Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Source
3.2. Carbon Emission Accounting
3.3. Factor Decomposition Model
3.4. SD Model
3.4.1. Causality Setting
3.4.2. Flow and Stock Settings
3.4.3. Carbon Emission Scenario Settings
Driver | Setting Model | Setting Parameter | Remarks |
---|---|---|---|
Population | High | −0.10% | The National Population Development Plan (2016–2030) states that the population will peak around 2030 [65]. |
Medium | −0.06% | The outline mentions that Guangxi’s average population growth rate is 0.83 percent, which has continued to decrease over the past five years [66]. | |
Low | −0.05% | Guangxi’s population growth rate remains above the national average [67]. | |
GDP | High | 6.50% | Guangxi’s plan aims to maintain stable and rapid economic growth [68]. |
Medium | 5.50% | The outline targets 5.5% average annual GDP growth over 2024–2028 [66]. | |
Low | 4.50% | Future national economic growth is expected to slow [69]. | |
Energy consumption | High | 5.50% | China’s energy consumption has been increasing along with economic growth and is significantly positively correlated [70]. |
Medium | 3% | Guangxi’s energy consumption grew 3% annually on average in 2013–2023. | |
Low | −2.50% | Guangxi aims to reduce energy intensity by 13% by 2025 [68]. | |
Industrial structure | High | −0.65% | Guangxi’s industrial structure improved 1.8% annually in 2016–2020 [71]. |
Medium | −0.55% | Guangxi will prioritize tourism and agriculture in development [66]. | |
Low | −0.45% | Recent industrial revitalization policies highlight continued support for secondary industry growth [72]. | |
Resource extraction | High | 3.10% | Guangxi’s mineral reserves forecast >one billion tons by 2025 [73]. |
Medium | 1.50% | The outline promotes comprehensive development and utilization of mineral resources to ensure steady growth [66]. | |
Low | −1.10% | Mineral resource depletion and sustainability concerns are making extraction increasingly difficult [74]. |
Scenarios | Sub-Scenarios | Population | GDP | Energy Consumption | Industrial Structure | Resource Extraction |
---|---|---|---|---|---|---|
BS | BS | Medium | Medium | Medium | Medium | Medium |
ESS | ESS1 | Medium | Low | Low | Medium | Medium |
ESS2 | Low | Low | Low | Low | Medium | |
RDS | RDS1 | High | High | High | High | High |
RDS2 | Low | High | Medium | Low | High | |
RDS3 | Medium | High | High | Medium | Medium | |
GDS | GDS1 | Medium | Medium | Medium | High | Low |
GDS2 | High | Medium | Low | High | High | |
GDS3 | Low | Medium | Medium | High | Medium | |
ERS | ERS1 | High | Medium | Low | Low | Low |
ERS2 | Medium | Medium | Low | Medium | Low | |
ERS3 | Low | Low | Low | Low | Low |
3.5. Carbon Emission Decoupling Effect Model
4. Results and Analyses
4.1. Analysis of Carbon Emissions in Guangxi’s MI
4.2. Analysis of Carbon Emission Drivers in Guangxi’s MI
4.3. Scenario Simulation and Decoupling Analysis
4.3.1. Robustness Check
4.3.2. Historical Examination
4.3.3. Scenario Simulation Analysis
4.4. Carbon Emission Decoupling Analysis
4.4.1. Decoupling Effect Analysis of Total Output Value and Carbon Emissions
4.4.2. Decoupling Effect Analysis of Resource Extraction Volume and Carbon Emissions
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Policy Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, S.; Wang, Y.; Xu, P.; Shi, Y.; Liu, C. Spatial-temporal multi-factor decomposition and two-dimensional decoupling analysis of China’s carbon emissions: From the perspective of whole process governance. Environ. Impact Assess. Rev. 2023, 103, 107291. [Google Scholar] [CrossRef]
- Shen, L.; Yuan, Q.; He, Q.; Jiang, P.; Ji, H.; Shi, J. Simulation and Pathway Selection for China’s Carbon Peak: A Multi-Objective Nonlinear Dynamic Optimization Approach. Sustainability 2025, 17, 154. [Google Scholar] [CrossRef]
