Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology
Abstract
1. Introduction
2. Mechanism and Influencing Factors of CSC
2.1. Mechanism of Spontaneous Combustion of Coal
2.2. Influencing Factors of CSC
2.3. Underground CSC Common Location
3. Research Status of CSC Source Location Detection Technology
3.1. Direct Detection Method
3.2. Physical Detection Method
3.3. Remote Sensing Detection Method
3.4. Chemical Detection Method
4. Existing Problems and Research Prospects
4.1. Existing Problems
4.2. Research Prospect
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kang, H.; Xie, H.; Wang, S.; Ren, S.; Zhang, Y.; Wang, B.; Chen, P.; Jiao, X.; Zheng, D.; Ren, Y.; et al. Research on the integrated green development strategy of coal and co-existed and associated resources. Strateg. Stud. CAE 2025, 27, 172–183. [Google Scholar]
- Yuan, L. Theory and technology considerations on high-quality development of coal main energy security in China. Bull. Chin. Acad. Sci. 2023, 38, 11–22. [Google Scholar]
- National Bureau of Statistics of China. Statistical Communiqué of the People’s Republic of China on the 2024 National Economic and Social Development. Available online: https://www.stats.gov.cn/english/PressRelease/202502/t20250228_1958822.html (accessed on 28 June 2025).
- Deng, J.; Yang, C.; Ren, L.; Li, X.; Wang, C.; Bai, Z. A review on coal spontaneous combustion prediction based on machine. J. China Coal Soc. 2025. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, K.; Du, F.; Guo, H.; Li, K.; Wang, Y. Mechanical-permeability characteristics of composite coal rock under different gas pressures and damage prediction model. Phys. Fluids 2024, 36, 036615. [Google Scholar] [CrossRef]
- Li, W.; Guo, Y.; Liu, X.; Du, F.; Li, G.; Ma, Q. Failure mechanisms and reinforcement support of soft rock roadway in deep extra-thick coal seam: A case study. Eng. Fail. Anal. 2024, 165, 108745. [Google Scholar] [CrossRef]
- Ma, L.; Gao, W.; Tuo, L.; Zhang, P.; Zheng, Z.; Guo, R. Characteristics and prediction methods of coal spontaneous combustion for deep coal mining in the Ximeng mining area. Coal Geol. Explor. 2025, 53, 33–43. [Google Scholar]
- Deng, J.; Zhao, X.; Wang, C.; Ren, S.; Qu, G.; Wang, J.; Dou, L. Study on the thermodynamic characteristics of hypoxic oxidation of coal. Min. Saf. Environ. Prot. 2025, 52, 9–16. [Google Scholar]
- Liu, H.; Li, Z.; Wang, G.; Niu, H.; Tan, B. The characteristics of heat production and key structure evolution in the initial stage of coal spontaneous combustion. J. China Coal Soc. 2025, in press.
