Energy Production and Process Costing for Biomass Obtained from Underutilized Plant Species in México and Colombia
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Sampling
2.2. Proximal Analysis and Higher Heating Value
2.3. Pellet Impact Resistance Test
2.4. Chemical Composition
2.5. Costs of Labor Input and Machine-Specific Energy Consumption During Production
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximal Analysis
3.2. Pellet Impact Resistance
3.3. Chemical Composition
3.4. Solid Biomass and Pellet Production Costs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.-T.; Show, P.-L. Waste to Bioenergy: A Review on the Recent Conversion Technologies. BMC Energy 2019, 1, 1–22. [Google Scholar] [CrossRef]
- Paris, E.; Carnevale, M.; Vincenti, B.; Palma, A.; Guerriero, E.; Borello, D.; Gallucci, F. Evaluation of VOCs Emitted from Biomass Combustion in a Small CHP Plant: Difference between Dry and Wet Poplar Woodchips. Molecules 2022, 27, 955. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Zurita, D.; Santana-Espinoza, S.; Rosales-Serna, R.; Ríos-Saucedo, J.C.; Carrillo-Parra, A. Productivity and Characterization of Biomass Obtained from Pruning of Walnut Orchards in México. Energies 2023, 16, 2243. [Google Scholar] [CrossRef]
- Kordi, M.; Farrokhi, N.; Pech-Canul, M.I.; Ahmadikhah, A. Rice husk at a glance: From agroindustrial to modern applications. Rice Sci. 2024, 31, 14–32. [Google Scholar] [CrossRef]
- SIAP, S. Servicio de Información Agroalimentaria y Pesquera, Secretaría de Agricultura Ganadería y Desarrollo Rural, Pesca y Alimentación 2023. Available online: https://nube.agricultura.gob.mx/agroprograma/ (accessed on 20 April 2025).
- Valmaseda, A.R.Z.; Núñez, B.C.; López, Y.A. Evaluación Agronómica y Medioambiental Del Uso de La Paja de Arroz Como Substrato En La Producción de Biogas. Cienc. Intercult. 2014, 15, 137–145. [Google Scholar] [CrossRef]
- Gonzalez, L.V.P.; Gómez, S.P.M.; Abad, P.A.G. Aprovechamiento de Residuos Agroindustriales En Colombia. RIAA 2017, 8, 141–150. [Google Scholar]
- Coronel, D.A.Q.; Rodas, Y.L.; Martínez, L.A.C. Desarrollo de Un Modelo de Gasificación En Equilibrio Químico Para Evaluar El Potencial Energético Del Cuesco En Plantas Extractoras de Aceite de Palma En Colombia. Inge Cuc 2018, 14, 62–70. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Larroche, C.; Kim, S.H.; Pandey, A. Valorization of Cashew Nut Processing Residues for Industrial Applications. Ind. Crops Prod. 2020, 152, 112550. [Google Scholar] [CrossRef]
- Álvarez, A.C.G.; Jiménez, L.A.R.; Chacón, J.R.L.; Muñoz, L.G.L. Evaluación de La Eficiencia Energética Del Cuesco de Cacay (Caryodendron orinocense). Rev. Sist. Prod. Agroecol. 2020, 11, 2–22. [Google Scholar] [CrossRef]
- Montero-Hernández, D.B.; Vargas-Simón, G.; Núñez-Piedra, M.L. Distribución Ecogeográfica y Áreas de Ocupación de Castilla elastica Cerv. En México. Bot. Sci. 2023, 101, 76–89. [Google Scholar] [CrossRef]
- Flórez, J.B.; Trugilho, P.F.; Lima, J.T.; Hein, P.R.G.; Silva, J.R.M.d. Caracterización de La Madera Joven de Tectona grandis L. f. Plantada En Brasil. Madera Bosques 2014, 20, 11–20. [Google Scholar] [CrossRef]
- Martínez-Zurimendi, P.; Domínguez-Domínguez, M.; Juárez-García, A.; López-López, L.M.; de-la-Cruz-Arias, V.; Álvarez-Martínez, J. Índice de Sitio y Producción Maderable En Plantaciones Forestales de Gmelina arborea En Tabasco, México. Rev. Fitotec. Mex. 2015, 38, 415–425. [Google Scholar] [CrossRef]
- Pintor-Ibarra, L.F.; Méndez-Zetina, F.D.; Rutiaga-Quiñones, J.G.; Alvarado-Flores, J.J. Capítulo 5: Caracterización Proximal de Los Biocombustibles Sólidos. In Aplicaciones Energéticas de la Biomasa: Perspectivas para la Caracterización Local de Biocombustibles Sólidos; Universidad Intercultural Indígena de Michoacán: Pátzcuaro, México, 2023; pp. 87–116. [Google Scholar]
- Ibarra, B.J.C.; Rueda, Y.J.O. Biomasa Para El Aprovechamiento Energético. In Una Revisión de la Caracterización y los Modelos por Descomposición Termoquímica; Research Group on Energy and Environment GIEMA: Bucaramanga, Colombia, 2017. [Google Scholar]
- ASTM D-1762-84; Standard Method for Chemical Analysis of Wood Charcoal. ASTM: West Conshohocken, PA, USA, 2001.
