Recent Advances in Leaching of Lithium-Ion Battery Cathode Materials Using Deep Eutectic Solvents and Ionic Liquids: Efficiency, Mechanisms, and Challenges
Abstract
1. Introduction
2. Overview of LIB Cathode Materials
3. Preparation of Cathode Materials for Leaching
4. Traditional Approaches to Leaching and Their Limitations
5. Ionic Liquids: Structure, Properties, and Overview of Leaching of LIB Cathodes
6. Deep Eutectic Solvents: Structure, Properties, and Overview of Leaching of LIB Cathodes
7. Post-Leaching Processing Steps
8. Comparative Analysis, Challenges, and Industrial Applicability of ILs and DESs
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ngoy, K.R.; Lukong, V.T.; Yoro, K.O.; Makambo, J.B.; Chukwuati, N.C.; Ibegbulam, C.; Eterigho-Ikelegbe, O.; Ukoba, K.; Jen, T.C. Lithium-Ion Batteries and the Future of Sustainable Energy: A Comprehensive Review. Renew. Sustain. Energy Rev. 2025, 223, 115971. [Google Scholar] [CrossRef]
- He, B.; Zheng, H.; Tang, K.; Xi, P.; Li, M.; Wei, L.; Guan, Q. A Comprehensive Review of Lithium-Ion Battery (LiB) Recycling Technologies and Industrial Market Trend Insights. Recycling 2024, 9, 9. [Google Scholar] [CrossRef]
- Ghorbani, Y.; Zhang, S.E.; Bourdeau, J.E.; Chipangamate, N.S.; Rose, D.H.; Valodia, I.; Nwaila, G.T. The Strategic Role of Lithium in the Green Energy Transition: Towards an OPEC-Style Framework for Green Energy-Mineral Exporting Countries (GEMEC). Resour. Policy 2024, 90, 104737. [Google Scholar] [CrossRef]
- Deberdt, R.; Smith, N.M.; Calderon, J.L.; McCall, S.K. Critical Minerals Lists for Low-Carbon Transitions: Reviewing Their Structure, Objectives, and Limitations. Energy Res. Soc. Sci. 2025, 127, 104252. [Google Scholar] [CrossRef]
- Sun, X.; Wang, F.; Wang, P.; Sun, L.; Zhao, M.; Jiao, X.; Li, J.; Li, Z.; Geng, Y.; Zhao, D. Risk Analysis and Eco-Design Strategies for Critical Mineral Resources in China’s Vehicle Electrification Process. Resour. Conserv. Recycl. 2025, 216, 108156. [Google Scholar] [CrossRef]
- Vega-Muratalla, V.O.; Ramírez-Márquez, C.; Lira-Barragán, L.F.; Ponce-Ortega, J.M. Review of Lithium as a Strategic Resource for Electric Vehicle Battery Production: Availability, Extraction, and Future Prospects. Resources 2024, 13, 148. [Google Scholar] [CrossRef]
- Ali, A.; Afrin, S.; Asif, A.H.; Arafat, Y.; Azhar, M.R. A Comprehensive Review on the Recovery of Lithium from Lithium-Ion Batteries and Spodumene. J. Environ. Manag. 2025, 391, 126512. [Google Scholar] [CrossRef]
- Brown, C.W.; Goldfine, C.E.; Allan-Blitz, L.T.; Erickson, T.B. Occupational, Environmental, and Toxicological Health Risks of Mining Metals for Lithium-Ion Batteries: A Narrative Review of the Pubmed Database. J. Occup. Med. Toxicol. 2024, 19, 35. [Google Scholar] [CrossRef] [PubMed]
- Zanoletti, A.; Carena, E.; Ferrara, C.; Bontempi, E. A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries 2024, 10, 38. [Google Scholar] [CrossRef]
- Mušović, J.; Marić, S.; Jocić, A.; Dimitrijević, A. Ionic Liquids-Mediated Technologies for Metals Recycling from Lithium-Ion Battery Cathode Materials: A Comprehensive Review. Sep. Purif. Technol. 2025, 376, 134090. [Google Scholar] [CrossRef]
