Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of β-C3N4 Nanoparticles
2.3. Fabrication of β-C3N4MnTeO3 Nanocomposites
2.4. Characterization Techneaques
2.5. Adsorption Experiments
3. Results and Discussions
3.1. Yield Percentage of β-C3N4
3.2. Characterization
3.3. Contact Time and Effect of pH
Sorbent | qt (mg g−1) | Reference |
---|---|---|
10%MnTe@β | 48.88 | This study |
20%MnTe@β | 77.41 | This study |
Carbon nanoparticles (CNPs) derived from sunflower seed waste | 103.6 | [50] |
Carbon Nanoparticles prepared from coffee skin waste | 142.6 | [51] |
Carbon nanotubes synthesized from commercial gasoline | 95.5 | [39] |
Aluminous oxide | 13.6 | [52] |
Magnetite | 12.73 | [53] |
Activated carbon derived from pomegranate peel waste | 2.353 | [54] |
Zeolites | 5.79 | [55] |
Activated carbon | 1.86 | [56] |
Modified montmorillonite | 1.67 | [56] |
Alumina | 1.15 | [56] |
3.4. Adsorption Kinetics
3.5. Sorption Equilibria
3.6. Application of 20%MnTe@β to Remediate Natural Water
3.7. Regeneration and Reusability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Alsukaibi, A.K. Various approaches for the detoxification of toxic dyes in wastewater. Processes 2022, 10, 1968. [Google Scholar] [CrossRef]
- Stec, J.; Kosikowska, U.; Mendrycka, M.; Stępień-Pyśniak, D.; Niedźwiedzka-Rystwej, P.; Bębnowska, D.; Hrynkiewicz, R.; Ziętara-Wysocka, J.; Grywalska, E. Opportunistic pathogens of recreational waters with emphasis on antimicrobial resistance—A possible subject of human health concern. Int. J. Environ. Res. Public Health 2022, 19, 7308. [Google Scholar] [CrossRef] [PubMed]
- Obaideen, K.; Shehata, N.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Olabi, A. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Montes-Grajales, D.; Fennix-Agudelo, M.; Miranda-Castro, W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017, 595, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed]
- Almomani, F.; Bhosale, R.; Kumar, A.; Khraisheh, M. Potential use of solar photocatalytic oxidation in removing emerging pharmaceuticals from wastewater: A pilot plant study. Sol. Energy 2018, 172, 128–140. [Google Scholar] [CrossRef]
- Levy, S.B. The Antibiotic Paradox: How Miracle Drugs Are Destroying the Miracle; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Yan, Y.; Pengmao, Y.; Xu, X.; Zhang, L.; Wang, G.; Jin, Q.; Chen, L. Migration of antibiotic ciprofloxacin during phytoremediation of contaminated water and identification of transformation products. Aquat. Toxicol. 2020, 219, 105374. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Golet, E.; Gartiser, S.; Alder, A.; Koller, T.; Widmer, R. Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters. Arch. Environ. Contam. Toxicol. 1999, 36, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Fick, J.; Söderström, H.; Lindberg, R.H.; Phan, C.; Tysklind, M.; Larsson, D.J. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 2009, 28, 2522–2527. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xu, X.; Shi, C.; Yan, W.; Zhang, L.; Wang, G. Ecotoxicological effects and accumulation of ciprofloxacin in Eichhornia crassipes under hydroponic conditions. Environ. Sci. Pollut. Res. 2019, 26, 30348–30355. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Kumar, D. Pharmaceuticals and personal care products (PPCPs) as emerging environmental pollutants: Toxicity and risk assessment. Adv. Anim. Biotechnol. Its Appl. 2018, 9, 337–353. [Google Scholar]
