Optimization of the Production Process of a Fermented Mango-Based Beverage with Lactiplantibacillus plantarum (Lp6 and Lp32)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Mango Beverage Preparation
2.3. Inoculum
2.4. Fermented Mango Beverage
2.4.1. Viable Cell Concentration (CC)
2.4.2. Total Phenolic Compounds (TPCs)
2.4.3. Total Flavonoid Compounds (TFCs)
2.4.4. L- and D-Lactic Acid
2.5. Characterization of the Optimal Fermented Beverage
2.5.1. Physicochemical Analysis
2.5.2. Microbiological Analysis
2.5.3. Proximal Analysis
2.5.4. Sensory Analysis
2.6. Statistical Analysis
2.6.1. Optimization
2.6.2. Characterization
2.6.3. Sensory Evaluation
3. Results and Discussion
3.1. Analysis of Quality Variables
3.2. Optimization of Lp6 Fermented Mango Beverage
3.3. Validation of Optimal Conditions
3.4. Characterization of the Optimal Beverage
3.4.1. Physiochemistry and Proximal
3.4.2. Microbiological
3.4.3. Sensory
4. Conclusions
5. Recommendations
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vodnar, D.C.; Călinoiu, L.F.; Mitrea, G.; Precup, M.; Bindea, M.; Păcurar, A.M.; Szabo, K.; Stefãnescu, B. A New Generation of Probiotic Functional Beverages Using Bioactive Compounds from Agro-Industrial Waste. In Functional and Medicinal Beverages; Academic Press: Cambridge, MA, USA, 2019; Volume 11, pp. 483–528. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Plant-Based Diets and Their Impact on Health, Sustainability, and the Environment: A Review of the Evidence. WHO European Office for the Prevention and Control of Non-Communicable Diseases. Prevention and Control of Non-Communicable Diseases. 2021. Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2021-4007-43766-61591 (accessed on 18 November 2024).
- Ahmed, T.; Sabuz, A.A.; Mohaldar, A.; Fardows, H.S.; Inbaraj, B.S.; Sharma, M.R.; Sridhar, K. Development of novel whey-mango based mixed beverage: Storage effect on physicochemical, microbiological, and sensory analysis. Foods 2021, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Isas, A.S.; Escobar, F.; Alvarez, E.V.; Molina, V.; Mateos, R.; Lizarraga, E.; Mozzi, F.; Van, C.N. Fermentation of pomegranate juice by lactic acid bacteria and its biological effect on mice fed a high-fat diet. 18 Food Biosci. 2023, 53, 102516. [Google Scholar] [CrossRef]
- Mordor Intelligence. Fermented Foods and Beverages Market Size, Share Analysis, and Industry Report, 2030. 2025. Available online: https://www.mordorintelligence.com/industry-reports/fermented-foods-beverages-market (accessed on 12 July 2025).
- García, C.; Guerin, M.; Souidi, K.; Remize, F. Lactic fermented fruit or vegetable juices: Past, present, and future. Beverages 2020, 6, 8. [Google Scholar] [CrossRef]
- Lan, T.; Wang, J.; Bao, S.; Zhao, Q.; Sun, X.; Fang, Y.; Ma, T.; Liu, S. Effects and impacts of technical processing units on fruit and vegetable juice’s nutrients and functional components. Food Res. Int. 2023, 168, 112784. [Google Scholar] [CrossRef] [PubMed]
- Sireswar, S.; Dey, G.; Biswas, S. Influence of fruit-based beverages on efficacy of Lacticaseibacillus rhamnosus GG (Lactobacillus rhamnosus GG) against DSS-induced intestinal inflammation. Food Res. Int. 2021, 149, 110661. [Google Scholar] [CrossRef] [PubMed]
- Maftei, N.-M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.P. Functional cultures and health benefits. Int. Dairy J. 2007, 17, 1262–1277. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef] [PubMed]
- Punia, B.S.; Suri, S.; Trif, M.; Ozogul, F. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 2022, 46, 101615. [Google Scholar] [CrossRef]
- Ku, W.H.; Lau, D.; Huen, K.F. Probiotics Provoked D-lactic Acidosis in Short Bowel Syndrome: Case Report and Literature Review. Hong Kong J. Paediatr. 2006, 11, 246–254. [Google Scholar]
