Innovations in Manufacturing Processes and Systems for Sustainable Practices
Conflicts of Interest
References
- Fu, H.; Zheng, C.; Yang, P. Digital inclusive finance and green transformation of manufacturing enterprises: Empirical analysis based on the dual perspectives of demand and supply. Technol. Forecast. Soc. Change 2024, 200, 123152. [Google Scholar] [CrossRef]
- Lenz, J.; MacDonald, E.; Harik, R.; Wuest, T. Optimizing smart manufacturing systems by extending the smart products paradigm to the beginning of life. J. Manuf. Syst. 2020, 57, 274–286. [Google Scholar] [CrossRef]
- Kandpal, V.; Jaswal, A.; Santibanez Gonzalez, E.D.; Agarwal, N. Circular economy principles: Shifting towards sustainable prosperity. In Sustainable Energy Transition: Circular Economy and Sustainable Financing for Environmental, Social and Governance (ESG) Practices; Springer: Berlin/Heidelberg, Germany, 2024; pp. 125–165. [Google Scholar]
- Qi, Y.; Mao, Z.; Zhang, M.; Guo, H. Manufacturing practices and servitization: The role of mass customization and product innovation capabilities. Int. J. Prod. Econ. 2020, 228, 107747. [Google Scholar] [CrossRef]
- Wellsandt, S.; Rusak, Z.; Ruiz Arenas, S.; Aschenbrenner, D.; Hribernik, K.A.; Thoben, K.-D. Concept of a voice-enabled digital assistant for predictive maintenance in manufacturing. In Proceedings of the 9th International Conference on Through-life Engineering Services (TESConf 2020), Fully Online, 3–4 November 2020. [Google Scholar]
- Andreev, V.N.; Charuyskaya, M.A.; Kryzhanovskaya, A.S.; Mursalov, I.D.; Mozharovskaia, A.A.; Chervenkova, S.G. Application of intelligent engineering in the planning of cyber-physical production systems. Int. J. Adv. Manuf. Technol. 2021, 115, 117–123. [Google Scholar] [CrossRef]
- Jemai, J.; Chung, B.D.; Sarkar, B. Environmental effect for a complex green supply-chain management to control waste: A sustainable approach. J. Clean. Prod. 2020, 277, 122919. [Google Scholar] [CrossRef]
- Yu, H.; Han, J.; Li, S.; Zhao, D.; Wang, J.; Tian, Y.; Lin, J. Hierachical micro/nano structures fabrication by a novel tri-axial piezoelectric servo system. Mater. Des. 2022, 224, 111330. [Google Scholar] [CrossRef]
- Mayoussi, F.; Doeven, E.H.; Kick, A.; Goralczyk, A.; Thomann, Y.; Risch, P.; Guijt, R.M.; Kotz, F.; Helmer, D.; Rapp, B.E. Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing. J. Mater. Chem. A 2021, 9, 21379–21386. [Google Scholar] [CrossRef] [PubMed]
- Turan, E.; Konuşkan, Y.; Yıldırım, N.; Tunçalp, D.; İnan, M.; Yasin, O.; Turan, B.; Kerimoğlu, V. Digital twin modelling for optimizing the material consumption: A case study on sustainability improvement of thermoforming process. Sustain. Comput. 2022, 35, 100655. [Google Scholar] [CrossRef]
- Dhivya, K. Harnessing Synergy: IoT and Digital Twins. In Digital Twins for Sustainable Healthcare in the Metaverse; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 107–142. [Google Scholar]
- Tiuncika, L.; Bormane, S. Sustainable Management of Manufacturing Processes: A Literature Review. Processes 2024, 12, 1222. [Google Scholar] [CrossRef]
- Rahmani, R.; Jesus, C.; Lopes, S.I. Implementations of Digital Transformation and Digital Twins: Exploring the Factory of the Future. Processes 2024, 12, 787. [Google Scholar] [CrossRef]
- Wiegand, T.; Wynn, M. Circularity and Digitalisation in German Textile Manufacturing: Towards a Blueprint for Strategy Development and Implementation. Processes 2024, 12, 2697. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.; Ji, Q. A Fuzzy Decision-Making Method for Green Design for Remanufacturability. Processes 2024, 12, 911. [Google Scholar] [CrossRef]
- Alotaibi, A. Development of Remanufacturing Readiness Index for MSMEs: A Comprehensive Framework. Processes 2025, 13, 1744. [Google Scholar] [CrossRef]
- Yi, L.; Glatt, M.; Sridhar, P.; de Payrebrune, K.; Linke, B.S.; Ravani, B.; Aurich, J.C. An eco-design for additive manufacturing framework based on energy performance assessment. Addit. Manuf. 2020, 33, 101120. [Google Scholar] [CrossRef]