- ASTM E830-87; Standard Test Method for Ash in the Analysis Sample of Refuse-Derived Fuel. ASTM: West Conshohocken, PA, USA, 2004.
- ASTM D1102; Standard Test Method for Ash in Wood. ASTM: West Conshohocken, PA, USA, 2021.
- ISO 18122:2016; Solid Biofuels—Determination of Ash Content. ISO: Geneva, Switzerland, 2016; pp. 1–16.
- Gauna, J.M.; Raffaeli, N.; Tonello, M.L.; Harrand, L.; Mastrandrea, C.A.; Martinez, M.S.; Oberschelp, G.P.J.; Barotto, J. Potencial de Especies, Clones Puros e Híbridos de Eucaliptos Para Elaboración de Carbón Vegetal. 2022. Available online: https://www.researchgate.net/publication/364348131_POTENCIAL_DE_ESPECIES_CLONES_PUROS_E_HIBRIDOS_DE_EUCALIPTOS_PARA_ELABORACION_DE_CARBON_VEGETAL (accessed on 20 April 2025).
- Pintor-Ibarra, L.F.; Alvarado-Flores, J.J.; Rutiaga-Quiñones, J.G.; Alcaraz-Vera, J.V.; Ávalos-Rodríguez, M.L.; Moreno-Anguiano, O. Chemical and Energetic Characterization of the Wood of Prosopis laevigata: Chemical and Thermogravimetric Methods. Molecules 2024, 29, 2587. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhao, N.; Li, X.; Yu, Y.; Elshareef, H.; Qian, M.; Lei, H. Thermal Processing of Biomass for Energy and Fuel Production. In Advances in Bioenergy; Elsevier: Amsterdam, The Netherlands, 2022; Volume 7, pp. 271–341. ISBN 2468-0125. [Google Scholar]
- Moiceanu, G.; Paraschiv, G.; Voicu, G.; Dinca, M.; Negoita, O.; Chitoiu, M.; Tudor, P. Energy Consumption at Size Reduction of Lignocellulose Biomass for Bioenergy. Sustainability 2019, 11, 2477. [Google Scholar] [CrossRef]
- Kpalo, S.Y.; Zainuddin, M.F.; Manaf, L.A.; Roslan, A.M. A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability 2020, 12, 4609. [Google Scholar] [CrossRef]
- Marreiro, H.M.P.; Peruchi, R.S.; Lopes, R.M.B.P.; Andersen, S.L.F.; Eliziário, S.A.; Rotella Junior, P. Empirical Studies on Biomass Briquette Production: A Literature Review. Energies 2021, 14, 8320. [Google Scholar] [CrossRef]
- Sasikumar, C.; Sundaresan, R.; Nagaraja, M.; Rajaganapathy, C. A Review on Energy Generation from Manure Biomass. Mater. Today Proc. 2021, 45, 2408–2412. [Google Scholar] [CrossRef]
- UNECEN/TS 14778-1; Asociación Española de Normalización y Certificación Biocombustibles Sólidos. Muestreo Parte 1: Métodosmuestreo. AENOR: Madrid, Spain, 2007.
- ASTM D5865-11; Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM: West Conshohocken, PA, USA, 2011.