- Bianchetti, D.G.A.M.; Amelio, G.S.; Lava, S.A.G.; Bianchetti, M.G.; Simonetti, G.D.; Agostoni, C.; Fossali, E.F.; Milani, G.P. D-lactic acidosis in humans: Systematic literature review. Pediatr. Nephrol. 2018, 33, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotics. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Mozzi, F.; Raya, R.R.; Vignolo, G.M.; Di Cagno, R.; Filannino, P.; Gobbetti, M. Biotechnology of Lactic Acid Bacteria: Novel Applications, 2nd ed.; Edited Vegetable and Fruit Fermentation by Lactic Acid Bacteria; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Aziz, F.N.; Utami, T.; Suroto, D.A.; Yanti, R.; Rahayu, E.S. Fermentation of pineapple juice with Lactiplantibacillus plantarum subsp. Plantarum Dad-13: Sensory and microbiological characteristics. Czech J. Food Sci. 2023, 41, 221–229. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Kryczyk-Poprawa, A.; Zábó, V.; Varga, J.T.; Bálint, M.; Fazekas-Pongor, V.; Csípő, T.; Rząsa-Duran, E.; Varga, P. Functional Foods in Modern Nutrition Science: Mechanisms, Evidence, and Public Health Implications. Nutrients 2025, 17, 2153. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research, Inc. Global Functional Foods Market Size & Outlook, 2023–2030. Horizon. 2025. Available online: https://www.grandviewresearch.com/horizon/outlook/functional-foods-market-size/global (accessed on 18 July 2025).
- Cele, N.P.; Akinola, S.A.; Manhivi, V.E.; Shoko, T.; Remize, F.; Sivakumar, D. Influence of lactic acid bacterium strains on changes in quality, functional compounds, and volatile compounds of mango juice from different cultivars during fermentation. Foods 2022, 11, 682. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice. Int. J. Food Microbiol. 2017, 248, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.V.; Sreedharamurthy, M.; Reddy, O.S. Probiotication of mango and sapota juices using Lactobacillus plantarum NCDC LP 20. Nutrafoods 2015, 14, 97–106. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero-Ospina, J.C. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef] [PubMed]
- Palafox, H.C.; Yahia, E.M.; González, A.G. Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC–DAD–MS/MS-ESI and their contribution to the antioxidant activity during ripening. Food Chem. 2012, 135, 105–111. [Google Scholar] [CrossRef]
- Quirós, S.E.; Chen, C.O.; Blumberg, J.B.; Astiazaran, G.H.; Wall, M.A.; González, A.G. Processing ’Ataulfo’ mango into juice preserves its phenolic compounds’ bioavailability and antioxidant capacity. Nutrients 2017, 9, 1082. [Google Scholar] [CrossRef]
- Mwanzia, M.; Kiio, J.; Okoth, E. Formulation, processing, and characterization of fermented probiotic mango juice using selected starter cultures. Eur. J. Agric. Food Sci. 2022, 4, 86–91. [Google Scholar] [CrossRef]
- Toan, N.B.; Erika, B.; Fekete, N.; Tran, A.T.M.; Rezessy, S.M.; Prasad, R.; Nguyen, Q.D. Probiotic Beverage from pineapple juice fermented with lactobacillus and bifidobacterium strains. Front. Nutr. 2019, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Dictamen científico sobre el mantenimiento de la lista de agentes biológicos de QPS añadidos intencionadamente a alimentos y piensos. EFSA J. 2012, 10, 3020. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, J.L.; Quin, Z.; Chen, Q.; Zhao, L. Antioxidant properties of a vegetable–fruit beverage fermented with two Lactobacillus plantarum strains. Food Sci. Biotechnol. 2018, 27, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, H.C.; Melo, D.S.; Ramos, C.L.; Tavares, M.G.; Dias, D.R.; Schwan, R.F. Sensory and flavor-aroma profiles of passion fruit juice fermented by potentially probiotic Lactiplantibacillus plantarum. Food Res. Int. 2022, 152, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Aviles-Rivera, Y.A.; Hernández-Mendoza, A.; Basilio Heredia, J.; Mata-Haro, V.; Santiago-López, L.; Muy-Rangel, M.D. Capacidad fermentativa de cepas específicas de Lactiplantibacillus plantarum utilizando mango como materia base. Rev. Mex. Cienc. Agrícolas 2024, 15, e3719. [Google Scholar] [CrossRef]
- Sanders, E.R. Aseptic laboratory techniques: Plating methods. J. Vis. Exp. 2012, 63, 3064. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. Agriculture 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two spectrophotometric methods. J. Food Drug Anal. 2022, 10, 178–182. [Google Scholar]
- Xu, H.; Qiu, S.; Dai, Y.; Wu, Y.; Zeng, X. Distribution and Quantification of Lactic Acid Enantiomers in Baijiu. Foods 2022, 11, 2607. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Official Methods of Analysis; AOAC: Arlington, VA, USA, 1990; Volume 1, pp. 69–90. [Google Scholar]
- Megazyme. Sucrose, D-Fructose and D-Glucose Assay Procedure; K-SUFRG 04/18; USDA National Nutrient Database for Standard Reference; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2018.