- Deng, J.; Qu, G.; Ren, S.; Wang, W.; Wang, C.; Wang, J. Research on underground coal fire source detection. J. Mine Autom. 2023, 49, 68–77. [Google Scholar]
- Guo, J.; Liu, H.; Jin, Y.; Cai, G.; Liu, Y.; Yang, P. Summary of underground hidden coal spontaneous combustion fire source detection methods and prospect of new technologies. China Saf. Sci. J. 2022, 32, 111–119. [Google Scholar]
- Kong, B.; Li, Z.; Yang, Y.; Liu, Z.; Yan, D. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environ. Sci. Pollut. Res. 2017, 24, 23453–23470. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Hou, X.; Luo, H.; Tian, F.; Yu, G. Development countermeasures and current situation of coal mine fire prevention & extinguishing in China. Coal Sci. Technol. 2016, 44, 1–6. [Google Scholar]
- He, J.; Zheng, B.; Li, W.; Yang, L.; Sun, H. Land surface temperature retrieval of the geothermal area in Eastern Liaoning, China, based on thermal infrared remotely sensed data of MODIS. J. Indian Soc. Remote Sens. 2018, 46, 1023–1034. [Google Scholar] [CrossRef]
- Cheng, X.; Song, J.; Wen, H.; Fan, S.; Liu, M.; Mi, W.; Yu, Z.; Liu, Y.; Li, R. Mitigation of coal spontaneous combustion and enhanced coalbed methane recovery using liquid CO2: Mechanisms, field applications, and implications for mines. J. CO2 Util. 2024, 90, 102987. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, E.; Guo, Y.; Du, F.; Ding, K. Effect of loading rate on the mechanical and seepage characteristics of gas-bearing coal–rock and its mechanical constitutive model. Phys. Fluids 2024, 36, 026606. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Yao, Y.; Zhao, Z. The evolution patterns of active functional groups and reaction pathways during the low-temperature oxidation process of coal. J. Min. Sci. Technol. 2024, 9, 998–1006. [Google Scholar]
- Qin, B.; Zhong, X.; Wang, D.; Xin, H.; Shi, Q. Research progress of coal spontaneous combustion process characteristics and prevention technology. Coal Sci. Technol. 2021, 49, 66–99. [Google Scholar]
- Onifade, M.; Genc, B. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 2020, 30, 303–311. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Yang, Y.; Miao, G.; Li, J. The temperature rise characteristics of coal during the spontaneous combustion latency. Fuel 2022, 326, 125086. [Google Scholar] [CrossRef]
- Deng, J.; Yang, N.; Wang, C.; Chen, G.; Kang, F.; Ren, L.; Cui, X.; Bai, G. Key technology of “preventing-suppressing-extinguishing” coordinated fire preventing and extinguishing for coal spontaneous combustion in goaf. Saf. Coal Mines 2022, 53, 1–8. [Google Scholar]
- Nie, B.; Yan, H.; Liu, P.; Chen, Z.; Peng, C.; Wang, X.; Yin, F.; Gong, J.; Wei, Y.; Lin, S.; et al. Experimental investigation on spontaneous combustion oxidation characteristics and stages of coal with different metamorphic degrees. Environ. Sci. Pollut. Res. 2023, 30, 8269–8279. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zou, L.; Ren, L.; Wang, J.; Wang, W. Reactivity and spontaneous combustion characteristics of high-sulphur coal during low-temperature oxidation. Int. J. Oil Gas Coal Technol. 2019, 21, 375–389. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, X.; Wang, D. Experimental evaluation of the effect of sulfur content on the spontaneous combustion characteristics parameters of coal. Thermochim. Acta 2024, 732, 179651. [Google Scholar] [CrossRef]