- Ziylan-Yavas, A.; Santos, D.; Flores, E.M.M.; Ince, N.H. Pharmaceuticals and personal care products (PPCPs): Environmental and public health risks. Environ. Prog. Sustain. Energy 2022, 41, e13821. [Google Scholar] [CrossRef]
- Moreira, N.F.; Sousa, J.M.; Macedo, G.; Ribeiro, A.R.; Barreiros, L.; Pedrosa, M.; Faria, J.L.; Pereira, M.F.R.; Castro-Silva, S.; Segundo, M.A. Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity. Water Res. 2016, 94, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Polesel, F.; Andersen, H.R.; Trapp, S.; Plósz, B.G. Removal of Antibiotics in Biological Wastewater Treatment Systems—A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X). Environ. Sci. Technol. 2016, 50, 10316–10334. [Google Scholar] [CrossRef] [PubMed]
- Biancullo, F.; Moreira, N.F.; Ribeiro, A.R.; Manaia, C.M.; Faria, J.L.; Nunes, O.C.; Castro-Silva, S.M.; Silva, A.M. Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents. Chem. Eng. J. 2019, 367, 304–313. [Google Scholar] [CrossRef]
- Tang, Z.; Lin, X.; Chen, Y.; Pan, Y.; Yang, Y.; Mondal, A.K.; Yu, M.; Wu, H. Preparation of mussel-inspired polydopamine-functionalized TEMPO-oxidized cellulose nanofiber-based composite aerogel as reusable adsorbent for water treatment. Ind. Crops Prod. 2023, 206, 117735. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative adsorbents for pollutant removal: Exploring the latest research and applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef] [PubMed]
- Alnajrani, M.N.; Alsager, O.A. Removal of antibiotics from water by polymer of intrinsic microporosity: Isotherms, kinetics, thermodynamics, and adsorption mechanism. Sci. Rep. 2020, 10, 794. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Wang, L.; Ge, Y.; Su, H.; Li, Z. Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. J. Hazard. Mater. 2019, 368, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Thakur, B.; Kumar, A.; Sharma, S.; Naushad, M.; Stadler, F.J. Gum acacia-cl-poly (acrylamide)@carbon nitride nanocomposite hydrogel for adsorption of ciprofloxacin and its sustained release in artificial ocular solution. Macromol. Mater. Eng. 2020, 305, 2000274. [Google Scholar] [CrossRef]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Chen, D.; Fang, J.; Wu, S.; Yang, F.; Zhu, X.; Fang, Z. One-step synthesis of sulfur and tungstate co-doped porous g-C3N4 microrods with remarkably enhanced visible-light photocatalytic performances. Appl. Surf. Sci. 2018, 462, 991–1001. [Google Scholar] [CrossRef]
- Li, K.; Xue, D. Hardness of group IVA and IVB nitrides. Phys. Scr. 2010, 2010, 014073. [Google Scholar] [CrossRef]