- NOM-210-SSA1-2014; 26-06-2015. Productos y Servicios. Métodos de Prueba Microbiológicos. Determinación de Microorganismos Indicadores. Determinación de Microorganismos Patógenos. Diario Oficial de la Federación: Ciudad de Mexico, Mexico, 2015. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5398468&fecha=26/06/2015#gsc.tab=0 (accessed on 14 January 2025).
- NOM-092-SSA1-1994; 12-12-1995. Mesófilos Aeróbicos, Bienes y Servicios. Método Para la Cuenta de Bacterias Aerobias en Placa. Diario Oficial de la Federación: Ciudad de Mexico, Mexico, 1995. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4886029&fecha=12/12/1995#gsc.tab=0 (accessed on 7 July 2024).
- Chauhan, A.; Jindal, T. Microbiological Methods for Food Analysis. In Microbiological Methods for Environment, Food and Pharmaceutical Analysis; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 303–423. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Seattle, WA, USA, 1999. [Google Scholar]
- Minitab. Minitab Statistical Software. Simple Correspondence Analysis, Version 20.4. 2021. Available online: www.minitab.com (accessed on 20 November 2024).
- Greenacre, M. Correspondence Analysis in Practice, 3rd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Chen, C.; Li, H.L.; Zhu, Y.P.; Zhou, Y.W.; Luo, Q.H. Effect of fermentation with single and co-culture of lactic acid bacteria on Chinese Elaeagnus angustifolia juice: Evaluation of bioactive compounds and volatile profiles. Food Biosci. 2024, 61, 104986. [Google Scholar] [CrossRef]
- Mandha, J.; Shumoy, H.; Devaere, J.; Schouteten, J.J.; Gellynck, X.; De Winne, A.; Matemu, A.O.; Raes, K. Effect of Lactic Acid Fermentation on Volatile Compounds and Sensory Characteristics of Mango (Mangifera indica) Juices. Foods 2022, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, H.; Liu, H.; Ma, R.; Ma, J.; Fang, H. Fermentation by Multiple Bacterial Strains Improves the Production of Bioactive Compounds and Antioxidant Activity of Goji Juice. Molecules 2019, 24, 3519. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lu, Y.; Yu, H.; Chen, Z.; Tian, H. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice Influence of 4 lactic acid bacteria. Food Biosci. 2019, 27, 30–36. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Rodríguez, L.G.; Mendoza, L.M.; Van Nieuwenhove, C.P.; Pescuma, M.; Mozzi, F.B. Fermentación de jugos y bebidas a base de frutas. In En Alimentos Fermentados: Microbiología, Nutrición, Salud y Cultura; Ferrari, A., Vinderola, G., Weill, R., Eds.; Instituto Danone: Buenos Aires, Argentina, 2020; pp. 273–296. [Google Scholar]
- Connolly, E.; Abrahamsson, T.; Bjorksten, B. Safety of D-lactic acid producing bacteria in the human infant. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.C.; Yu, S.; Tetangco, E.P.; Yan, Y. Probiotics Can Cause d-Lactic Acidosis and Brain Fogginess: 3Reply to Quigley et al. Clin. Transl. Gastroenterol. 2018, 9, e207. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. BioMed Res. Int. 2020, 2020, 3419034. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, N.; Gupta, R.K. Probiotics beverages of sweet lime and sugarcane juices and their physicochemical, microbiological, and shelf-life studies. J. Pharmacogn. Phytochem. 2015, 4, 25–34. [Google Scholar]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, S.; Tang, H.; Evivie, S.E.; Guo, Z.; Li, B. Effect of exopolysaccharides yield and addition concentration of Lactobacillus helveticus on the processing characteristics of fermented milk and its mechanism. Int. J. Biol. Macromol. 2024, 260, 129480. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Castro-Acosta, L.M. Polifenoles: Compuestos bioactivos con efectos benéficos en la prevención de la diabetes tipo 2. Rev. Digit. RED CieN 2019, 1, 1–6. [Google Scholar]