- Luo, S.; Ke, W. Analysis and Scenario Prediction of Driving Factors of Carbon Emissions from Energy Consumption in China’s Mining Industry. Sci. Technol. Manag. Land Resour. 2024, 41, 1–11. [Google Scholar]
- Li, Y.; Zuo, Z.; Cheng, Y.; Cheng, J.; Xu, D. Towards a decoupling between regional economic growth and CO2 emissions in China’s mining industry: A comprehensive decomposition framework. Resour. Policy 2023, 80, 103271. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Bai, B.; Wang, Z. Spatial differentiation and driving factors of CO2 emissions: Analysis based on 198 cities at prefecture level and above in China. Econ. Geogr. 2020, 40, 29–38. [Google Scholar] [CrossRef]
- Jia, D.; Li, C.; Wang, Q. Decomposition of carbon emission and its decoupling analysis and prediction with economic development: A case study of industrial sectors in Henan Province. J. Clean. Prod. 2021, 321, 129019. [Google Scholar] [CrossRef]
- Shi, G.; Zhang, Y.; Li, H.; Tian, S.; Wang, Q. Research on influence of safety investment and technological innovation to economic benefits of extractive industry: Threshold effect model. China Saf. Sci. J. 2022, 32, 9–15. [Google Scholar] [CrossRef]
- Nan, K.; Chen, J.; Cheng, T. The drivers of carbon intensity and emission reduction strategies in heavy industry: Evidence from nonlinear and spatial perspectives. Ecol. Indic. 2024, 160, 111764. [Google Scholar] [CrossRef]
- Zhao, Q.; Gao, W.; Su, Y.; Wang, T. Carbon emissions trajectory and driving force from the construction industry with a city—Scale: A case study of Hangzhou, China. Sustain. Cities Soc. 2023, 88, 104283. [Google Scholar] [CrossRef]
- Wen, B.; Chen, Y.; Wang, G.; Dai, T. China’s demand for energy and mineral resources by 2035. Strateg. Study CAE 2019, 21, 68–73. [Google Scholar] [CrossRef]
- Zhu, S.; Li, X.; Zhang, Z.; Zheng, P.; Xu, W.; Zhang, C. Analysis of energy—Related carbon dioxide intensity in China’s major non—Ferrous metal producing regions: Spatio—Temporal decomposition and emission reduction strategies. Energy 2024, 27, 134299. [Google Scholar] [CrossRef]
- Wei, Z.; Xue, K.; Hu, G.; Wu, Y.; Wang, Y. The Decarbonizing Strategies of China’s Iron and Steelmaking Industry: A Comprehensive Perspective. Sustainability 2024, 16, 11268. [Google Scholar] [CrossRef]
- Chen, P. Curse or blessing? The relationship between sustainable development plans for resource cities and corporate sustainability—Evidence from China. J. Environ. Manag. 2023, 341, 117988. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Fu, W.; Guo, X.; Lu, H.; Chai, M.; Hu, Z.; Lu, J.; Wang, X.; Xu, C. Weathering co-mineralization of placer type ilmenite and ion-adsorption type rare earth elements in Guangxi, China: Nature, origin and exploration implications. Ore Geol. Rev. 2023, 163, 105815. [Google Scholar] [CrossRef]
- Sun, H.; Hu, X.; Yang, X.; Wang, H.; Cheng, J. Estimating water pollution and economic cost embodied in the mining industry: An interprovincial analysis in China. Resour. Policy 2023, 86, 104284. [Google Scholar] [CrossRef]
- Dou, S.; Xu, D.; Keenan, R. Effect of income, industry structure and environmental regulation on the ecological impacts of mining: An analysis for Guangxi Province in China. J. Clean. Prod. 2023, 400, 136654. [Google Scholar] [CrossRef]
- Zheng, H.; Ge, L. Carbon emissions reduction effects of sustainable development policy in resource-based cities from the perspective of resource dependence: Theory and Chinese experience. Resour. Policy 2022, 78, 102799. [Google Scholar] [CrossRef]
- Tian, C.; Qi, L. Empirical decomposition and peaking path of carbon emissions in resource-based areas. J. Clean. Prod. 2023, 395, 136372. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, W.; Yan, D. Breaking the resource curse: The impact of digital economy on the sustainable transformation of resource-based cities. Sustain. Cities Soc. 2024, 113, 105707. [Google Scholar] [CrossRef]