- Han, L.; Khalil, A.M.; Wang, J.; Chen, Y.; Li, F.; Chang, H.; Zhang, H.; Liu, X.; Li, G.; Jia, Q. Graphene-boron nitride composite aerogel: A high efficiency adsorbent for ciprofloxacin removal from water. Sep. Purif. Technol. 2021, 278, 119605. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Ali Shah Syed, J.; Al-Sehemi, A.G.; Mohammed, M.H.; Al-Ghamdi, A.A.; Taha, T.; Salem AlSalem, H.; Alenad, A.M.; Amin, M.A. Recent advancement of the current aspects of g-C3N4 for its photocatalytic applications in sustainable energy system. Chem. Rec. 2022, 22, e202100310. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Cheng, Y.; He, J.; Zheng, L.; Shao, D.; Wang, W.; Wang, W.; Lu, F.; Dong, H.; Liu, H. Enhanced photocatalytic activities of g-C3N4 with large specific surface area via a facile one-step synthesis process. Carbon 2017, 125, 454–463. [Google Scholar] [CrossRef]
- Long, B.; Lin, J.; Wang, X. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A 2014, 2, 2942–2951. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Zhao, J.; Guo, L.; Osterloh, F.E. Structure defects in gC 3 N 4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2014, 2, 20338–20344. [Google Scholar] [CrossRef]
- Almufarij, R.S.; Abdulkhair, B.Y.; Salih, M. Fast-simplistic fabrication of MoO3@ Al2O3-MgO triple nanocomposites for efficient elimination of pharmaceutical contaminants. Results Chem. 2024, 7, 101281. [Google Scholar] [CrossRef]
- Khairy, M.; Algethami, F.K.; Alotaibi, A.N.; Almufarij, R.S.; Abdulkhair, B.Y. Enhancing the conductivity and dielectric characteristics of bismuth oxyiodide via activated carbon doping. Molecules 2024, 29, 2082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Q.; Chen, Q.; Li, X.; Li, Y.; Kang, M.; Li, Q.; Wang, J. A new boron modified carbon nitride metal-free catalyst for the cycloaddition of CO2 and bisepoxides. Appl. Catal. A Gen. 2024, 675, 119615. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, Q.; Tang, Y.; Cai, Y. Recent trends in metal-doped carbon nitride-catalyzed heterogeneous light-driven organic transformations. Nano Trends 2023, 4, 100019. [Google Scholar] [CrossRef]
- Umar, M.; Ajaz, H.; Javed, M.; Mansoor, S.; Iqbal, S.; Rauf, A.; Alhujaily, A.; Awwad, N.S.; Ibrahium, H.A.; Althobiti, R.A. Design of a highly efficient heterostructure of transition metal tellurides with outstanding photocatalytic and antimicrobial potential. J. Saudi Chem. Soc. 2023, 27, 101760. [Google Scholar] [CrossRef]
- Srinandhini, S.; Padmanaban, A.; Sheeja, R.; Narayanan, V. Synthesis and characterization of MnTe nanoparticles and its photocatalytic activity. J. Indian Chem. Soc. 2019, 96, 147–149. [Google Scholar]
- Hasan, G.G.; Laouini, S.E.; Osman, A.I.; Bouafia, A.; Althamthami, M.; Meneceur, S.; Kir, I.; Mohammed, H.; Lumbers, B.; Rooney, D.W. Nanostructured Mn@NiO composite for addressing multi-pollutant challenges in petroleum-contaminated water. Environ. Sci. Pollut. Res. 2024, 31, 44254–44271. [Google Scholar] [CrossRef] [PubMed]
- Eder, F.; Weil, M.; Missen, O.P.; Kolitsch, U.; Libowitzky, E. The Family of MII3(TeIVO3)2(OH)2 (M = Mg, Mn, Co, Ni) Compounds—Prone to Inclusion of Foreign Components into Large Hexagonal Channels. Crystals 2022, 12, 1380. [Google Scholar] [CrossRef]