- Moses, J.J.; Muthu, M.F.X.; Vijumon, V. Additive Manufacturing; RK Publication: Vellore, India, 2024. [Google Scholar]
- Rossi, E.; Di Nicolantonio, M. The Human Integration into Sustainable 3D Printing Systems Part I: Methodological Setting and Human-System Integration. In Advances in Manufacturing, Production Management and Process Control, Proceedings of the AHFE 2020 Virtual Conferences on Human Aspects of Advanced Manufacturing, Advanced Production Management and Process Control, and Additive Manufacturing, Modeling Systems and 3D Prototyping, San Diego, CA, USA, 16–20 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; p. 65. [Google Scholar]
- Di Nicolantonio, M.; Rossi, E. The Human Integration into Sustainable 3D Printing Systems Part II: Design Experimentation. In Advances in Manufacturing, Production Management and Process Control, Proceedings of the AHFE 2020 Virtual Conferences on Human Aspects of Advanced Manufacturing, Advanced Production Management and Process Control, and Additive Manufacturing, Modeling Systems and 3D Prototyping, San Diego, CA, USA, 16–20 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 71–77. [Google Scholar]
- Kwon, S.; Hwang, D. Understanding and Resolving 3D Printing Challenges: A Systematic Literature Review. Processes 2025, 13, 1772. [Google Scholar] [CrossRef]
- Fianko, S.K.; Dzogbewu, T.C.; Agbamava, E.; de Beer, D.J. Mass Customisation Strategies in Additive Manufacturing: A Systematic Review and Implementation Framework. Processes 2025, 13, 1855. [Google Scholar] [CrossRef]
- Mendoza-Muñoz, I.; Montoya-Reyes, M.I.; Maldonado-Macías, A.A.; Jacobo-Galicia, G.; Vargas-Bernal, O.Y. A Hierarchical Axiomatic Evaluation of Additive Manufacturing Equipment and the 3D Printing Process Based on Sustainability and Human Factors. Processes 2024, 12, 1083. [Google Scholar] [CrossRef]
- Hasan, M.R.; Davies, I.J.; Paramanik, A.; John, M.; Biswas, W.K. Fabrication and Characterisation of Sustainable 3D-Printed Parts Using Post-Consumer PLA Plastic and Virgin PLA Blends. Processes 2024, 12, 760. [Google Scholar] [CrossRef]
- Remache, A.; Pérez-Sánchez, M.; Hidalgo, V.H.; Ramos, H.M.; Sánchez-Romero, F.-J. Towards Sustainability in Hydraulic Machinery Manufacturing by 3D Printing. Processes 2024, 12, 2664. [Google Scholar] [CrossRef]
- Garcia-Llamas, E.; Ramirez, G.; Fuentes, M.; Vidales, E.; Pujante, J. Exploring Post-Machining Alternatives Under Dry Conditions for Thin-Walled Additive Manufacturing Components Aided by Infrared Thermography. Processes 2025, 13, 717. [Google Scholar] [CrossRef]
- Gupta, A.; Khanna, A. A holistic approach to sustainable manufacturing: Rework, green technology, and carbon policies. Expert Syst. Appl. 2024, 244, 122943. [Google Scholar] [CrossRef]
- Feng, G.; Xiao, C.; Wang, H.; Zhang, H.; Liu, B.; Wang, C. Enhancing mechanical properties of 3D-printed continuous carbon fibre-reinforced composites via bio-inspired design. Thin-Walled Struct. 2025, 207, 112737. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, K.; Huang, C.; Wang, J.; Gao, M.; Hu, A.; Tang, Q.; Fan, B.; Xu, Y.; Chen, X. Enhanced Potassium-Ion Storage of the 3D Carbon Superstructure by Manipulating the Nitrogen-Doped Species and Morphology. Nano-Micro Lett. 2020, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ji, G.; Yang, L.; Ren, H.; Wu, Q.; Yu, J.; Huang, K. Polycrystalline Diamond Composite Bit Technology for Sustainable Work. Processes 2025, 13, 421. [Google Scholar] [CrossRef]
- Adami, B.; Hoffelner, F.; Zarl, M.A.; Schenk, J. Strategic Selection of a Pre-Reduction Reactor for Increased Hydrogen Utilization in Hydrogen Plasma Smelting Reduction. Processes 2025, 13, 420. [Google Scholar] [CrossRef]