- Javanmard, M.E.; Ghaderi, S.F.; Hoseinzadeh, M. Data mining with 12 machine learning algorithms for predict costs and carbon dioxide emission in integrated energy-water optimization model in buildings. Energy Convers. Manag. 2021, 238, 114153. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M. Monitoring the Performance of Sustainable Development Goals in the Italian Regions. Sustainability 2023, 15, 14094. [Google Scholar] [CrossRef]
- Ren, L.; Cheng, S.; Tong, Y.; Zhang, Y.; Zhu, F.; Tian, Y.; Yue, T. Study on Carbon Emission Accounting Method System and Its Application in the Iron and Steel Industry. Sustainability 2025, 17, 3829. [Google Scholar] [CrossRef]
- Aramendia, E.; Brockway, P.E.; Taylor, P.G.; Norman, J. Global energy consumption of the mineral mining industry: Exploring the historical perspective and future pathways to 2060. Glob. Environ. Change 2023, 83, 102745. [Google Scholar] [CrossRef]
- Xu, J.; Guan, Y.; Oldfield, J.; Guan, D.; Shan, Y. China carbon emission accounts 2020–2021. Appl. Energy 2024, 360, 122837. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Guo, Y. Strategic measures and pathway towards China’s industrial carbon neutrality. J. Manag. Sci. China 2024, 27, 1–20. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, L.; Qu, Y.; Wang, L. Possibility and pathways of China’s nonferrous metals industry to achieve its carbon peak target before 2030: A new integrated dynamic forecasting model. Energy 2024, 306, 132386. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Xu, D.; Xie, K. High-resolution analysis of life-cycle carbon emissions from China’s coal-fired power industry: A provincial perspective. Int. J. Greenh. Gas Control 2020, 100, 103110. [Google Scholar] [CrossRef]
- Shao, K.; Dong, D.; Lin, G.; Liu, H.; Xu, Z.; Chen, J. Carbon emission characteristics of long-sequence energy consumption in mining cities in north China. China Min. Mag. 2020, 29, 9. [Google Scholar] [CrossRef]
- Reema, G.A. Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI. Energy Policy 2024, 156, 112454. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, Y.; Ma, C.; Yuan, J.; Stenseth, N.C.; Hessen, D.O.; Zhang, S. Greenhouse gas emissions from extractive industries in a globalized era. J. Environ. Manag. 2023, 343, 118172. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, Q.; He, R.; Li, F.; Lu, L. Decomposition analysis and decoupling effects of factors driving carbon emissions produced by electricity generation. Energy Rep. 2024, 11, 2692–2703. [Google Scholar] [CrossRef]
- Shao, S.; Liu, J.; Geng, Y.; Miao, Z.; Yang, Y. Uncovering driving factors of carbon emissions from China’s mining sector. Appl. Energy 2016, 166, 220–238. [Google Scholar] [CrossRef]
- Amira, R.; Han, H.; Abdelhak, A.; Ahmed, M.M. Energy use and energy-related carbon dioxide emissions drivers in Egypt’s economy: Focus on the agricultural sector with a structural decomposition analysis. Energy 2022, 258, 124821. [Google Scholar] [CrossRef]
- Zhu, R.; Zhang, Z.J.; Lin, B. Impact of technological innovation on China’s mining industry: Perspectives of energy and environmental performance. Environ. Impact Assess. Rev. 2024, 108, 107586. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, W.; Lv, X.; Chen, X.; Shen, M. Investigating interior driving factors and cross-industrial linkages of carbon emission efficiency in China’s construction industry: Based on Super-SBM DEA and GVAR model. J. Clean. Prod. 2019, 241, 118322. [Google Scholar] [CrossRef]
- Wei, L.; Feng, X.; Liu, P.; Wang, N. Impact of intelligence on the carbon emissions of energy consumption in the mining industry based on the expanded STIRPAT model. Ore Geol. Rev. 2023, 159, 105504. [Google Scholar] [CrossRef]
