n.d. | n.d. | 6.95 ± 0.01 | 11.09 ± 0.03 | 9.74 ± 0.08 | 11.61 ± 0.02 |
(C) | ||||||
Compound | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Rack |
Delphinidin-3-O-glucoside | 0.41 ± 0.04 | 0.64 ± 0.00 | 3.00 ± 0.02 | 2.21 ± 0.01 | 1.14 ± 0.00 | 2.84 ± 0.01 |
Cyanidin-3-O-glucoside | 0.80 ± 0.01 | 0.13 ± 0.01 | 0.28 ± 0.01 | 0.22 ± 0.00 | 0.18 ± 0.01 | 0.18 ± 0.00 |
Petunidin-3-O-glucoside | 1.40 ± 0.03 | 1.32 ± 0.00 | 4.81 ± 0.02 | 3.87 ± 0.02 | 2.63 ± 0.01 | 4.64 ± 0.02 |
Peonidin-3-O-glucoside | 4.19 ± 0.08 | 1.67 ± 0.00 | 3.17 ± 0.01 | 2.68 ± 0.01 | 2.20 ± 0.00 | 2.46 ± 0.01 |
Malvidin-3-O-glucoside | 41.09 ± 0.67 a | 30.09 ± 0.15 b | 55.68 ± 0.13 c | 51.64 ± 0.07 d | 42.61 ± 0.06 e | 53.83 ± 0.09 f |
Delphinidin-3-O-acetylglucoside | 1.72 ± 0.02 | 5.61 ± 0.03 | 4.40 ± 0.00 | 4.10 ± 0.01 | 3.19 ± 0.07 | 2.66 ± 0.01 |
Cyanidin-3-O-acetylglucoside | 0.32 ± 0.01 | 0.32 ± 0.00 | 0.60 ± 0.01 | 0.81 ± 0.01 | 0.45 ± 0.01 | 1.01 ± 0.00 |
Petunidin-3-O-acetylglucoside | 0.31 ± 0.01 | 0.30 ± 0.00 | 0.62 ± 0.00 | 0.70 ± 0.00 | 0.39 ± 0.00 | 0.67 ± 0.00 |
Peonidin-3-O-acetylglucoside | 0.19 ± 0.01 | 0.60 ± 0.04 | 0.49 ± 0.00 | 0.53 ± 0.05 | 0.25 ± 0.03 | 0.36 ± 0.12 |
Malvidin-3-O-acetylglucoside | 2.72 ± 0.15 | 2.04 ± 0.14 | 3.52 ± 0.01 | 3.45 ± 0.03 | 2.65 ± 0.18 | 3.96 ± 0.03 |
Delphinidin-(6-O-coumaryoyl)glucoside | 0.42 ± 0.00 | 0.28 ± 0.01 | 0.64 ± 0.00 | 0.57 ± 0.01 | 0.38 ± 0.01 | 0.68 ± 0.00 |
Cyanidin-(6-O-coumaryoyl)glucoside | 0.04 ± 0.02 | 0.01 ± 0.00 | 0.12 ± 0.00 | 0.10 ± 0.00 | 0.04 ± 0.02 | 0.04 ± 0.00 |
Petunidin-3-(6-O-coumaroyl)glucoside | 0.18 ± 0.01 | 0.09 ± 0.01 | 0.38 ± 0.00 | 0.28 ± 0.00 | 0.15 ± 0.02 | 0.38 ± 0.01 |
Peonidin-3-(6-O-coumaroyl)glucoside | 0.07 ± 0.00 | 0.06 ± 0.00 | 0.11 ± 0.00 | 0.15 ± 0.01 | 0.07 ± 0.01 | 0.21 ± 0.00 |
Malvidin-3-(6-O-coumaroyl)glucoside | 4.04 ± 0.11 | 2.34 ± 0.02 | 4.88 ± 0.02 | 4.22 ± 0.02 | 2.75 ± 0.03 | 4.64 ± 0.01 |
Phenolic Class/Component | Conventional | Enzyme | Thermovinification |
---|---|---|---|
Phenolic acids | |||
Gallic acid | 25.81 ± 0.04 a | 31.75 ± 0.08 b | 73.28 ± 0.14 c |
Protocatehuic acid | 9.66 ± 0.02 a | 9.53 ± 0.09 a | 16.91 ± 0.01 b |