- Estrada-Reyes, R.; Ubaldo-Suárez, D.; Araujo-Escalona, A.G. Los flavonoides y el Sistema Nervioso Central. Salud Ment. 2012, 35, 375–384. [Google Scholar]
- Chun, O.K.; Chung, S.J.; Claycombe, K.J.; Song, W.O. Estimated dietary flavonoid intake in U.S. adults. J. Nutr. 2007, 137, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, T.A.; Rogero, M.M.; Lajolo, F.M. Phenolic compounds and antioxidant activity of beverages. Rev Nutr. 2015, 7, 5103–5140. [Google Scholar] [CrossRef]
- NOM-F-420-S-1982; Productos Alimenticios para su Uso Humano—Determinación de Acidez en Leche Fluida. Secretaría de Economía. Diario Oficial de la Federación (DOF): Ciudad de Mexico, Mexico, 1982. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4761014&fecha=02/09/1982#gsc.tab=0 (accessed on 28 April 2025).
- Chen, R.; Chen, W.; Chen, H.; Zhang, G.; Chen, W. Comparative Evaluation of the Antioxidant Capacities, Organic Acids, and Volatiles of Papaya Juices Fermented by Lactobacillus acidophilus and Lactobacillus plantarum. J. Food Qual. 2018, 2018, 9490435. [Google Scholar] [CrossRef]
- Kuria, M.W.; Matofari, J.W.; Nduko, J.M. Physicochemical, antioxidant, and sensory properties of functional mango (Mangifera indica L.) leather fermented by lactic acid bacteria. J. Agric. Food Res. 2021, 6, 100206. [Google Scholar] [CrossRef]
- Parra, H.R. Bacterias ácido lácticas: Papel funcional en los alimentos. Biotecnol. En El Sect. Agropecu. Y Agroindustrial 2010, 18, 1–13. [Google Scholar]
- Vivek, K.; Mishra, S.; Pradhan, R.C.; Jayabalan, R. Effect of probiotification with Lactobacillus plantarum MCC 2974 on quality of Sohiong juice. LWT 2019, 108, 55–60. [Google Scholar] [CrossRef]
- NOM-086-SSA1-1994; 26-06-1996. Bienes y Servicios. Alimentos y Bebidas no Alcohólicas con Modificaciones en su Composición. Especificaciones nutrimentales. Diario Oficial de la Federación: Ciudad de Mexico, Mexico, 1996. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4890075&fecha=26/06/1996#gsc.tab=0 (accessed on 28 April 2025).
- Managa, M.G.; Akinola, S.A.; Remize, F.; Garcia, C.; Sivakumar, D. Physicochemical parameters and bioaccessibility of lactic acid bacteria fermented chayote Leaf (Sechium edule) and pineapple (Ananas comosus) smoothies. Front. Nutr. 2021, 8, 649189. [Google Scholar] [CrossRef] [PubMed]
- Minolta Konica. Precise Color Communication: Color Control from Perception to Instrumentation; Konica Minolta Sensing Inc.: Osaka, Japan, 2007. [Google Scholar]
- Ajila, C.M.; Naidu, K.A.; Bhat, S.G.; Rao, U.J. Bioactive compounds and antioxidant potential of mango peel extract. Food Chem. 2007, 105, 982–988. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Song, X.; Hu, X.; He, Y.; Yin, J.; Nie, S.; Xie, M. Changes in volatile and nutrient components of mango juice by different Lactic acid bacteria fermentation. Food Biosci. 2023, 56, 103141. [Google Scholar] [CrossRef]
- NOM-218-SSA1-2011; 10-02-2012. Productos y Servicios. Bebidas Saborizadas no Alcohólicas, sus Congelados, Productos Concentrados para Prepararlas y Bebidas Adicionadas con Cafeína. Especificaciones y Disposiciones Sanitarias. Métodos de Prueba. Diario Oficial de la Federación: Ciudad de Mexico, Mexico, 2012. Available online: https://dof.gob.mx/normasOficiales/4643/salud/salud.htm (accessed on 30 April 2025).