- Elamin, M.R.; Abdulkhair, B.Y.; Elzupir, A.O. Removal of ciprofloxacin and indigo carmine from water by carbon nanotubes fabricated from a low-cost precursor: Solution parameters and recyclability. Ain Shams Eng. J. 2023, 14, 101844. [Google Scholar] [CrossRef]
- Aliakbari, A.; Ghamsari, M.S.; Mozdianfard, M. β-Carbon nitride nanoflake with enhanced visible light emission. Opt. Mater. 2020, 107, 110036. [Google Scholar] [CrossRef]
- Yin, L.-W.; Li, M.-S.; Liu, Y.-X.; Sui, J.-L.; Wang, J.-M. Synthesis of beta carbon nitride nanosized crystal through mechanochemicalreaction. J. Phys. Condens. Matter 2003, 15, 309. [Google Scholar] [CrossRef]
- Chen, Y.A.; Guo, L.; Wang, E. alpha beta Experimental evidence for alpha-and beta-phases of pure crystalline C3N4 in films deposited on nickel substrates. Philos. Mag. Lett. 1997, 75, 155–162. [Google Scholar] [CrossRef]
- He, Y.; Guo, Y.; Yu, Y.; Luo, P.; Qiu, H.; Huang, G. Facile Synthesis of Manganese Tellurite Nanoparticles for Magnetic Resonance Imaging-Guided Photothermal Therapy. Part. Part. Syst. Charact. 2021, 38, 2100038. [Google Scholar] [CrossRef]
- Ganesamurthi, J.; Keerthi, M.; Chen, S.-M.; Shanmugam, R. Electrochemical detection of thiamethoxam in food samples based on Co3O4 Nanoparticle@Graphitic carbon nitride composite. Ecotoxicol. Environ. Saf. 2020, 189, 110035. [Google Scholar] [CrossRef] [PubMed]
- Bekele, E.A.; Korsa, H.A.; Desalegn, Y.M. Electrolytic synthesis of γ-Al2O3 nanoparticle from aluminum scrap for enhanced methylene blue adsorption: Experimental and RSM modeling. Sci. Rep. 2024, 14, 16957. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Liu, Z.; Zhang, J.; Jiao, C.; Ding, L.; Yang, S. Synthesis and adsorption properties of novel bacterial cellulose/graphene oxide/attapulgite materials for Cu and Pb Ions in aqueous solutions. Materials 2020, 13, 3703. [Google Scholar] [CrossRef] [PubMed]
- Ajduković, M.; Stevanović, G.; Marinović, S.; Mojović, Z.; Banković, P.; Radulović, K.; Jović-Jovičić, N. Ciprofloxacin adsorption onto a smectite–chitosan-derived nanocomposite obtained by hydrothermal synthesis. Water 2023, 15, 2608. [Google Scholar] [CrossRef]
- Liu, T.; Liu, W.; Li, X.; Wang, H.; Lan, Y.; Zhang, S.; Wang, Y.; Liu, H. Effect of environmental factors on adsorption of ciprofloxacin from wastewater by microwave alkali modified fly ash. Sci. Rep. 2024, 14, 19831. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, L.; Santás-Miguel, V.; Cela-Dablanca, R.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Rodríguez-Seijo, A.; Arias-Estévez, M. Sorption of Antibiotics in Agricultural Soils as a Function of pH. Span. J. Soil Sci. 2024, 14, 12402. [Google Scholar] [CrossRef]
- Almufarij, R.S.; Abdulkhair, B.Y.; Salih, M.; Aldosari, H.; Aldayel, N.W. Optimization, nature, and mechanism investigations for the adsorption of ciprofloxacin and malachite green onto carbon nanoparticles derived from low-cost precursor via a green route. Molecules 2022, 27, 4577. [Google Scholar] [CrossRef] [PubMed]