p-Hydroxybenzioc acid | 54.81 ± 0.17 a | 40.92 ± 0.09 b | 84.47 ± 0.74 c |
Gentisic acid | 29.94 ± 0.04 a | 18.77 ± 0.04 b | 51.44 ± 0.10 c |
Caffeic acid | 23.03 ± 0.37 a | 13.67 ± 0.50 b | 14.16 ± 0.25 b |
Cinnamic acid | 3.25 ± 0.51 a | 3.86 ± 0.03 a | 1.21 ± 0.04 b |
t-p-Coumaric acid | 9.65 ± 0.03 a | 10.19 ± 0.01 b | 5.10 ± 0.11 c |
Ferulic acid | 0.73 ± 0.00 a | 1.24 ± 0.00 b | 1.92 ± 0.01 c |
Sinapic acid | 3.73 ± 0.03 a | 1.63 ± 0.02 b | 1.37 ± 0.00 c |
t-o-Coumaric acid | 1.87 ± 0.01 a | 5.32 ± 0.07 b | 0.38 ± 0.00 c |
Stilbene | |||
Resveratrol | 3.82 ± 0.00 a | 4.49 ± 0.05 b | 2.03 ± 0.00 c |
Flavonoids | |||
Quercetin | 20.20 ± 0.29 a | 17.00 ± 0.02 b | 20.70 ± 0.17 a |
Epicatechin | 21.46 ± 0.02 a | 24.24 ± 0.11 b | 18.74 ± 0.04 c |
Epigallocatechin galate | 8.47 ± 0.01 a | 11.26 ± 0.10 b | 19.64 ± 0.00 c |
Anthocyanins | |||
Delphinidin-3-O-glucoside | 5.81 ± 0.27 a | 3.33 ± 0.09 b | 2.54 ± 0.16 c |
Cyanidin-3-O-glucoside | 0.06 ± 0.02 a | 0.24 ± 0.04 b | 0.13 ± 0.04 c |
Petunidin-3-O-glucoside | 9.87 ± 0.08 a | 6.87 ± 0.07 b | 3.35 ± 0.08 c |
Peonidin-3-O-glucoside | 0.88 ± 0.03 a | 0.82 ± 0.02 a | 1.47 ± 0.07 b |
Malvidin-3-O-glucoside | 97.62 ± 0.61 a | 70.54 ± 0.92 b | 33.09 ± 0.15 c |
Delphinidin-3-O-acetylglucoside | 0.74 ± 0.18 a | 1.51 ± 0.16 b | 2.34 ± 0.11 c |
Cyanidin-3-O-acetylglucoside | 0.12 ± 0.03 a | 0.38 ± 0.10 b | 1.05 ± 0.08 c |
Petunidin-3-O-acetylglucoside | 0.44 ± 0.07 a | 0.41 ± 0.06 a | 0.68 ± 0.09 b |
Peonidin-3-O-acetylglucoside | 0.30 ± 0.06 a | 0.44 ± 0.15 a | 0.46 ± 0.08 a |
Malvidin-3-O-acetylglucoside | 6.77 ± 0.08 a | 5.49 ± 0.20 b | 2.47 ± 0.00 c |
Delphinidin-(6-O-coumaryoyl)glucoside | 2.13 ± 0.10 a | 1.54 ± 0.03 b | 0.84 ± 0.13 c |
Cyanidin-(6-O-coumaryoyl)glucoside | 0.43 ± 0.05 a | 0.38 ± 0.08 a | 0.22 ± 0.04 b |
Petunidin-3-(6-O-coumaroyl)glucoside | 1.58 ± 0.12 a | 0.99 ± 0.28 b | 0.47 ± 0.06 c |
Peonidin-3-(6-O-coumaroyl)glucoside | 0.42 ± 0.00 a | 0.26 ± 0.06 b | 0.31 ± 0.07 b |
Malvidin-3-(6-O-coumaroyl)glucoside | 16.45 ± 0.06 a | 10.22 ± 0.08 b | 2.76 ± 0.34 c |
Compound | RI | Conventional | Enzyme | Thermovinification |
---|---|---|---|---|
Alcohols | ||||