- Srivastava, V.; Rantala, V.; Mehdipour, P.; Kauppinen, T.; Tuomikoski, S.; Heponiemi, A.; Runtti, H.; Tynjälä, P.; Simões Dos Reis, G.; Lassi, U. A Comprehensive Review of the Reclamation of Resources from Spent Lithium-Ion Batteries. Chem. Eng. J. 2023, 474, 145822. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Kaya, M. State-of-the-Art Lithium-Ion Battery Recycling Technologies. Circ. Econ. 2022, 1, 100015. [Google Scholar] [CrossRef]
- Niu, B.; Xu, Z.; Xiao, J.; Qin, Y. Recycling Hazardous and Valuable Electrolyte in Spent Lithium-Ion Batteries: Urgency, Progress, Challenge, and Viable Approach. Chem. Rev. 2023, 123, 8718–8735. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, K.; Yu, J.; Zhang, Q.; Zhang, Y.; Valix, M.; Tsang, D.C.W. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. Glob. Challenges 2023, 7, 2200237. [Google Scholar] [CrossRef] [PubMed]
- Khatibi, H.; Hassan, E.; Frisone, D.; Amiriyan, M.; Farahati, R.; Farhad, S. Recycling and Reusing Copper and Aluminum Current-Collectors from Spent Lithium-Ion Batteries. Energies 2022, 15, 9069. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, H.; Lin, F. Sustainable Electric Vehicle Batteries for a Sustainable World: Perspectives on Battery Cathodes, Environment, Supply Chain, Manufacturing, Life Cycle, and Policy. Adv. Energy Mater. 2022, 12, 2200383. [Google Scholar] [CrossRef]
- Wentker, M.; Greenwood, M.; Asaba, M.C.; Leker, J. A Raw Material Criticality and Environmental Impact Assessment of State-of-the-Art and Post-Lithium-Ion Cathode Technologies. J. Energy Storage 2019, 26, 101022. [Google Scholar] [CrossRef]
- Gu, K.; Tokoro, C.; Takaya, Y.; Zhou, J.; Qin, W.; Han, J. Resource Recovery and Regeneration Strategies for Spent Lithium-Ion Batteries: Toward Sustainable High-Value Cathode Materials. Waste Manag. 2024, 179, 120–129. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, X.; Yu, W.; Shang, Z.; Yang, Y.; Xu, S. Solvothermal Strategy for Direct Regeneration of High-Performance Cathode Materials from Spent Lithium-Ion Battery. Nano Energy 2024, 120, 109145. [Google Scholar] [CrossRef]
- Cornelio, A.; Zanoletti, A.; Bontempi, E. Recent Progress in Pyrometallurgy for the Recovery of Spent Lithium-Ion Batteries: A Review of State-of-the-Art Developments. Curr. Opin. Green Sustain. Chem. 2024, 46, 100881. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Singh, N. Recycling of Spent Lithium-Ion Battery: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1129–1165. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, H.; Tan, N.; Zhu, M.; Tan, W.; Daramola, D.; Gu, T. Advances in Bioleaching of Waste Lithium Batteries under Metal Ion Stress. Bioresour. Bioprocess. 2023, 10, 19. [Google Scholar] [CrossRef]
- Moosakazemi, F.; Ghassa, S.; Jafari, M.; Chelgani, S.C. Bioleaching for Recovery of Metals from Spent Batteries–A Review. Miner. Process. Extr. Metall. Rev. 2023, 44, 511–521. [Google Scholar] [CrossRef]
- Lu, Y.; Peng, K.; Zhang, L. Sustainable Recycling of Electrode Materials in Spent Li-Ion Batteries through Direct Regeneration Processes. Acs EsT Eng. 2022, 2, 586–605. [Google Scholar] [CrossRef]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Hyde, C.; Hartley, J.M.; Abbott, A.P.; Anderson, P.A.; Harper, G.D.J. To Shred or Not to Shred: A Comparative Techno-Economic Assessment of Lithium Ion Battery Hydrometallurgical Recycling Retaining Value and Improving Circularity in LIB Supply Chains. Resour. Conserv. Recycl. 2021, 175, 105741. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Ali Kucuker, M.; Kuchta, K.; et al. Recent Advances on Hydrometallurgical Recovery of Critical and Precious Elements from End of Life Electronic Wastes—A Review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef]