- Salih, M.; Abdulkhair, B.Y.; Alotaibi, M. Insight into the Adsorption Behavior of Carbon Nanoparticles Derived from Coffee Skin Waste for Remediating Water Contaminated with Pharmaceutical Ingredients. Chemistry 2023, 5, 1870–1881. [Google Scholar] [CrossRef]
- Gu, C.; Karthikeyan, K. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ. Sci. Technol. 2005, 39, 9166–9173. [Google Scholar] [CrossRef] [PubMed]
- Rakshit, S.; Sarkar, D.; Elzinga, E.J.; Punamiya, P.; Datta, R. Mechanisms of ciprofloxacin removal by nano-sized magnetite. J. Hazard. Mater. 2013, 246, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Elsaim, M.H. Removal of ciprofloxacin hydrochloride from aqueous solution by pomegranate peel grown in Alziedab agricultural scheme-River Nile State, Sudan. Biochemistry 2017, 5, 89–96. [Google Scholar]
- Genç, N.; Dogan, E.C. Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalination Water Treat. 2015, 53, 785–793. [Google Scholar] [CrossRef]
- Avcı, A.; İnci, İ.; Baylan, N. A comparative adsorption study with various adsorbents for the removal of ciprofloxacin hydrochloride from water. Water Air Soil Pollut. 2019, 230, 250. [Google Scholar] [CrossRef]
- Elamin, M.R.; Abdulkhair, B.Y.; Algethami, F.K.; Khezami, L. Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay. Sci. Rep. 2021, 11, 13606. [Google Scholar] [CrossRef] [PubMed]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Tran, Q.T.; Do, T.H.; Ha, X.L.; Nguyen, H.P.; Nguyen, A.T.; Ngo, T.C.Q.; Chau, H.D. Study of the ciprofloxacin adsorption of activated carbon prepared from mangosteen peel. Appl. Sci. 2022, 12, 8770. [Google Scholar] [CrossRef]
- An, B. Cu(II) and As(V) adsorption kinetic characteristic of the multifunctional amino groups in chitosan. Processes 2020, 8, 1194. [Google Scholar] [CrossRef]
- Ibrahim, T.G.; Almufarij, R.S.; Abdulkhair, B.Y.; Ramadan, R.S.; Eltoum, M.S.; Abd Elaziz, M.E. A Thorough Examination of the Solution Conditions and the Use of Carbon Nanoparticles Made from Commercial Mesquite Charcoal as a Successful Sorbent for Water Remediation. Nanomaterials 2023, 13, 1485. [Google Scholar] [CrossRef] [PubMed]
Phase Name | D (nm) | A (Å) | B (Å) | C (Å) | α (deg) | β (deg) | γ (deg) |
---|---|---|---|---|---|---|---|
β-C3N4 | 0.65 | 7.343 | 7.343 | 2.9 | 90.00 | 90.00 | 120.00 |
MnTeO3 of 10%MnTe@β | 19.0 | 13.92 | 10.23 | 11.78 | 90.00 | 92.9 | 90.00 |
β-C3N4 of 10%MnTe@β | 9.07 | 4.459 | 4.459 | 6.470 | 90.00 | 90.00 | 120.00 |
MnTeO3 of 20%MnTe@β | 8.0 | 6.42 | 7.55 | 4.683 | 90.00 | 90.00 | 90.00 |
β-C3N4 of 20%MnTe@β | 3.28 | 6.165 | 6.165 | 2.694 | 90.00 | 90.00 | 120.00 |
The Absorbing Group | β-C3N4 | 10%MnTe@β | 20%MnTe@β |
---|---|---|---|
Adsorbed moisture O-H | - | ~3444 cm−1 | ~3444 cm−1 |
N—H stretching | 3080–3280 cm−1 | 3130–3308 cm−1 | 3120–3334 cm−1 |
C-H stretching | 2933 cm−1 | 2933 cm−1 | 2933 cm−1 |
C≡N stretching, | 2368 cm−1 | 2374 cm−1 | 2364 cm−1 |
C—N stretching | 1234–1642 cm−1 | 1234–1642 cm−1 | 1234–1642 cm−1 |
Out-of-plane bending of the triazine ring | 803–812 cm−1 | 803–812 cm−1 | 803–812 cm−1 |