- Cui, Y.; Li, L.; Lei, Y.; Wu, S. The performance and influencing factors of high-quality development of resource-based cities in the Yellow River basin under reducing pollution and carbon emissions constraints. Resour. Policy 2024, 88, 104488. [Google Scholar] [CrossRef]
- Michele, M.; Daniela, C.A.P.; Marina, P.; Time, C.M. To what extent are circular economy strategies accounted in science-based targets for carbon emission reduction? Comput. Ind. Eng. 2024, 197, 110594. [Google Scholar] [CrossRef]
- Shen, Y.; Lin, Y.; Cui, S.; Li, Y.; Zhai, X. Crucial factors of the built environment for mitigating carbon emissions. Sci. Total Environ. 2022, 806, 150864. [Google Scholar] [CrossRef]
- Flavian, E.S.; Kwon, R.H.; Hermann, C.N.; Jean, G.T. A grey prediction model optimized by meta-heuristic algorithms and its application in forecasting carbon emissions from road fuel combustion. Energy 2024, 302, 131922. [Google Scholar] [CrossRef]
- Liu, X.; Zou, L.; Hu, L.; Wang, C.; Sheng, S. Industrial agglomeration, environmental regulation, and carbon emissions reduction under the carbon neutrality goal: Threshold effects based on stages of industrialization in China. J. Clean. Prod. 2024, 434, 140064. [Google Scholar] [CrossRef]
- Jie, L.; Wang, Z.; Yu, R. Scenario simulation of carbon decoupling effect of China’s energy mining industry. China Popul. Resour. Environ. 2020, 30, 47–56. [Google Scholar]
- Andewi, R.; Vita, S.; Lailan, T.B. Scenario analysis of the Indonesia carbon tax impact on carbon emissions using system dynamics modeling and STIRPAT model. Geogr. Sustain. 2024, 5, 577–587. [Google Scholar] [CrossRef]
- Han, N.; Luo, X. Carbon emission peak prediction and reduction potential in Beijing-Tianjin-Hebei region from the perspective of multiple scenarios. J. Nat. Resour. 2022, 37, 1277–1288. [Google Scholar] [CrossRef]
- Lu, C.; Li, W.; Gao, S. Driving determinants and prospective prediction simulations on carbon emissions peak for China’s heavy chemical industry. J. Clean. Prod. 2020, 251, 119642. [Google Scholar] [CrossRef]
- Yang, F.; Shi, L.; Gao, L. Probing CO2 emission in Chengdu based on STRIPAT model and Tapio decoupling. Sustain. Cities Soc. 2023, 89, 104309. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, C. Decouple transport CO2 emissions from China’s economic expansion: A temporal-spatial analysis. Transp. Res. Part D Transp. Environ. 2020, 79, 102225. [Google Scholar] [CrossRef]
- Hickel, J.; Kallis, G. Is green growth possible? New Political Econ. 2020, 25, 469–486. [Google Scholar] [CrossRef]
- Tong, K.; Sun, S. Multi-dimensional decoupling analysis in the context of energy use: Dynamic well-being, resource, and impact decoupling relationships in China. Appl. Energy 2024, 359, 122726. [Google Scholar] [CrossRef]
- Chen, W.; Yan, S. The decoupling relationship between CO2 emissions and economic growth in the Chinese mining industry under the context of carbon neutrality. J. Clean. Prod. 2022, 379, 134692. [Google Scholar] [CrossRef]
- Asif, R.; Grzegorz, Z.; Mohammad, R.; Md, M.R.; Mahdi, S. Role of mineral resource rents, renewable energy, and energy efficiency toward carbon neutrality in China. Energy Nexus 2025, 17, 100394. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.; Li, J.; Li, W.; Liu, T.; Xin, M.; Jin, Q. Decoupling representation contrastive learning for carbon emission prediction and analysis based on time series. Appl. Energy 2024, 367, 123368. [Google Scholar] [CrossRef]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 12 May 2019).
- PRC. Baseline Emission Factors of China’s Regional Power Grids for Emission Reduction Projects in 2019. 2019. Available online: https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815386.shtml (accessed on 29 December 2020).