- Mušović, J.; Tekić, D.; Jocić, A.; Marić, S.; Dimitrijević, A. Efficient Ionic Liquid-Based Leaching and Extraction of Metals from NMC Cathodes. Processes 2025, 13, 1755. [Google Scholar] [CrossRef]
- Zhang, N.; Xu, Z.; Deng, W.; Wang, X. Recycling and Upcycling Spent LIB Cathodes: A Comprehensive Review; Springer Nature: Singapore, 2022; Volume 5, ISSN ISBN 0123456789. [Google Scholar]
- Binnemans, K.; Jones, P.T. The Twelve Principles of Circular Hydrometallurgy. J. Sustain. Metall. 2023, 9, 1–25. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Rogers, R.D.; Seddon, K.R. Ionic Liquids—Solvents of the Future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, A.; Tolazzi, M.; Sanadar, M.; Melchior, A. Hydrometallurgical Recovery of Metals from Spent Lithium-Ion Batteries with Ionic Liquids and Deep Eutectic Solvents. J. Environ. Chem. Eng. 2024, 12, 113248. [Google Scholar] [CrossRef]
- Kityk, A.; Pavlik, V.; Hnatko, M. Reshaping the Future of Battery Waste: Deep Eutectic Solvents in Li-Ion Battery Recycling. J. Energy Storage 2024, 97, 112990. [Google Scholar] [CrossRef]
- Padwal, C.; Pham, H.D.; Jadhav, S.; Do, T.T.; Nerkar, J.; Hoang, L.T.M.; Kumar Nanjundan, A.; Mundree, S.G.; Dubal, D.P. Deep Eutectic Solvents: Green Approach for Cathode Recycling of Li-Ion Batteries. Adv. Energy Sustain. Res. 2022, 3, 2100133. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Li, T.; Hu, T.; Ge, X. Deep Eutectic Solvents (DESs) for Green Recycling of Wasted Lithium-Ion Batteries (LIBs): Progress on Pushing the Overall Efficiency. Mining Metall. Explor. 2022, 39, 2149–2165. [Google Scholar] [CrossRef]
- Li, C.; Jin, J.; Yuan, Z.; Zhang, C.; Wu, L.; Wang, C. A Review on Leaching of Spent Lithium Battery Cathode Materials Adopting Deep Eutectic Solvents. Chem. Open 2025, 14, e202400258. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Zeng, W.; Wang, X.; Wang, J.; Li, D.; Mu, S. Recycling of Waste Cathode Materials for Lithium-Ion Batteries by Deep Eutectic Solvents. ChemSusChem 2025, 18, 2500541. [Google Scholar] [CrossRef]
- Guo, M.; Deng, R.; Gao, M.; Xu, C.; Zhang, Q. Sustainable Recovery of Metals from E-Waste Using Deep Eutectic Solvents: Advances, Challenges, and Perspectives. Curr. Opin. Green Sustain. Chem. 2024, 47, 100913. [Google Scholar] [CrossRef]
- Zhu, A.; Bian, X.; Han, W.; Cao, D.; Wen, Y.; Zhu, K.; Wang, S. The Application of Deep Eutectic Solvents in Lithium-Ion Battery Recycling: A Comprehensive Review. Resour. Conserv. Recycl. 2023, 188, 106690. [Google Scholar] [CrossRef]
- Fan, Y.; Kong, Y.; Jiang, P.; Zhang, G.; Cong, J.; Shi, X.; Liu, Y.; Zhang, P.; Zhang, R.; Huang, Y. Development and Challenges of Deep Eutectic Solvents for Cathode Recycling of End-of-Life Lithium-Ion Batteries. Chem. Eng. J. 2023, 463, 142278. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Z.; Dutta, S.; Liu, K.; Labianca, C.; Clark, J.H.; Zimmerman, J.B.; Tsang, D.C.W. Integrated Assessment of Deep Eutectic Solvents Questions Solvometallurgy as a Sustainable Recycling Approach for Lithium-Ion Batteries. One Earth 2023, 6, 1400–1413. [Google Scholar] [CrossRef]
- Khalid, H.M.; Santos, R.M. Deep Eutectic Solvents and Ionic Liquids in Hydrometallurgical Recovery of Metals—A Review of Recent Advances and Challenges. Hydrometallurgy 2025, 238, 106571. [Google Scholar] [CrossRef]