- Pinto, T.; Vilela, A.; Cosme, F. Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. Beverages 2022, 8, 33. [Google Scholar] [CrossRef]
Variable | Natural Levels | ||||
---|---|---|---|---|---|
Inoculum concentration (log CFU/mL) | 5.2 | 6.0 | 8.0 | 10.0 | 10.8 |
Fermentation time (h) | 0 | 6 | 24 | 42 | 50 |
Coded levels | −1.414 | −1 | 0 | 1 | 1.414 |
Factors | Response Variable | |||||
---|---|---|---|---|---|---|
* IC | FT | CC | TPCs | TFCs | L-Lactic Acid | D-Lactic Acid |
6 | 6 | 5.65 | 41.67 | 4.53 | 2.6 | 1.7 |
10 | 6 | 10.43 | 44.60 | 4.50 | 46.8 | 5.9 |
6 | 42 | 10.71 | 43.13 | 4.43 | 265.9 | 92.5 |
10 | 42 | 11.70 | 49.87 | 4.07 | 250.1 | 76.7 |
5.2 | 24 | 9.08 | 41.80 | 4.40 | 188.6 | 45.0 |
10.8 | 24 | 14.45 | 46.40 | 4.13 | 194.5 | 55.2 |
8 | 0 | 6.64 | 41.67 | 4.33 | 2.40 | 1.10 |
8 | 50 | 11.25 | 51.67 | 4.43 | 258.3 | 87.4 |
8 | 24 | 13.71 | 45.20 | 4.33 | 232.0 | 62.6 |
8 | 24 | 12.73 | 45.13 | 8.57 | 214.7 | 58.0 |
8 | 24 | 13.67 | 43.07 | 6.90 | 194.8 | 73.4 |
8 | 24 | 13.69 | 43.73 | 8.27 | 238.5 | 63.9 |
8 | 24 | 12.64 | 41.60 | 7.60 | 219.2 | 75.0 |
Mean | 11.26 | 44.58 | 5.42 | 177.60 | 53.72 | |
SE Mean | 0.76 | 0.88 | 0.48 | 26.40 | 8.79 |
Factors | Response Variable | |||||
---|---|---|---|---|---|---|
* IC | FT | CC | TPCs | TFCs | L-Lactic Acid | D-Lactic Acid |
6 | 6 | 5.98 | 37.53 | 4.00 | 75.29 | 28.47 |
10 | 6 | 10.47 | 40.60 | 3.70 | 50.42 | 30.10 |
6 | 42 | 10.31 | 39.60 | 4.00 | 312.82 | 312.82 |
10 | 42 | 12.35 | 45.13 | 3.70 | 461.95 | 438.18 |
5.2 | 24 | 9.76 | 41.27 | 4.53 | 234.48 | 177.30 |
10.8 | 24 | 14.83 | 48.07 | 4.00 | 238.07 | 168.64 |
8 | 0 | 6.32 | 37.07 | 4.07 | 2.44 | 1.89 |
8 | 50 | 11.64 | 47.60 | 3.77 | 588.14 | 513.57 |
8 | 24 | 13.48 | 45.13 | 4.27 | 262.55 | 231.95 |
8 | 24 | 14.63 | 44.67 | 7.67 | 303.86 | 243.97 |
8 | 24 | 13.63 | 41.60 | 6.53 | 289.89 | 214.72 |
8 | 24 | 13.52 | 46.67 | 6.67 | 263.58 | 287.65 |
8 | 24 | 14.67 | 42.73 | 7.27 | 285.78 | 279.72 |
Mean | 11.66 | 42.90 | 4.94 | 259.20 | 209.90 | |
SE Mean | 0.83 | 1.01 | 0.42 | 43.90 | 42.90 |
Response Variables | Terms | Coefficients | p-Value | R2 (%) |
---|---|---|---|---|
Viable cell concentration (log CFU/mL); | IC | 2.275 | 0.000 | 97.15 |
FT | 2.063 | 0.000 | ||
IC IC | −1.82 | 0.005 | ||
FT FT | −4.713 | 0.000 | ||
IC FT | −1.841 | 0.017 | ||
Total phenolic compounds (mg GAE/100 mL) | IC | 2.848 | 0.004 | 82.91 |
FT | 3.754 | 0.001 | ||
FT FT | 2.60 | 0.047 | ||
Total flavonoid compounds (mg Q/100 mL) | IC | −0.136 | 0.828 | 66.88 |
FT | −0.179 | 0.788 | ||
IC IC | −2.796 | 0.016 | ||
FT FT | −2.659 | 0.019 | ||
* L-Lactic acid (mg/100 mL) | IC | 6.47 | 0.0533 | 97.05 |