- Wu, K.; Yao, Q.; Chen, Y.; Zhao, P.; Xi, C.; Zhao, Y.; Wang, Q. Dependence evaluation of factors influencing coal spontaneous ignition. Energy Sci. Eng. 2023, 11, 3738–3750. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, X.; Ma, C.; Luo, Z.; Li, Q.; Deng, J.; Sheng, Y.; Peng, B. Comparative study of the kinetic characteristics of coal spontaneous combustion. J. Therm. Anal. Calorim. 2023, 148, 4463–4476. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, M.; Yang, Z.; Liu, Y.; Ding, C.; Huang, G. Effect of fault structure on the structure and oxidative spontaneous combustion characteristics of coal. J. China Coal Soc. 2023, 48, 1246–1254. [Google Scholar]
- Li, J.; Li, X.; Liu, C.; Zhang, N. Study on the air leakage characteristics of a goaf in a shallow coal seam and spontaneous combustion prevention and control strategies for residual coal. PLoS ONE 2022, 17, e0269822. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, X.; Li, W.; Du, F.; Ma, J.; Qian, R.; Huo, N. Research on abutment stress distribution of roof-cutting coalface: Numerical simulation and field measurement. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 86. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Fang, X.; Wang, G.; Chen, Y.; Xu, Z.; Qi, Q. Research progress and visualization of underground coal fire detection methods. Environ. Sci. Pollut. Res. 2023, 30, 74671–74690. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Sun, Z.; Sun, Z.; Wang, X.e.; Lu, R.; Gu, H.; Guo, J.; Cai, X. Temperature measurement used for 4000-m depth drilling and geothermal characteristics in Jiaodong Peninsula, China. Environ. Earth Sci. 2017, 76, 728. [Google Scholar] [CrossRef]
- Luo, B.; Hou, G.; Zhang, K.; Cheng, H. Hole-wall temperature characteristics in thick UD-CFRP drilling by different condition. Mater. Manuf. Process. 2024, 39, 563–576. [Google Scholar] [CrossRef]
- Bustos, N.; Mashhadi, M.; Lai-Yuen, S.K.; Sarkar, S.; Das, T.K. A systematic literature review on object detection using near infrared and thermal images. Neurocomputing 2023, 560, 126804. [Google Scholar] [CrossRef]
- Ducut, J.D.; Alipio, M.; Go, P.J.; Concepcion, R., II; Vicerra, R.R.; Bandala, A.; Dadios, E. A review of electrical resistivity tomography applications in underground imaging and object detection. Displays 2022, 73, 102208. [Google Scholar] [CrossRef]
- Du, B.; Liang, Y.; Tian, F. Detecting concealed fire sources in coalfield fires: An application study. Fire Saf. J. 2021, 121, 103298. [Google Scholar] [CrossRef]
- Song, J. The research and detection practice of geological radar technology. Adv. Mater. Res. 2014, 838–841, 883–888. [Google Scholar] [CrossRef]
- Wilk-Jakubowski, J.L.; Loboichenko, V.; Divizinyuk, M.; Wilk-Jakubowski, G.; Shevchenko, R.; Ivanov, S.; Strelets, V. Acoustic waves and their application in modern fire detection using artificial vision systems: A review. Sensors 2025, 25, 935. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Hu, Y.; Wang, Z.; Yang, J.; Zhou, G.; Wang, W.; Liu, Y. An infrared small moving target detection method in complex scenes based on dual-region search. Remote Sens. 2025, 17, 323. [Google Scholar] [CrossRef]
- Reinprecht, V.; Kieffer, D.S. Application of UAV photogrammetry and multispectral image analysis for identifying land use and vegetation cover succession in former mining areas. Remote Sens. 2025, 17, 405. [Google Scholar] [CrossRef]
- Ni, Z.; Wu, M.; Lu, Q.; Huo, H.; Wu, C.; Liu, R.; Wang, F.; Xu, X. A review of research on cloud detection methods for hyperspectral infrared radiances. Remote Sens. 2024, 16, 4629. [Google Scholar] [CrossRef]
- Wen, H.; Cheng, X.; Fan, S.; Xu, Y.; Ren, S.; Guo, J. A method for detecting hidden fire source in deep mine goafs based on radon measurement and its experimental verification. Appl. Geochem. 2020, 117, 104603. [Google Scholar] [CrossRef]
- Guo, Y.; He, Q.; Su, Y. Study on air leakage in high temperature area of Xinliu coal mine. Coal Technol. 2019, 38, 84–86. [Google Scholar]