Isoamyl alcohol | 767 | 41.18 ± 1.79 a | 37.90 ± 2.65 a | 43.73 ± 1.00 a |
2-Methyl-1-butanol | 769 | 7.11 ± 0.77 a | 8.23 ± 1.72 a | 8.00 ± 0.61 a |
(R,R)-Butane-2,3-diol | 796 | 0.89 ± 0.16 a | 0.19 ± 0.00 b | 0.30 ± 0.29 b |
2,3-Butanediol | 813 | 0.42 ± 0.03 a | 0.31 ± 0.03 b | 0.24 ± 0.02 b |
(S)-(+)-3-Methyl-1-pentanol | 851 | 0.20 ± 0.06 a | 0.10 ± 0.00 a | 0.14 ± 0.06 a |
1-Hexanol | 871 | 2.13 ± 0.17 a | 1.96 ± 0.03 a | 2.49 ± 0.04 b |
1-Heptanol | 971 | 0.18 ± 0.01 a | 0.29 ± 0.34 a | 0.09 ± 0.06 a |
2-Ethyl-1-hexanol | 1031 | 0.09 ± 0.02 a | 0.04 ± 0.00 b | 0.01 ± 0.01 b |
2-Phenylethanol | 1119 | 15.12 ± 0.44 a | 15.04 ± 0.95 a | 15.29 ± 0.16 a |
1-Decanol | 1275 | 0.02 ± 0.01 a | 0.00 ± 0.00 a | 0.01 ± 0.00 a |
Esters | ||||
Ethyl butanoate | 782 | 0.76 ± 0.04 a | 0.46 ± 0.01 b | 1.41 ± 0.05 c |
Ethyl 2-hydroxypropanoate | 824 | 0.24 ± 0.00 a | 2.63 ± 0.05 b | 0.28 ± 0.03 a |
Ethyl α-methylbutyrate | 855 | 0.59 ± 0.02 a | 0.36 ± 0.00 b | 1.05 ± 0.06 c |
Ethyl isovalerate | 858 | 0.86 ± 0.03 a | 0.47 ± 0.01 b | 1.34 ± 0.07 c |
Isoamyl acetate | 879 | 1.20 ± 0.14 a | 3.14 ± 0.06 b | 2.52 ± 0.03 c |
Ethyl hexanoate | 1000 | 6.24 ± 1.32 a | 4.16 ± 1.21 a | 3.56 ± 0.17 a |
Ethyl 2-hydroxycaproate | 1060 | 0.35 ± 0.04 a | 0.26 ± 0.01 a | 0.30 ± 0.03 a |
Ethyl succinate | 1182 | 8.59 ± 0.14 a | 7.43 ± 0.08 b | 7.17 ± 0.08 b |
Ethyl octanoate | 1199 | 2.92 ± 0.13 a | 3.20 ± 0.10 a | 1.15 ± 0.12 b |
Diethyl malate | 1271 | 0.10 ± 0.03 a | 0.02 ± 0.04 a | 0.03 ± 0.01 a |
Ethyl decanoate | 1398 | 0.35 ± 0.04 a | 0.37 ± 0.04 a | 0.07 ± 0.02 b |
Ethyl 3-methylbutyl succinate | 1432 | 0.61 ± 0.06 a | 0.46 ± 0.04 a | 0.38 ± 0.07 b |
Ethyl phenyllactate | 1452 | 0.07 ± 0.04 a | 0.04 ± 0.02 a | 0.02 ± 0.00 a |
Ethyl dodecanoate | 1598 | 0.25 ± 0.04 a | 0.17 ± 0.02 a | 0.06 ± 0.00 b |
Dodecanoic acid, 1-methylethyl ester | 1631 | 0.01 ± 0.01 a | 0.02 ± 0.00 a | 0.03 ± 0.00 a |
Ethyl tridecanoate | 1698 | 0.03 ± 0.00 a | 0.01 ± 0.00 a | 0.00 ± 0.00 a |
Tetradecanoic acid, ethyl ester | 1797 | 0.14 ± 0.05 a | 0.07 ± 0.01 b | 0.05 ± 0.01 b |
Hexadecanoic acid, ethyl ester | 1997 | 0.71 ± 0.06 a | 0.15 ± 0.02 b | 0.25 ± 0.03 b |