- Vaninsky, A. Factorial decomposition of CO2 emissions: A generalized Divisia index approach. Energy Econ. 2014, 45, 389–400. [Google Scholar] [CrossRef]
- Song, Y.; Zeng, J.; Wang, S.; Liang, C. Spatial-temporal evolution and heterogeneity of carbon emissions at county-level in China. Environ. Sci. 2023, 44, 549–559. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, Y. The divergent effects of polycentric urban form on urban carbon emissions: Spatial balance and spatial dispersion in Chinese cities. Urban Clim. 2024, 55, 101862. [Google Scholar] [CrossRef]
- D’Adamo, I.; Di Carlo, C.; Gastaldi, M.; Rossi, E.N.; Uricchio, A.F. Economic Performance, Environmental Protection and Social Progress: A Cluster Analysis Comparison towards Sustainable Development. Sustainability 2024, 16, 5049. [Google Scholar] [CrossRef]
- Li, Q.; Qian, T.; Wang, H.; Bai, L.; Long, R. Environmental forcing and policy synergy: A multidimensional approach in the governance of air pollution and carbon emission. Environ. Res. 2024, 261, 119747. [Google Scholar] [CrossRef] [PubMed]
- Elsawah, S.; Pierce, S.A.; Hamilton, S.H.; Van Delden, H.; Haase, D.; Elmahdi, A.; Jakeman, A.J. An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environ. Model. Softw. 2017, 93, 127–145. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, J.; Jiang, H.; Chen, S.; Ding, Y.; Xia, R.; Wei, D.; Luo, X. Multi-source data assessment and multi-factor analysis of urban carbon emissions: A case study of the Pearl River Basin, China. Urban Clim. 2023, 51, 101653. [Google Scholar] [CrossRef]
- Cui, S.; Xu, P.; Wang, Y.; Shi, Y.; Liu, C. Influencing mechanisms and decoupling effects of embodied carbon emissions: An analysis based on China’s industrial sector. Sustain. Prod. Consum. 2023, 41, 320–333. [Google Scholar] [CrossRef]
- Bosah, C.P.; Li, S.; Ampofo, G.K.M.; Sangare, I. A continental and global assessment of the role of energy consumption, total natural resource rent, and economic growth as determinants of carbon emissions. Sci. Total Environ. 2023, 892, 164592. [Google Scholar] [CrossRef]
- Gao, M.; Wu, X. Temporal and spatial characteristics and peak prediction of carbon emissions in Guangxi Zhuang Autonomous Region. Carsologica Sin. 2023, 42, 763–774. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. National Population Development Plan (2016–2030). 2016. Available online: https://english.www.gov.cn/policies/latest_releases/2017/01/25/content_281475551306587.htm (accessed on 25 January 2017).
- The People’s Government of Guangxi. The 14th Five-Year Plan for National Economic and Social Development of Guangxi Zhuang Autonomous Region and Vision for 2035. 2021. Available online: http://www.gxzf.gov.cn/zfwj/zxwj/t8687263.shtml (accessed on 26 April 2021).
- The People’s Government of Guangxi. Population Development Plan of Guangxi (2016–2030). 2017. Available online: http://www.gxzf.gov.cn/html/zfgb/2017nzfgb_34854/d13q_34905/zzqrmzfwj_34908/t1510729.shtml (accessed on 20 June 2017).
- The People’s Government of Guangxi. 14th Five-Year Plan for Economic System Reform of Guangxi. 2021. Available online: http://www.gxzf.gov.cn/zfwj/zxwj/t10913464.shtml (accessed on 25 November 2021).
- Bank of China. 2024 Economic and Financial Outlook Report. Bank of China. 2023. Available online: https://www.bankofchina.com/en/bocinfo/bi1/202405/t20240513_25042986.html (accessed on 13 May 2024).
- International Energy Agency. The Total Carbon Emissions of People’s Republic of China 1990–2021. 2023. Available online: https://www.iea.org/countries/china (accessed on 2 December 2023).
- The People’s Government of Guangxi. Guangxi’s 14th Five-Year Plan for Energy Development. 2022. Available online: http://www.gxzf.gov.cn/zfwj/zzqrmzfbgtwj_34828/2022ngzbwj/t13026864.shtml (accessed on 19 August 2022).
- The People’s Government of Guangxi. Several Policy Measures for the Implementation of the New Round of Industrial Revitalization Three-Year Action. 2024. Available online: http://www.gxzf.gov.cn/zfwj/zxwj/t17976195.shtml (accessed on 18 February 2024).
- Guangxi Department of Natural Resources. General Plan for Mineral Resources in Guangxi Zhuang Autonomous Region (2021–2025). 2022. Available online: https://dnr.gxzf.gov.cn/zfxxgk/fdzdgknr/ghjh/ghjh/t16098473.shtml (accessed on 27 September 2022).