- Portola, V.; Bobrovnikova, A.; Shirokolobov, G.; Paleev, D. Detection and location of places of spontaneous combustion of coal in mines due to gas anomalies on the earth’s surface. E3S Web Conf. 2020, 174, 01061. [Google Scholar] [CrossRef]
- Zhang, P.; Ni, K.; Wang, H.; Yu, H.; Liu, X.; Li, Q.; Jin, L.; Du, Y.; Li, X.; Bei, R. Research on the development of open-pit coal mines in Australia. China Coal 2023, 49, 128–136. [Google Scholar]
- Reisen, F.; Gillett, R.; Choi, J.; Fisher, G.; Torre, P. Characteristics of an open-cut coal mine fire pollution event. Atmos. Environ. 2017, 151, 140–151. [Google Scholar] [CrossRef]
- Chu, C.; Ma, S.; Zhang, S.; Gong, N. Summary of the study on land surface temperature measurement. Electron. Des. Eng. 2014, 22, 187–189, 192. [Google Scholar]
- Zhang, J.; Kuenzer, C. Thermal surface characteristics of coal fires 1 results of in-situ measurements. J. Appl. Geophys. 2007, 63, 117–134. [Google Scholar] [CrossRef]
- Wang, Y.; Si, G.; Oh, J. Coupled geomechanical CFD modelling of goaf under goaf gas drainage: Impact of goaf characteristics. In Proceedings of the 15th ISRM Congress, Salzburg, Austria, 9–14 October 2023; Austrian Society for Geomechanics: Salzburg, Austria, 2023; pp. 295–300. [Google Scholar]
- Peng, T.; Liu, K.; Chen, Y.; Wang, F.; Li, B. Main controlling factors and formation mode of geothermal anomaly in eastern chenghe mining area of Weibei coalfield. Geofluids 2022, 2022, 3209790. [Google Scholar] [CrossRef]
- Zhu, X.; Weng, Q. Infrared near-field radiation detection and super-resolution temperature mapping. J. Infrared Millim. Waves 2023, 42, 569–573. [Google Scholar]
- Wen, H.; Ma, M.; Fei, J. Mine fire disaster control based on infrared imaging technology. Coal Sci. Technol. 2010, 38, 28–30. [Google Scholar]
- Wang, H.; Tan, B.; Zhang, X. Research on the technology of detection and risk assessment of fire areas in gangue hills. Environ. Sci. Pollut. Res. 2020, 27, 38776–38787. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.H.; Shi, X.Y.; Wang, Y.D. Infrared fire image recognition algorithm based on ResNet50 and transfer learning. In Proceedings of the International Conference on Cyber Security, Artificial Intelligence, and Digital Economy, Nanjing, China, 3–5 March 2023; Loskot, P., Niu, S., Eds.; SPIE: Bellingham, WA, USA, 2023; p. 127181Q. [Google Scholar]
- Karaoulis, M.; Revil, A.; Mao, D. Localization of a coal seam fire using combined self-potential and resistivity data. Int. J. Coal Geol. 2014, 128–129, 109–118. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, D.; Wang, Y.; Zhong, X.; Tang, X.; Xi, D. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography. Geophys. J. Int. 2016, 204, 1316–1331. [Google Scholar] [CrossRef]
- Hui, Z.; Liu, Y.; Yin, C.; Su, Y.; Ren, X.; Zhang, B.; Xiong, B. Detection of coal spontaneous combustion using the TEM method: A synthetic study. Pure Appl. Geophys. 2021, 178, 3987–4000. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, G.; Zhou, T.; Wei, J.; Cao, F.; Zhang, Y.; Li, H.; Sun, H.; Qing, S.; Chen, T.; et al. Locating the scope and depth of coal fires based on magnetic and electrical data. Pure Appl. Geophys. 2023, 180, 3883–3900. [Google Scholar] [CrossRef]
- Song, W.; Wang, Y.; Shao, Z. Numerical simulation of electrical resistance tomography method and magnetic method in detecting coal fires. J. China Coal Soc. 2016, 41, 899–908. [Google Scholar]
- Yu, Y.; Li, X.; Shi, L.; Liu, K.; Guo, J.; Ma, G. Research on the application of time shifting aeromagnetic method in detecting coal mine burning areas. J. Mine Autom. 2023, 49, 114–120. [Google Scholar]
- Wang, Y.; Song, Z.; Liu, F. Study on magnetic detection of fire area in underground gob in open-pit coal mine. China Coal 2020, 46, 93–99. [Google Scholar]