- Deng, H.; Wang, B.; Xu, J.; Yang, G.; Shi, Z.; Zhu, H.; He, W.; Li, G. A Comprehensive Review of Whole Process Typical Hydrometallurgical Technologies for Recycling Waste Lithium-Ion Batteries. Sep. Purif. Technol. 2025, 363, 132234. [Google Scholar] [CrossRef]
- Murdock, B.E.; Toghill, K.E.; Tapia-Ruiz, N. A Perspective on the Sustainability of Cathode Materials Used in Lithium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2102028. [Google Scholar] [CrossRef]
- Gratz, E.; Sa, Q.; Apelian, D.; Wang, Y. A Closed Loop Process for Recycling Spent Lithium Ion Batteries. J. Power Sources 2014, 262, 255–262. [Google Scholar] [CrossRef]
- Inman, G.; Nlebedim, I.C.; Prodius, D. Application of Ionic Liquids for the Recycling and Recovery of Technologically Critical and Valuable Metals. Energies 2022, 15, 628. [Google Scholar] [CrossRef]
- Mishra, G.K.; Gautam, M.; Bhawana, K.; Ghosh, J.; Mitra, S. High Energy Density Lithium-Ion Pouch Cell with Modified High Voltage Lithium Cobalt Oxide Cathode and Graphite Anode: Prototype Stabilization, Electrochemical and Thermal Study. J. Power Sources 2023, 580, 233395. [Google Scholar] [CrossRef]
- Meshram, P.; Jaiswal, R.V.; Abhilash; Baiju, C.; Gardas, R.L. An Emerging Trend of Ionic Liquids in the Separation of Critical Metals from Spent Lithium and Nickel Based Batteries. J. Mol. Liq. 2024, 400, 124594. [Google Scholar] [CrossRef]
- Li, X.; Benstead, M.; Peeters, N.; Binnemans, K. Recycling of Metals from LiFePO4 Battery Cathode Material by Using Ionic Liquid Based-Aqueous Biphasic Systems. RSC Adv. 2024, 14, 9262–9272. [Google Scholar] [CrossRef]
- Ria, A.; Dini, P. A Compact Overview on Li-Ion Batteries Characteristics and Battery Management Systems Integration for Automotive Applications. Energies 2024, 17, 5992. [Google Scholar] [CrossRef]
- Yi, T.F.; Zhu, Y.R.; Zhu, X.D.; Shu, J.; Yue, C.B.; Zhou, A.N. A Review of Recent Developments in the Surface Modification of LiMn2O4 as Cathode Material of Power Lithium-Ion Battery. Ionics 2009, 15, 779–784. [Google Scholar] [CrossRef]
- Kim, S.; Bang, J.; Yoo, J.; Shin, Y.; Bae, J.; Jeong, J.; Kim, K.; Dong, P.; Kwon, K. A Comprehensive Review on the Pretreatment Process in Lithium-Ion Battery Recycling. J. Clean. Prod. 2021, 294, 126329. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Zhang, G. Summary of Pretreatment of Waste Lithium-Ion Batteries and Recycling of Valuable Metal Materials: A Review. Separations 2024, 11, 196. [Google Scholar] [CrossRef]
- Zhang, T.; He, Y.; Ge, L.; Fu, R.; Zhang, X.; Huang, Y. Characteristics of Wet and Dry Crushing Methods in the Recycling Process of Spent Lithium-Ion Batteries. J. Power Sources 2013, 240, 766–771. [Google Scholar] [CrossRef]
- Li, J.; Shi, P.; Wang, Z.; Chen, Y.; Chang, C.C. A Combined Recovery Process of Metals in Spent Lithium-Ion Batteries. Chemosphere 2009, 77, 1132–1136. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Huang, Z.; Makuza, B.; Guo, X.; Tian, Q. Pretreatment Options for the Recycling of Spent Lithium-Ion Batteries: A Comprehensive Review. Miner. Eng. 2021, 173, 107218. [Google Scholar] [CrossRef]
- Shi, M.; Ren, Y.; Cao, J.; Kuang, Z.; Zhuo, X.; Xie, H. Current Situation and Development Prospects of Discharge Pretreatment during Recycling of Lithium-Ion Batteries: A Review. Batter. Supercaps 2024, 7, e202300477. [Google Scholar] [CrossRef]
- Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J.M.; Colledani, M. Lithium-Ion Batteries towards Circular Economy: A Literature Review of Opportunities and Issues of Recycling Treatments. J. Environ. Manag. 2020, 264, 110500. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, L.; Shen, L.; Ran, J.J.; Zhong, H.; Zhu, Y.R.; Chen, H. Recent Advancements in Hydrometallurgical Recycling Technologies of Spent Lithium-Ion Battery Cathode Materials. Rare Met. 2024, 43, 879–899. [Google Scholar] [CrossRef]
- Mušović, J.; Tekić, D.; Marić, S.; Jocić, A.; Stanković, D.; Dimitrijević, A. Sustainable Recovery of Cobalt and Lithium from Lithium-Ion Battery Cathode Material by Combining Sulfate Leachates and Aqueous Biphasic Systems Based on Tetrabutylphosphonium-Ionic Liquids. Sep. Purif. Technol. 2024, 348, 127707. [Google Scholar] [CrossRef]
- Huang, T.; Song, D.; Liu, L.; Zhang, S. Cobalt Recovery from the Stripping Solution of Spent Lithium-Ion Battery by a Three-Dimensional Microbial Fuel Cell. Sep. Purif. Technol. 2019, 215, 51–61. [Google Scholar] [CrossRef]
- Takacova, Z.; Havlik, T.; Kukurugya, F.; Orac, D. Cobalt and Lithium Recovery from Active Mass of Spent Li-Ion Batteries: Theoretical and Experimental Approach. Hydrometallurgy 2016, 163, 9–17. [Google Scholar] [CrossRef]
- Joulié, M.; Laucournet, R.; Billy, E. Hydrometallurgical Process for the Recovery of High Value Metals from Spent Lithium Nickel Cobalt Aluminum Oxide Based Lithium-Ion Batteries. J. Power Sources 2014, 247, 551–555. [Google Scholar] [CrossRef]
- Jung, Y.; Yoo, B.; Park, S.; Kim, Y.; Son, S. Study on Roasting for Selective Lithium Leaching of Cathode Active Materials from Spent Lithium-Ion Batteries. Metals 2021, 11, 1336. [Google Scholar] [CrossRef]
- Guan, J.; Li, Y.; Guo, Y.; Su, R.; Gao, G.; Song, H.; Yuan, H.; Liang, B.; Guo, Z. Mechanochemical Process Enhanced Cobalt and Lithium Recycling from Wasted Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2017, 5, 1026–1032. [Google Scholar] [CrossRef]
- Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T. Crystal and Electronic Structures of Superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1). J. Power Sources 2003, 119–121, 644–648. [Google Scholar] [CrossRef]
- Zhuang, L.; Sun, C.; Zhou, T.; Li, H.; Dai, A. Recovery of Valuable Metals from LiNi0.5Co0.2Mn0.3O2 Cathode Materials of Spent Li-Ion Batteries Using Mild Mixed Acid as Leachant. Waste Manag. 2019, 85, 175–185. [Google Scholar] [CrossRef]
- Lv, L.; Zhou, S.; Liu, C.; Sun, Y.; Zhang, J.; Bu, C.; Meng, J.; Huang, Y. Recycling and Reuse of Spent LIBs: Technological Advances and Future Directions. Molecules 2024, 29, 3161. [Google Scholar] [CrossRef]
- Li, H.; Xing, S.; Liu, Y.; Li, F.; Guo, H.; Kuang, G. Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System. ACS Sustain. Chem. Eng. 2017, 5, 8017–8024. [Google Scholar] [CrossRef]
- Barbosa de Mattos, D.F.; Duda, S.; Petranikova, M. Recycling of Lithium Iron Phosphate (LiFePO4) Batteries from the End Product Quality Perspective. Batteries 2025, 11, 33. [Google Scholar] [CrossRef]