- Richards, S.R. Physical Testing of Fuel Briquettes. Fuel Process. Technol. 1990, 25, 89–100. [Google Scholar] [CrossRef]
- ANKOM. Acid Detergent Fiber in Feeds. Filter bag technique (ANKOM200). Ankom Technology 2005. Available online: https://www.ankom.com/sites/default/files/document-files/Method_12_ADF_A2000.pdf (accessed on 20 April 2025).
- CONUEE Informe de Desempeño Anual. Comisión Nacional Para El Uso Eficiente de La Energía; Secretaría de Energía: México City, México, 2018.
- CFE. Comisión Federal de Electricidad Esquema Tarifario Vigente. CFE. 2025. Available online: https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRECasa/Casa.aspx (accessed on 17 April 2025).
- Afanasjeva, N.; Castillo, L.C.; Sinisterra, J.C. Biomasa Lignocelulósica. Parte I: Transformación de Biomasa. J. Sci. Technol. Appl 2017, 3, 27–43. [Google Scholar] [CrossRef]
- Honorato-Salazar, J.A.; Colotl-Hernández, G.; Apolinar-Hidalgo, F.; Aburto, J. Principales Componentes Químicos de La Madera de Ceiba pentandra, Hevea brasiliensis y Ochroma pyramidale. Madera Bosques 2015, 21, 131–146. [Google Scholar] [CrossRef]
- Smołka-Danielowska, D.; Jabłońska, M. Chemical and Mineral Composition of Ashes from Wood Biomass Combustion in Domestic Wood-Fired Furnaces. Int. J. Environ. Sci. Technol. 2022, 19, 5359–5372. [Google Scholar] [CrossRef]
- Ventura Ríos, J.; Santiago Ortega, M.A.; Barrera-Martínez, I.; Álvarez Vázquez, P.; Carrillo López, P.; Honorato Salazar, J.A. Caracterización Del Pasto Mombaza Como Materia Prima Para Producir Bioetanol. Rev. Mex. Cienc. Agric. 2021, 12, 235–246. [Google Scholar] [CrossRef]
- Salazar-Zeledón, E. Influencia de Altas Densidades de Plantación En El Poder Calorífico y Propiedades Físicas de La Madera Para La Especie Gmelina arborea Roxb. Ex Sm. Rev. For. Mesoam. Kurú 2016, 13, 51–56. [Google Scholar] [CrossRef]
- Boadu, K.B.; Anokye, R.; Afrifah, K.A.; Tetteh, E.N.; Anning, O.F.; Osei, B.K. Characterization of the Fibre Morphology and Chemical Composition of Aged PB 260 and IRCA 41 Clones of Rubber (Hevea brasiliensis) Wood for Pulp and Paper Making. J. Indian Acad. Wood Sci. 2022, 19, 133–140. [Google Scholar] [CrossRef]
- Gracia-Vitoria, J.; Gándara, S.C.; Feghali, E.; Ortiz, P.; Eevers, W.; Triantafyllidis, K.S.; Vanbroekhoven, K. The Chemical and Physical Properties of Lignin Bio-Oils, Facts and Needs. Curr. Opin. Green Sustain. Chem. 2023, 40, 100781. [Google Scholar] [CrossRef]
- Jin, W.; Singh, K.; Zondlo, J. Pyrolysis Kinetics of Physical Components of Wood and Wood-Polymers Using Isoconversion Method. Agriculture 2013, 3, 12–32. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Wang, C.-G.; Fei, B.-H.; Yu, Y.; Cheng, H.-T.; Tian, G.-L. Mechanical Function of Lignin and Hemicelluloses in Wood Cell Wall Revealed with Microtension of Single Wood Fiber. Bioresources 2013, 8, 2376–2385. [Google Scholar] [CrossRef]