- Estevez, A.T.; Abdallah, Y.K. Biomimetic Approach for Enhanced Mechanical Properties and Stability of Self-Mineralized Calcium Phosphate Dibasic–Sodium Alginate–Gelatine Hydrogel as Bone Replacement and Structural Building Material. Processes 2024, 12, 944. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.; Li, L.; Wang, W.; Yang, L.; Zhang, C.; Zhang, X. Numerical Analysis on Mechanical Properties of 3D Five-Directional Circular Braided Composites. Processes 2025, 13, 800. [Google Scholar] [CrossRef]
- Fazlali, Z.; Schaubroeck, D.; Cauwe, M.; Cardon, L.; Bauwens, P.; Vanfleteren, J. Polylactic Acid and Polyhydroxybutyrate as Printed Circuit Board Substrates: A Novel Approach. Processes 2025, 13, 1360. [Google Scholar] [CrossRef]
- Maurya, U.; Vasu, V. Ionic Liquids as a Potential Sustainable Green Lubricant for Machining in the Era of Industry 4.0. In Advances in Sustainable Machining and Manufacturing Processes; CRC Press: Boca Raton, FL, USA, 2022; pp. 135–155. [Google Scholar]
- Zhang, Y.; Peng, L.; Ye, Y.; Chi, Y.; Gao, L.; Zha, X.; Huang, T.; Zhang, Y.; Ding, H.; Ye, C. Exploring the strengthening mechanisms of additive manufactured metals treated by ultrasonic nanocrystal surface modification. Int. J. Fatigue 2025, 190, 108609. [Google Scholar] [CrossRef]
- Pawanr, S.; Gupta, K. Dry Machining Techniques for Sustainability in Metal Cutting: A Review. Processes 2024, 12, 417. [Google Scholar] [CrossRef]
- Shi, D.; Zeng, X.; Wang, X.; Zhang, H. Parameter Optimization and Surface Roughness Prediction for the Robotic Adaptive Hydraulic Polishing of NAK80 Mold Steel. Processes 2025, 13, 991. [Google Scholar] [CrossRef]
- Evin, E.; Kokarda, V.; Tomáš, M. Quality Control of Electro-Discharge Texturing of Rolls Through Six Sigma. Processes 2025, 13, 450. [Google Scholar] [CrossRef]
- Klimant, P.; Koriath, H.-J.; Schumann, M.; Winkler, S. Investigations on digitalization for sustainable machine tools and forming technologies. Int. J. Adv. Manuf. Technol. 2021, 117, 2269–2277. [Google Scholar] [CrossRef]
- Li, H.; Yang, D.; Cao, H.; Ge, W.; Chen, E.; Wen, X.; Li, C. Data-driven hybrid petri-net based energy consumption behaviour modelling for digital twin of energy-efficient manufacturing system. Energy 2022, 239, 122178. [Google Scholar] [CrossRef]
- Goyal, M.K.; Singh, A.P. Real-Time Data Streams: The Future of Predictive Maintenance in Manufacturing. In Proceedings of the 2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, 8–9 December 2023; pp. 1–7. [Google Scholar]
- de Vito, A.F.; Vicente, W.M.; Xie, Y.M. Topology optimization applied to the core of structural engineered wood product. Structures 2023, 48, 1567–1575. [Google Scholar] [CrossRef]
- Zhang, Z.-D.; Yu, D.-Y.; Ibhadode, O.; Meng, L.; Gao, T.; Zhu, J.-H.; Zhang, W.-H. TopADDPi: An Affordable and Sustainable Raspberry Pi Cluster for Parallel-Computing Topology Optimization. Processes 2025, 13, 633. [Google Scholar] [CrossRef]
- Costa, B.; Varejão, J.; Gaspar, P.D. Development of a Value Stream Map to Optimize the Production Process in a Luxury Metal Piece Manufacturing Company. Processes 2024, 12, 1612. [Google Scholar] [CrossRef]
- Wójkowski, K.; Talaśka, K.; Wilczyński, D. Mathematical Model of the Electronic Cam in Terms of Application in a Dosing Machine. Processes 2024, 12, 1909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campilho, R.D.S.G.; Barbosa, F.B. Innovations in Manufacturing Processes and Systems for Sustainable Practices. Processes 2025, 13, 2315. https://doi.org/10.3390/pr13072315
Campilho RDSG, Barbosa FB. Innovations in Manufacturing Processes and Systems for Sustainable Practices. Processes. 2025; 13(7):2315. https://doi.org/10.3390/pr13072315
Chicago/Turabian StyleCampilho, Raul D. S. G., and Flávia B. Barbosa. 2025. "Innovations in Manufacturing Processes and Systems for Sustainable Practices" Processes 13, no. 7: 2315. https://doi.org/10.3390/pr13072315
APA StyleCampilho, R. D. S. G., & Barbosa, F. B. (2025). Innovations in Manufacturing Processes and Systems for Sustainable Practices. Processes, 13(7), 2315. https://doi.org/10.3390/pr13072315