- Zhang, B.; Xiao, F.; Jin, W. Burnt coal field detection via magnetic exploration. Environ. Earth Sci. 2023, 82, 160. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, G.; Li, L.; Li, J. An optimized detection approach to subsurface coalfield spontaneous combustion areas using airborne magnetic data. Remote Sens. 2025, 17, 1185. [Google Scholar] [CrossRef]
- Tang, Q.; Gu, Z.; Zhao, Y.; Bu, H.; Wang, Z.; Xu, G.; Fang, B. Research on Chirp modulated heat flow induced infrared thermal wave radar imaging detection technology of coal-rock combination interface. Infrared Phys. Technol. 2025, 148, 105844. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, H.; Li, W.; Xu, Y.; He, Y.; Liu, Z.; Li, P.; Huang, J. Application of integrated geophysical surveys in the identification of hidden fire sources in spontaneous combustion zones in coal seams. Coal Geol. Explor. 2023, 51, 131–137. [Google Scholar]
- Gao, R.; Zhu, H.; Liao, Q.; Qu, B.; Hu, L.; Wang, H. Detection of coal fire by deep learning using ground penetrating radar. Measurement 2022, 201, 111585. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Zhao, G. Attenuation characteristics of ground penetrating radar electromagnetic wave in aeration zone. Earth Sci. Inform. 2021, 14, 259–266. [Google Scholar] [CrossRef]
- Deng, J.; Wang, J.; Ren, S.; He, Q.; Wang, C.; Qu, G. Application and prospect of acoustic detection in the mining sector. Coal Geol. Explor. 2023, 51, 149–162. [Google Scholar]
- Guo, J.; Li, S.; Cai, G.; Li, R.; Jin, Y. Discussion on new technologies of hidden fire source detection and coal temperature sensing by acoustic method for goaf. J. Saf. Sci. Technol. 2021, 17, 5–11. [Google Scholar]
- Guo, J.; Wang, K.; Cai, G.; Jin, Y.; Liu, Y. Research progress of acoustic emission signal and its application prospect in coal temperature sensing field. Coal Sci. Technol. 2022, 50, 84–92. [Google Scholar]
- Deng, J.; Qu, G.; Ren, S.; Wang, C.; Wang, J.; Zhao, X.; Bai, G. Experimental study on acoustic wave propagation characteristics and main paths in loose coal. J. China Coal Soc. 2023, 48, 1238–1245. [Google Scholar]
- Biswal, S.S.; Raval, S.; Gorai, A.K. Delineation and mapping of coal mine fire using remote sensing data—A review. Int. J. Remote Sens. 2019, 40, 6499–6529. [Google Scholar] [CrossRef]
- Sun, C. Research on coal fire detection and identification in mining areas based on UAV thermal infrared remote sensing technology. China Coal. 2023, 49, 85–94. [Google Scholar]
- Syed, T.H.; Riyas, M.J.; Kuenzer, C. Remote sensing of coal fires in India: A review. Earth-Sci. Rev. 2018, 187, 338–355. [Google Scholar] [CrossRef]
- Li, B.; Gao, Z.; Wu, Z.; Li, C.; Sun, H. Overview of Australia coal industry. China Coal. 2021, 47, 77–88. [Google Scholar]
- Liu, Y.; Qi, X.; Luo, D.; Zhang, Y.; Qin, J. Detection and management of coal seam outcrop fire in China: A case study. Sci. Rep. 2024, 14, 4609. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A. Multi-spectral pyrometry—A review. Meas. Sci. Technol. 2017, 28, 082002. [Google Scholar] [CrossRef]
- Szpakowski, D.M.; Jensen, J.L.R. A review of the applications of remote sensing in fire ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef]
- Du, X.; Bernardes, S.; Cao, D.; Jordan, T.R.; Yan, Z.; Yang, G.; Li, Z. Self-adaptive gradient-based thresholding method for coal fire detection based on ASTER data—Part 2, validation and sensitivity analysis. Remote Sens. 2015, 7, 2602–2626. [Google Scholar] [CrossRef]
- Wang, J.; Li, C. Development and prospect of hyperspectral imager and its application. Chin. J. Space Sci. 2021, 41, 22–33. [Google Scholar] [CrossRef]