- Pasztory, Z.; Mohácsiné, I.R.; Gorbacheva, G.; Börcsök, Z. The Utilization of Tree Bark. Bioresources 2016, 11, 7859–7888. [Google Scholar] [CrossRef]
- Erick, R.-U. Determinación de Los Principales Componentes de La Biomasa Lignocelulosica; Celulosa, Hemicelulosa y Lignina de La Paja de Trigo Para Su Posterior Pretratamiento Biológico. In Proceedings of the Actas del XVII Congreso Internacional en Ciencias Agrícolas Agricultura sustentable: Uso Eficiente del Agua, Suelo y Fertilizantes; Mexicali, México, 9–10 October 2014; Volume 9, pp. 114–118. [Google Scholar]
- Amorim, E.P.; Menucelli, J.R.; Germano, A.D.; de Faria, R.F.P.; de Andrade Barbosa, J.; de Andrade Pádua, F.; de Freitas, M.L.M.; de Moraes, M.A.; Cambuim, J.; de Moraes, M.L.T. Technological Potential of Fibers from 20 Hevea brasiliensis Clones for Use as Pulp, Paper, and Composite Materials. Res. Soc. Dev. 2021, 10, e549101019102. [Google Scholar] [CrossRef]
- Riyaphan, J.; Phumichai, T.; Neimsuwan, T.; Witayakran, S.; Sungsing, K.; Kaveeta, R.; Phumichai, C. Variability in Chemical and Mechanical Properties of Pará Rubber (Hevea brasiliensis) Trees. ScienceAsia 2015, 41, 251–258. [Google Scholar] [CrossRef]
- Bedia, J.; Rosas, J.; Márquez, M.; Guerrero, M.; Ruiz, R.; Cotoruelo, L.; Rodríguez, J.; Cordero, T. Materiales de Carbono a Partir de Lignina. Boletín del Grupo Español del Carbón (GEC) (12). 2009, 2–8. Available online: https://www.researchgate.net/publication/235920643_Materiales_de_Carbono_a_partir_de_Lignina (accessed on 20 April 2025).
- Chukwuemeka, O. Wood Density of Rubber (Hevea brasiliensis) Grown in South-Eastern Nigeria for Utilization Purposes. Int. J. Adv. Res. Soc. Eng. Dev. Strateg. 2016, 4, 40–45. [Google Scholar]
- Ríos, S.J.C.; Rosales-Serena, R.; Carrillo-Parra, A.; Cano Pineda, A.; Aquino Ramirez, M. Densidad Básica de La Madera y Calidad de Carbón Obtenido de Encino Rojo Producido En Durango. XIV Reunión Nacional de Investigación Agrícola. Aguascalientes, México, 2024. Available online: https://www.researchgate.net/publication/392263949_DENSIDAD_BASICA_DE_LA_MADERA_Y_CALIDAD_DE_CARBON_OBTENIDO_DE_ENCINO_ROJO_PRODUCIDO_EN_DURANGO (accessed on 20 April 2025).
Sample ID | Species | Collection Site | Coordinates | Biomass |
---|---|---|---|---|
INI-1 | Rice (Oriza sativa) | Villavicencio, Meta, Colombia | 04° 02′ 41.85″ N; 73° 07′ 41.86″ | Straw |
INI-2 | Cacay (Caryodendron orinocense) | Lejanías, Meta, Colombia | 03° 28′ 49.83″ N; 73° 52′ 04.26″ | Cob (endocarp) |
INI-3 | Rubber tree (Castilla elastica) | Balancán, Tabasco, México | 17° 52′ 16.29′ N; 91° 26′ 57.17′ W | Twigs, leaves, sawdust |
INI-4 | Teak (Tectona grandis) | Balancán, Tabasco, México | 17° 52′ 16.29′ N; 91° 26′ 57.17′ W | Twigs, leaves, sawdust |
INI-5 | Melina (Gmelina arborea) | Balancán, Tabasco, México | 17° 52′ 16.29′ N; 91° 26′ 57.17′ W | Twigs, leaves, sawdust |
Species | Volatile Material (%) | Ash (%) | Fixed Carbon (%) | HHV 1 (MJ kg−1) | PIR (%) | PD (g cm−3) |
---|---|---|---|---|---|---|