Te—O stretching | - | 755 cm−1 | 760 cm−1 |
Mn—O stretching | - | 584 cm−1 | 575 cm−1 |
Sorbent | SA (m2 g−1) | PD (Å) | PV (cm3 g−1) |
---|---|---|---|
β-C3N4 | 85.86 | 12.61 | 0.29 |
10%MnTe@β | 97.40 | 13.99 | 0.22 |
20%MnTe@β | 109.54 | 10.42 | 0.37 |
Adsorption Rate Order | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sorbent | qmax exp (mg. g−1) | NPFO | NPSO | ||||||||
qe (mg. g−1) | K1 | R2 | X2 | RSS | qe (mg. g−1) | K2 | R2 | X2 | RSS | ||
10%MnTe@β | 48.89 | 45.158 | 0.6555 | 0.9682 | 8.63182 | 60.42273 | 47.8555 | 0.67344 | 0.9919 | 2.19657 | 15.376 |
20%MnTe@β | 77.41 | 74.192 | 0.5117 | 0.9729 | 19.09689 | 133.67823 | 77.2766 | 1.2512 | 0.9944 | 3.9636 | 27.745 |
Adsorption rate mechanism | |||||||||||
Sorbent | IPM | LFM | |||||||||
KIP (mg. g−1 min1/2) | C (mg. g−1) | R2 | RSS | KLF (min−1) | R2 | RSS | |||||
10%MnTe@β | 2.666 | 29.185 | 0.845 | 42.64233 | 0.06747 | 0.850 | 2.2715 | ||||
20%MnTe@β | 2.97888 | 57.3552 | 0.834 | 57.76773 | 0.0725 | 0.953 | 0.74024 |
Adsorption Isotherms | |||||||
---|---|---|---|---|---|---|---|
Isotherm model | Langmuir | Freundlich | |||||
Sorbent | R2 | KL | qm | R2 | Kf | 1/n | |
10%MnTe@β | 0.99397 | 0.01606 | 136.007 | 0.99603 | 3.16823 | 0.77782 | |
20%MnTe@β | 0.9779 | 3.1375 × 105 | 71715.2 | 0.96835 | 1.6375 | 1.10947 | |
Thermodynamic results 10%MnTe@β | |||||||
Conc. (mg L−1) | ΔH° | ΔS° | ΔG°(293 K) | ΔG°-303 K | ΔG°-313 K | ΔG°-323 K | R2 |
10.0 | −7.698 | −0.025 | −0.479 | −0.232 | 0.014 | 0.014 | 0.999 |
20.0 | −9.455 | −0.032 | 0.057 | 0.382 | 0.706 | 1.031 | 0.859 |
30.0 | −8.939 | −0.032 | 0.375 | 0.693 | 1.011 | 1.329 | 0.603 |
50.0 | −11.770 | −0.044 | 1.013 | 1.449 | 1.885 | 2.322 | 0.995 |
Thermodynamic results 20%MnTe@β | |||||||
Conc. (mg L−1) | ΔH° | ΔS° | ΔG°(293 K) | ΔG°-303 K | ΔG°-313 K | ΔG°-323 K | R2 |
10.0 | −9.840 | −0.032 | −0.428 | −0.107 | 0.214 | 0.214 | 0.853 |
20.0 | −9.782 | −0.034 | 0.192 | 0.532 | 0.873 | 1.21 | 0.872 |
30.0 | −12.206 | −0.044 | 0.632 | 1.070 | 1.508 | 1.946 | 0.952 |
50.0 | −3.323 | −0.016 | 1.221 | 1.376 | 1.531 | 1.686 | 0.937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elamin, M.R.; Elamin, N.Y.; Ibrahim, T.G.; Salih, M.; Albadri, A.; Ramadan, R.; Abdulkhair, B.Y. Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals. Processes 2025, 13, 2357. https://doi.org/10.3390/pr13082357
Elamin MR, Elamin NY, Ibrahim TG, Salih M, Albadri A, Ramadan R, Abdulkhair BY. Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals. Processes. 2025; 13(8):2357. https://doi.org/10.3390/pr13082357
Chicago/Turabian StyleElamin, Mohamed R., Nuha Y. Elamin, Tarig G. Ibrahim, Mutaz Salih, Abuzar Albadri, Rasha Ramadan, and Babiker Y. Abdulkhair. 2025. "Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals" Processes 13, no. 8: 2357. https://doi.org/10.3390/pr13082357
APA StyleElamin, M. R., Elamin, N. Y., Ibrahim, T. G., Salih, M., Albadri, A., Ramadan, R., & Abdulkhair, B. Y. (2025). Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals. Processes, 13(8), 2357. https://doi.org/10.3390/pr13082357