- Murphy, R.J.; Taylor, Z.; Schneider, S.; Nieto, J. Mapping clay minerals in an open-pit mine using hyperspectral and LiDAR data. Eur. J. Remote Sens. 2015, 48, 511–526. [Google Scholar] [CrossRef]
- Jaiswal, G.; Sharma, A.; Yadav, S.K. Critical insights into modern hyperspectral image applications through deep learning. WIREs Data Min. Knowl. Discov. 2021, 11, e1426. [Google Scholar]
- Yang, G.; Zhao, Y.; Tian, X.; Zhang, G.; Pei, C. Coalfield fire quantitative detection in Daliuta mining area based on hyperspectral thermal infrared remote sensing. Coal Eng. 2016, 48, 103–106, 109. [Google Scholar]
- Yang, L.; Feng, Y.; Wang, Y.; Wang, J. Refined fire detection and band selection method in hyperspectral remote sensing imagery based on sparse-VIT. Infrared Phys. Technol. 2024, 137, 105104. [Google Scholar] [CrossRef]
- Zhou, B.; Deng, C.; Hao, J.; An, B.; Wu, R. Experimental study on the mechanism of radon exhalation during coal spontaneous combustion in goaf. Tunn. Undergr. Space Technol. 2021, 113, 103776. [Google Scholar] [CrossRef]
- Chan, Z.; Zhou, B.; Wang, J.; Lu, Z.; Yang, Q.; Dong, Z.; Dong, K. Long-distance migration law of radon in overburden of abandoned goaf during coal spontaneous combustion. J. Environ. Radioact. 2023, 270, 107284. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hong, H.; Dong, H.; Wu, B.; Sun, Z.; Wang, W.; Zhang, Q. Research on the application of “radon measurement-magnetic” method to detect spontaneous combustion technology in small coal mines. Coal Sci. Technol. 2025, 53, 200–210. [Google Scholar]
- Tan, B.; Zhang, F.; Zhang, Q.; Wei, H.; Shao, Z. Firefighting of subsurface coal fires with comprehensive techniques for detection and control: A case study of the Fukang coal fire in the Xinjiang region of China. Environ. Sci. Pollut. Res. 2019, 26, 29570–29584. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Fang, L.; Shi, Q.; Qi, G.; Huang, Q.; Wang, H. Application of rapid identification technology in shallow coal seam fire detection. Combust. Sci. Technol. 2025, 197, 1535–1549. [Google Scholar] [CrossRef]
- Dai, G. Study on the technique of double tracing for probing coal spontaneous combustion source. J. Xi’an Univ. Sci. Technol. 1996, 16, 20–23, 30. [Google Scholar]
- Ye, Q.; Dai, G.; Li, P.; Tang, M.; Nie, S.; Song, X. Air leakage law of surface above shallow coal seam goaf based on dual-element tracing. Coal Eng. 2020, 52, 83–87. [Google Scholar]
- Liang, X. Position determination of coal spontaneous combustion in quanchuang mine. Shanxi Coal 2015, 35, 16–19. [Google Scholar]
- Shao, H.; Dai, G.; Zhang, G. Measuring and monitoring technology of ventilation leakage in goaf with SF6-CF2ClBr two element trace gas. Coal Sci. Technol. 1998, 26, 2–5, 58. [Google Scholar]
- Wei, D.; Du, C.; Lei, B.; Lin, Y. Prediction and prevention of spontaneous combustion of coal from goafs in workface: A case study. Case Stud. Therm. Eng. 2020, 21, 100668. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.; Yang, Z.; Li, J.; Chen, L.; Zhuo, H.; Zhang, Q.; Lu, W. Different perspectives and explanations regarding the influence of pre-oxidation on the spontaneous combustion characteristics of coal. J. China Univ. Min. Technol. 2025, 54, 423–436. [Google Scholar]
- Li, Z.; Zhang, M.; Yang, Z.; Yu, J.; Liu, Y.; Wang, H. Division of coal spontaneous combustion stages and selection of indicator gases. PLoS ONE 2022, 17, e0267479. [Google Scholar] [CrossRef] [PubMed]
- Yue, N.; Jin, Y.; Sun, M.; Yang, C.; Ran, X.; Cheng, M. Multi-staged warning system for con-trolling the coal spontaneous combus-tion based on the various index gases. J. Saf. Environ. 2020, 20, 2139–2146. [Google Scholar]
Product Name | Units | Annual Output | Year-on-Year Growth |