Rice (Oriza sativa) | 65.9 ± 0.2 | 17.2 ± 0.0 | 16.8 ± 0.2 | 16.4 ± 0.0 | -- | -- |
Cacay (Caryodendron orinocense) | 77.5 ± 0.3 | 2.6 ± 0.1 | 19.9 ± 0.4 | 18.3 ± 0.1 | 99.1 ± 0.3 | -- |
Rubber tree (Castilla elastica) | 70.7 ± 0.3 | 16.3 ± 0.3 | 5.4 ± 0.0 | 19.7 ± 0.4 | 0.6 ± 0.0 | -- |
Teak (Tectona grandis) | 72.6 ± 0.6 | 2.7 ± 0.1 | 16.9 ± 0.5 | 21.9 ± 0.2 | 7.7 ± 0.2 | 0.6 ± 0.0 |
Melina (Gmelina arborea) | 73.5 ± 0.2 | 2.5 ± 0.1 | 16.5 ± 0.1 | 21.3 ± 0.2 | 7.5 ± 0.1 | 0.6 ± 0.0 |
Species | Lignin (%) | Hemicellulose (%) | Cellulose (%) |
---|---|---|---|
Rubber tree (Castilla elastica) | 13.8 ± 0.9 | 9.6 ± 0.7 | 39.2 ± 0.8 |
Teak (Tectona grandis) | 27.3 ± 0.4 | 7.3 ± 0.2 | 53.5 ± 1.2 |
Melina (Gmelina arborea) | 19.8 ± 0.1 | 8.0 ± 0.9 | 51.0 ± 0.2 |
Plant Species | Biomass Price (EUR t−1) | Labor Costs (EUR t−1) | Energy Costs (EUR t−1) | Total (EUR t−1) |
---|---|---|---|---|
Rice (Oriza sativa) | 2.5 | 28.8 | 644.6 | 675.9 |
Cacay (Caryodendron orinocense) | 3.3 | 28.8 | 644.6 | 676.7 |
Rubber tree (Castilla elastica) | 4.5 | 28.8 | 644.6 | 677.9 |
Teak (Tectona grandis) | 5.9 | 28.8 | 644.6 | 679.3 |
Melina (Gmelina arborea) | 5.2 | 28.8 | 644.6 | 678.6 |
Equipment | Process | Energy Consumption (kW h−1) | Consumption in the Process (kW) |
---|---|---|---|
Hammer mill | Grinding | 9.0 | 22.5 |
Chipper | 12.5 | ||
Screw conveyor drive moto 1 | 1.0 | ||
Conveyor belt | Biofuel production | 1.1 | 17.6 |
Biofuel mill | 11.9 | ||
Screw conveyor drive moto 2 | 3.1 | ||
Screw conveyor drive moto 2 | 1.0 | ||
Air extractor | 0.4 | ||
Total | 57.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ríos-Saucedo, J.C.; Rosales-Serna, R.; Carrillo-Parra, A.; Nava-Berumen, C.A.; Cano-Pineda, A.; Aquino-Ramírez, M.; Martínez-Villela, J.M. Energy Production and Process Costing for Biomass Obtained from Underutilized Plant Species in México and Colombia. Processes 2025, 13, 1878. https://doi.org/10.3390/pr13061878
Ríos-Saucedo JC, Rosales-Serna R, Carrillo-Parra A, Nava-Berumen CA, Cano-Pineda A, Aquino-Ramírez M, Martínez-Villela JM. Energy Production and Process Costing for Biomass Obtained from Underutilized Plant Species in México and Colombia. Processes. 2025; 13(6):1878. https://doi.org/10.3390/pr13061878
Chicago/Turabian StyleRíos-Saucedo, Julio César, Rigoberto Rosales-Serna, Artemio Carrillo-Parra, Cynthia Adriana Nava-Berumen, Antonio Cano-Pineda, Martín Aquino-Ramírez, and Jesús Manuel Martínez-Villela. 2025. "Energy Production and Process Costing for Biomass Obtained from Underutilized Plant Species in México and Colombia" Processes 13, no. 6: 1878. https://doi.org/10.3390/pr13061878
APA StyleRíos-Saucedo, J. C., Rosales-Serna, R., Carrillo-Parra, A., Nava-Berumen, C. A., Cano-Pineda, A., Aquino-Ramírez, M., & Martínez-Villela, J. M. (2025). Energy Production and Process Costing for Biomass Obtained from Underutilized Plant Species in México and Colombia. Processes, 13(6), 1878. https://doi.org/10.3390/pr13061878