- The State Council of the People’s Republic of China. National Mineral Resources Planning (2016–2020). 2017. Available online: https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201705/t20170511_1196755.html (accessed on 11 May 2017).
- Sisto, M.; Ul-Durar, S.; Arshed, N.; Iqbal, M.; Nazarian, A. Natural resource extraction-Sustainable development relationship and energy productivity moderation in resource-rich countries: A panel Bayesian regression analysis. J. Clean. Prod. 2024, 477, 143775. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, W.; Liu, Z.; Liu, W.; Li, K.; Zhang, B.; Zhang, Y.; Yu, L.; Sakai, T. Urban expansion, economic development, and carbon emissions: Trends, patterns, and decoupling in mainland China’s provincial capitals (1985–2020). Ecol. Indic. 2024, 169, 112777. [Google Scholar] [CrossRef]
- Xie, P.; Shu, Y.; Sun, F.; Li, P. Decoupling economic development from carbon emissions: Insights from Chinese provinces. Energy 2024, 308, 133008. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, M.; Mu, H.; Su, X. Study on decoupling analysis between energy consumption and economic growth in Liaoning Province. Energy Policy 2016, 97, 414–420. [Google Scholar] [CrossRef]
- Zhao, J.; Duan, J.; Han, Y.; Gao, F. Correlation between carbon emissions and water consumption in different industries in China: Spatial and temporal distribution characteristics and driving factors. J. Clean. Prod. 2023, 427, 139196. [Google Scholar] [CrossRef]
- Yin, S.; Li, B.; Xing, Z. The governance mechanism of the building material industry (BMI) in transformation to green BMI: The perspective of green building. Sci. Total Environ. 2019, 677, 19–33. [Google Scholar] [CrossRef]
- Zeng, P.; Liang, L.; Duan, Z. Ecological and environmental impacts of mineral exploitation in urban agglomerations. Ecol. Indic. 2023, 148, 110035. [Google Scholar] [CrossRef]
- Liu, H.; Yin, W.; Yan, F.; Cai, W.; Du, Y.; Wu, Y. A coupled STIRPAT-SD model method for land-use carbon emission prediction and scenario simulation at the county level. Environ. Impact Assess. Rev. 2024, 108, 107595. [Google Scholar] [CrossRef]
- Svobodova, K.; Yellishetty, M.; Vojar, J. Coal mining in Australia: Understanding stakeholder knowledge of mining and mine rehabilitation. Energy Policy 2019, 126, 421–430. [Google Scholar] [CrossRef]
- The People’s Government of Guangxi. The Guangxi Zhuang Autonomous Region Carbon Peaking Implementation Plan. 2022. Available online: http://gxt.gxzf.gov.cn/wzsy/zwdt/gxyw/t15698778.shtml (accessed on 30 January 2023).
- Yan, X.; Han, S.; Cheng, Y.; Lin, X.; Qin, L.; Wu, L.; Zeng, B. The economic and environmental impact analysis of replacing fossil energy with electricity in Guangxi—Based on Input-Output model. Energy Procedia 2018, 152, 841–846. [Google Scholar] [CrossRef]
- Ali, S.M.; Appolloni, A.; Cavallaro, F.; D’Adamo, I.; Di Vaio, A.; Ferella, F.; Gastaldi, M.; Ikram, M.; Kumar, N.M.; Martin, M.A.; et al. Development Goals towards Sustainability. Sustainability 2023, 15, 9443. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, J.; Zhu, H.; Wang, S. Decoupling and decomposition of emissions and economic growth in Guangdong: A perspective of embodied carbon flow. J. Clean. Prod. 2024, 459, 142518. [Google Scholar] [CrossRef]