---|---|---|---|
Raw coal | Mt | 4.78 × 103 | 1.2% |
Crude oil | Mt | 212.891 | 1.8% |
Natural gas | BMC | 246.45 | 6.0% |
Generating capacity | kWh | 1.008688 × 1013 | 6.7% |
Among them: Thermal power | kWh | 6.37426 × 1012 | 1.7% |
Hydroelectric power | kWh | 1.42568 × 1012 | 10.9% |
Nuclear power | kWh | 4.5085 × 1011 | 3.7% |
Wind power | kWh | 9.9704 × 1011 | 12.5% |
Solar power generation | kWh | 8390.4 × 1011 | 43.6% |
Sort | Detection Method | Advantage | Shortcoming |
---|---|---|---|
Direct detection method | Ground temperature measurement method [31] | Intuitive, accurate, suitable for shallow coal seam | Primitive and basic, with few applications, affected by precipitation and air flow, and environmental conditions are demanding. |
Drilling temperature measurement method [32] | Temperature of fire source can be detected at close range | High cost and not suitable for large-scale detection. Suitable for verification stage | |
Physical detection method | Infrared detection method [33] | High sensitivity and fast speed | Limited depth of detection |
Resistivity detection method [34] | Simple and feasible, suitable for shallow coal seam | Disturbed by ground stray current | |
Magnetic detection [35] | Small workload, suitable for shallow coal seam | Magnetism is susceptible to interference | |
Geological radar detection method [36] | Easy to operate | Attenuation rate of wave is fast and is easily affected by geological structure | |
Mine acoustic temperature measurement technology [37] | Wide measuring range, non-contact continuous measurement | Technology application is not mature enough | |
Remote sensing detection method | Infrared remote sensing [38] | Suitable for demarcation of large-scale fire areas and has short detection time | Thermal infrared band has low resolution and high requirements for equipment |
Multi-spectral remote sensing [39] | Spectrum is informative and cost-effective | Spectral resolution is limited, surface dependence is strong, and cost is high | |
Hyperspectral remote sensing [40] | Operation is simple and time-saving | Spatial resolution is relatively low and is easily affected by environment, requiring auxiliary verification | |
Chemical detection method | Radon measurement method [41] | Technology is mature, principle is simple and application is wide | Radon gas migration in surface cracks may be biased, detection depth is limited |
Binary tracer technology [42] | Released amount is small, easy to analyze | Due to influence of mining technology and geological conditions, its accuracy is not high and it is not commonly used | |
Gas detection method [43] | Indicator gas is easy to determine and easy to operate | Gas transmission distance is long, distribution is difficult, and cost is high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Li, Y.; Liu, W.; Yang, X.; Cheng, X.; Qi, C.; Li, C.; Hui, J.; Zhang, L. Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology. Processes 2025, 13, 2305. https://doi.org/10.3390/pr13072305
Jin Y, Li Y, Liu W, Yang X, Cheng X, Qi C, Li C, Hui J, Zhang L. Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology. Processes. 2025; 13(7):2305. https://doi.org/10.3390/pr13072305
Chicago/Turabian StyleJin, Yongfei, Yixin Li, Wenyong Liu, Xiaona Yang, Xiaojiao Cheng, Chenyang Qi, Changsheng Li, Jing Hui, and Lei Zhang. 2025. "Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology" Processes 13, no. 7: 2305. https://doi.org/10.3390/pr13072305
APA StyleJin, Y., Li, Y., Liu, W., Yang, X., Cheng, X., Qi, C., Li, C., Hui, J., & Zhang, L. (2025). Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology. Processes, 13(7), 2305. https://doi.org/10.3390/pr13072305