Octadecanoic acid, ethyl ester | 2168 | 0.03 ± 0.00 a | 0.02 ± 0.01 a | 0.02 ± 0.00 a |
Glycoside | ||||
Methyl-ß-D-glucopyranoside | 981 | 0.39 ± 0.25 a | 0.60 ± 0.53 a | 0.25 ± 0.11 a |
Monoterpenes | ||||
Limonene | 1033 | 0.34 ± 0.08 a | 0.28 ± 0.02 a | 0.32 ± 0.03 a |
Eucalyptol | 1037 | 0.10 ± 0.06 a | 0.12 ± 0.05 a | 0.06 ± 0.02 a |
Linalool | 1102 | 0.18 ± 0.01 a | 0.26 ± 0.00 b | 0.26 ± 0.03 b |
Fatty acid | ||||
Octanoic acid | 1173 | 0.35 ± 0.27 a | 0.41 ± 0.23 a | 0.55 ± 0.11 a |
Aldehydes | ||||
Nonanal | 1106 | 0.07 ± 0.02 a | 0.11 ± 0.08 a | 0.13 ± 0.04 a |
Decanal | 1209 | 0.18 ± 0.08 a | 0.32 ± 0.04 a | 0.10 ± 0.04 b |
Dodecanal | 1413 | 0.27 ± 0.07 a | 0.94 ± 0.09 b | 0.24 ± 0.04 a |
Total identified compounds (%) | 93.26 | 90.56 | 91.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skračić, Ž.; Marić, J.; Ljubenkov, I.; Veršić Bratinčević, M.; Brzović, P.; Kukoleča, M.; Pranjković, L.; Marinov, L.; Mucalo, A.; Zdunić, G.; et al. Vinification Technique Matters: Kinetic Insight into Color, Phenolics, Volatiles, and Aging Potential of Babica Wines. Processes 2025, 13, 2734. https://doi.org/10.3390/pr13092734
Skračić Ž, Marić J, Ljubenkov I, Veršić Bratinčević M, Brzović P, Kukoleča M, Pranjković L, Marinov L, Mucalo A, Zdunić G, et al. Vinification Technique Matters: Kinetic Insight into Color, Phenolics, Volatiles, and Aging Potential of Babica Wines. Processes. 2025; 13(9):2734. https://doi.org/10.3390/pr13092734
Chicago/Turabian StyleSkračić, Živko, Josipa Marić, Ivica Ljubenkov, Maja Veršić Bratinčević, Petra Brzović, Martina Kukoleča, Lorena Pranjković, Luka Marinov, Ana Mucalo, Goran Zdunić, and et al. 2025. "Vinification Technique Matters: Kinetic Insight into Color, Phenolics, Volatiles, and Aging Potential of Babica Wines" Processes 13, no. 9: 2734. https://doi.org/10.3390/pr13092734
APA StyleSkračić, Ž., Marić, J., Ljubenkov, I., Veršić Bratinčević, M., Brzović, P., Kukoleča, M., Pranjković, L., Marinov, L., Mucalo, A., Zdunić, G., & Mekinić, I. G. (2025). Vinification Technique Matters: Kinetic Insight into Color, Phenolics, Volatiles, and Aging Potential of Babica Wines. Processes, 13(9), 2734. https://doi.org/10.3390/pr13092734