FT | 141.18 | 0.000 | ||
IC IC | −35.9 | 0.044 | ||
FT FT | −104.0 | 0.000 | ||
* D-lactic acid (mg/100 mL) | IC | 0.48 | 0.908 | 95.65 |
FT | 48.72 | 0.000 | ||
IC IC | −17.25 | 0.022 | ||
FT FT | −25.51 | 0.003 |
Response Variables | |||||
---|---|---|---|---|---|
Values | * CC | TPCs | TFCs | L-Lactic Acid | D-Lactic Acid |
Predicted | 13.78 | 45.21 | 5.7 | 185.29 | 51.58 |
Replicated | 13.0 | 43.4 | 6.2 | 182.8 | 41.53 |
Confidence interval of 95% | (12.03, 13.99) | (41.34, 45.43) | (5.7, 6.69) | (156.1, 209.7) | (35.83, 47.18) |
Nutritional Quality | Physicochemical Characteristics | ||
---|---|---|---|
Moisture | * 86.68 ± 0.02 | pH | 3.57 ± 0.19 |
Protein | 0.64 ± 0.12 | TSS (°Brix) | 12.81 ± 0.2 |
Fat | 0.31 ± 0.04 | Color beverage: | |
Ash | 0.49 ± 0.05 | Luminosity | 47.4 ± 0.21 |
Total carbohydrates | 11.40 ± 0.7 | ** value a* | 5.4 ± 0.11 |
Glucose | 0.34 ± 0.05 | ** value b* | 24.8 ± 0.25 |
Fructose | 1.27 ± 0.01 | Chromaticity | 25.4 ± 0.27 |
Sucrose | 8.70 ± 0.1 | °Hue | 77.0 ± 0.15 |
Fiber dietary | 1.09 ± 0.3 |
Variables | Values | ||||
---|---|---|---|---|---|
Low | Neutral | High | Very High | All | |
Acceptability | 1 | 4 | 64 | 43 | 112 |
Color | 0 | 1 | 45 | 66 | 112 |
Smell | 1 | 4 | 43 | 64 | 112 |
Flavor | 1 | 6 | 59 | 46 | 112 |
All | 3 | 15 | 211 | 219 | 448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aviles-Rivera, Y.A.; Hernández-Mendoza, A.; Mata-Haro, V.; Heredia, J.B.; Valdez-Torres, J.B.; Muy-Rangel, M.D. Optimization of the Production Process of a Fermented Mango-Based Beverage with Lactiplantibacillus plantarum (Lp6 and Lp32). Processes 2025, 13, 2347. https://doi.org/10.3390/pr13082347
Aviles-Rivera YA, Hernández-Mendoza A, Mata-Haro V, Heredia JB, Valdez-Torres JB, Muy-Rangel MD. Optimization of the Production Process of a Fermented Mango-Based Beverage with Lactiplantibacillus plantarum (Lp6 and Lp32). Processes. 2025; 13(8):2347. https://doi.org/10.3390/pr13082347
Chicago/Turabian StyleAviles-Rivera, Yudit Aimee, Adrián Hernández-Mendoza, Verónica Mata-Haro, José Basilio Heredia, José Benigno Valdez-Torres, and María Dolores Muy-Rangel. 2025. "Optimization of the Production Process of a Fermented Mango-Based Beverage with Lactiplantibacillus plantarum (Lp6 and Lp32)" Processes 13, no. 8: 2347. https://doi.org/10.3390/pr13082347
APA StyleAviles-Rivera, Y. A., Hernández-Mendoza, A., Mata-Haro, V., Heredia, J. B., Valdez-Torres, J. B., & Muy-Rangel, M. D. (2025). Optimization of the Production Process of a Fermented Mango-Based Beverage with Lactiplantibacillus plantarum (Lp6 and Lp32). Processes, 13(8), 2347. https://doi.org/10.3390/pr13082347