- Zhang, Y.; Cen, W.; Huang, W.; Latif, K.; Wang, L. Sequence stratigraphic analysis of Devonian organic-rich shales in northern Guangxi. Mar. Pet. Geol. 2023, 156, 106450. [Google Scholar] [CrossRef]
Category | Data | Reference | Source |
---|---|---|---|
Guangxi region | Socio-economic | Guangxi Statistical Yearbook | http://tjj.gxzf.gov.cn/tjsj/tjnj/ (accessed on 27 December 2023) |
Energy | China Energy Statistical Yearbook | https://www.shujuku.org/china-energy-statistical-yearbook.html (accessed on 16 May 2022) | |
Guangxi’s MI | Environment | China Environmental Statistical Yearbook | https://www.shujuku.org/china-environment-statistical-yearbook.html (accessed on 20 January 2021) |
Resources | China Natural Resources Statistical Yearbook | https://www.mnr.gov.cn/sj/ (accessed on 14 March 2025) | |
Energy | CEADs Database | https://www.ceads.net.cn/ (accessed on 1 February 2025) | |
Industrial economy | China Industrial Statistical Yearbook | https://www.shujuku.org/china-industry-statistical-yearbook.html (accessed on 19 January 2021) |
Energy Type (g) | Low Level Net Calorific Value (NCVg) (GJ/T) or (GJ/103 m3) | Carbon Content per Unit Calorific Value (αg) (TC/TJ) | Carbon Oxidation Rate (βg) (%) | Emission Factors | Unit |
---|---|---|---|---|---|
Raw Coal | 20.908 | 25.8 | 0.899 | 1.7781 | t·t−1 |
Clean Coal | 26.344 | 25.8 | 0.899 | 2.2404 | t·t−1 |
Coal Type | 17.584 | 33.56 | 0.900 | 1.9474 | t·t−1 |
Other Washed Coal | 9.409 | 25.8 | 0.899 | 0.8002 | t·t−1 |
Coke | 28.435 | 29.2 | 0.970 | 2.9531 | t·t−1 |
Coke Oven Gas | 17.981 | 12.1 | 0.990 | 0.7898 | t/103 m3 |
Crude Oil | 41.816 | 20.0 | 0.980 | 3.0052 | t·t−1 |
Petrol | 43.070 | 18.9 | 0.980 | 2.9251 | t·t−1 |
Paraffin | 43.070 | 19.5 | 0.980 | 3.0179 | t·t−1 |
Diesel oil | 42.652 | 20.2 | 0.980 | 3.0959 | t·t−1 |
Fuel Oil | 41.816 | 21.1 | 0.980 | 3.1705 | t·t−1 |
Natural Gas | 38.931 | 15.3 | 0.900 | 1.9656 | t/103 m3 |
Other Petroleum Products | 41.031 | 20.0 | 0.980 | 2.9487 | t·t−1 |
Liquefied Petroleum Gas | 50.179 | 17.2 | 0.99 | 3.133 | t·t−1 |
Variables | Definition |
---|---|
C | Total carbon emissions |
Ci | Carbon emissions of sector i |
Gi | Total assets of sector i |
Ei | Total energy consumption of sector i |
Ti | Profit of sector i |
Pi | Average number of employees in sector i |
CGi = Ci/Gi | Carbon emissions per unit of economic output in sector i |
CEi = Ci/Ei | Carbon emissions per unit of energy consumption in sector i |
CTi = Ci/Ti | Carbon emissions per unit of profit in sector i |
CPi = Ci/Pi | Per capita carbon emissions in sector i |
EGi = Ei/Gi | Energy consumption per unit of economic output in sector i |
GPi = Gi/Pi | Per capita economic output in sector i |
i | 1. CND; 2. PNGE; 3. FMMD; 4. NFMD; 5. NMMD |
Decoupling State | δΔC | δΔG or δΔY | D | Meaning | |
---|---|---|---|---|---|
Decoupling | Strong | <0 | >0 | Dt < 0 | Output/extraction increases while carbon emissions decrease. |
Weak | >0 | >0 | 0.8 > Dt > 0 | Output/extraction increases while carbon emissions grow slowly. | |
Recessive | <0 | <0 | Dt > 1.2 | Output/extraction decreases while carbon emissions drop rapidly. | |
Negative decoupling | Expansive | >0 | >0 | Dt > 1.2 | Output/extraction increases while carbon emissions grow rapidly. |
Strong | >0 | <0 | Dt < 0 | Output/extraction decreases while carbon emissions grow. | |
Weak | <0 | <0 | 0.8 > Dt > 0 | Output/extraction decreases while carbon emissions decline slowly. | |
Connection | Recessive | <0 | <0 | 1.2 > Dt > 0.8 | The rate of output/extraction decline is smaller than the rate of carbon emission decline. |
Expansive | >0 | >0 | 1.2 > Dt > 0.8 | The rate of output/extraction growth exceeds the rate of carbon emission growth. |
Year | △G | △E | △T | △P | △CG | △CE | △CT | △CP | △GP | △EG |
---|---|---|---|---|---|---|---|---|---|---|
2005–2006 | 0.0718 | −0.0455 | 0.0603 | −0.0147 | −0.0581 | 0.0596 | −0.0480 | 0.0269 | 0.0048 | −0.0023 |
2006–2007 | 0.1601 | 0.0337 | 0.0952 | 0.0452 | −0.1051 | 0.0121 | −0.0512 | 0.0004 | 0.0081 | 0.0024 |
2007–2008 | 0.0754 | 0.0066 | −0.0050 | 0.0023 | −0.0425 | 0.0258 | 0.0373 | 0.0302 | 0.0005 | 0.0009 |
2008–2009 | 0.0062 | −0.0165 | −0.0119 | −0.0083 | 0.0161 | 0.0388 | 0.0340 | 0.0302 | 0.0001 | −0.0003 |
2009–2010 | 0.1313 | 0.0304 | 0.1904 | 0.0878 | −0.0813 | 0.0173 | −0.1568 | −0.0392 | 0.0043 | −0.0028 |
2010–2011 | 0.1024 | −0.0176 | 0.0075 | −0.0071 | −0.0797 | 0.0364 | 0.0109 | 0.0255 | 0.0050 | 0.0009 |
2011–2012 | 0.0429 | −0.0188 | 0.0168 | 0.0086 | −0.0358 | 0.0263 | −0.0100 | −0.0018 | 0.0015 | −0.0015 |
2012–2013 | 0.0511 | 0.0182 | 0.0235 | 0.0082 | −0.0433 | −0.0110 | −0.0164 | −0.0012 | −0.0002 | 0.0006 |
2013–2014 | 0.0230 | −0.0016 | 0.0057 | −0.0190 | −0.0147 | 0.0097 | 0.0025 | 0.0276 | −0.0010 | 0.0005 |
2014–2015 | 0.0074 | 0.0064 | −0.0458 | −0.0028 | −0.0040 | −0.0029 | 0.0492 | 0.0063 | −0.0001 | 0.0000 |
2015–2016 | −0.0033 | 0.0190 | −0.0270 | −0.0136 | 0.0017 | −0.0197 | 0.0254 | 0.0126 | −0.0005 | −0.0010 |
2016–2017 | 0.0141 | 0.0586 | 0.0289 | −0.0475 | 0.0046 | −0.0331 | −0.0103 | 0.0752 | −0.0108 | −0.0061 |
2017–2018 | −0.0968 | −0.0038 | −0.0868 | −0.0623 | 0.1103 | 0.0339 | 0.1146 | 0.1079 | 0.0007 | −0.0186 |
2018–2019 | −0.0287 | 0.0281 | −0.0853 | −0.0263 | 0.0554 | 0.0006 | 0.1104 | 0.0575 | 0.0001 | −0.0049 |
2019–2020 | 0.0035 | −0.0214 | −0.0572 | −0.0179 | 0.0126 | 0.0374 | 0.0726 | 0.0337 | 0.0000 | −0.0002 |
2020–2021 | 0.0242 | −0.0016 | 0.1229 | −0.0183 | 0.0081 | 0.0335 | −0.0943 | 0.0510 | −0.0010 | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, X.; Liu, X.; Rong, L.; Hao, L.; He, Q.; Liao, F.; Tang, H. Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China. Processes 2025, 13, 2474. https://doi.org/10.3390/pr13082474
Wang W, Liu X, Liu X, Rong L, Hao L, He Q, Liao F, Tang H. Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China. Processes. 2025; 13(8):2474. https://doi.org/10.3390/pr13082474
Chicago/Turabian StyleWang, Wei, Xiang Liu, Xianghua Liu, Luqing Rong, Li Hao, Qiuzhi He, Fengchu Liao, and Han Tang. 2025. "Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China" Processes 13, no. 8: 2474. https://doi.org/10.3390/pr13082474
APA StyleWang, W., Liu, X., Liu, X., Rong, L., Hao, L., He, Q., Liao, F., & Tang, H. (2025). Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China. Processes, 13(8), 2474. https://doi.org/10.3390/pr13082474