- Liu, T.; Dai, A.; Lu, J.; Yuan, Y.; Xiao, Y.; Yu, L.; Li, M.; Gim, J.; Ma, L.; Liu, J.; et al. Correlation between Manganese Dissolution and Dynamic Phase Stability in Spinel-Based Lithium-Ion Battery. Nat. Commun. 2019, 10, 4721. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, L.L.; Jarvis, A.; Madge, R.; Driscoll, E.H.; Price, J.M.; Sommerville, R.; Tontini, F.S.; Bahri, M.; Miah, M.; Mehdi, B.L.; et al. Phase-Selective Recovery and Regeneration of End-of-Life Electric Vehicle Blended Cathodes via Selective Leaching and Direct Recycling. Joule 2024, 8, 2735–2754. [Google Scholar] [CrossRef]
- Jiang, Y.; Peng, C.; Chen, T.; Zhou, K.; Chen, W. Aluminum Removal from LiFePO4/C Leachates and Sequential Recovery of Battery-Grade FePO4 and Li2CO3. Waste Manag. 2025, 206, 115066. [Google Scholar] [CrossRef]
- Yu, J.; Ma, B.; Qiu, Z.; Wang, C.; Chen, Y. Separation and Recovery of Valuable Metals from Ammonia Leaching Solution of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2023, 11, 9738–9750. [Google Scholar] [CrossRef]
- Ku, H.; Jung, Y.; Jo, M.; Park, S.; Kim, S.; Yang, D.; Rhee, K.; An, E.M.; Sohn, J.; Kwon, K. Recycling of Spent Lithium-Ion Battery Cathode Materials by Ammoniacal Leaching. J. Hazard. Mater. 2016, 313, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Gerold, E.; Schinnerl, C.; Antrekowitsch, H. Critical Evaluation of the Potential of Organic Acids for the Environmentally Friendly Recycling of Spent Lithium-Ion Batteries. Recycling 2022, 7, 4. [Google Scholar] [CrossRef]
- Schmitz, D.; Prasetyo, H.; Birich, A.; Yeetsorn, R.; Friedrich, B. Co-Precipitation of Metal Oxalates from Organic Leach Solution Derived from Spent Lithium-Ion Batteries (LIBs). Metals 2024, 14, 80. [Google Scholar] [CrossRef]
- Sahu, S.; Pati, S.; Devi, N. A Detailed Kinetic Analysis of the Environmentally Friendly Leaching of Spent Lithium-Ion Batteries Using Monocarboxylic Acid. Metals 2023, 13, 947. [Google Scholar] [CrossRef]
- Bruno, M.; Francia, C.; Fiore, S. Selective Leaching for the Recycling of Lithium, Iron, and Phosphorous from Lithium-Ion Battery Cathodes’ Production Scraps. Batteries 2024, 10, 415. [Google Scholar] [CrossRef]
- He, L.P.; Sun, S.Y.; Mu, Y.Y.; Song, X.F.; Yu, J.G. Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent Lithium-Ion Batteries Using l -Tartaric Acid as a Leachant. ACS Sustain. Chem. Eng. 2017, 5, 714–721. [Google Scholar] [CrossRef]
- Li, L.; Bian, Y.; Zhang, X.; Guan, Y.; Fan, E.; Wu, F.; Chen, R. Process for Recycling Mixed-Cathode Materials from Spent Lithium-Ion Batteries and Kinetics of Leaching. Waste Manag. 2018, 71, 362–371. [Google Scholar] [CrossRef]
- Davis, K.; Demopoulos, G.P. Hydrometallurgical Recycling Technologies for NMC Li-Ion Battery Cathodes: Current Industrial Practice and New R&D Trends. RSC Sustain. 2023, 1, 1932–1951. [Google Scholar]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Plechkova, N.V.; Seddon, K.R. Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef]
- Holbrey, J.D.; Seddon, K.R. Ionic Liquids. Clean Technol. Environ. Policy 1999, 1, 223–236. [Google Scholar] [CrossRef]
- Chatel, G.; Pereira, J.F.B.; Debbeti, V.; Wang, H.; Rogers, R.D. Mixing Ionic Liquids-“simple Mixtures” or “Double Salts”? Green Chem. 2014, 16, 2051–2083. [Google Scholar] [CrossRef]
- Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room Temperature Ionic Liquids and Their Mixtures—A Review. Fluid Phase Equilib. 2004, 219, 93–98. [Google Scholar] [CrossRef]
- Janssen, C.H.C.; Macías-Ruvalcaba, N.A.; Aguilar-Martínez, M.; Kobrak, M.N. Metal Extraction to Ionic Liquids: The Relationship between Structure, Mechanism and Application. Int. Rev. Phys. Chem. 2015, 34, 591–622. [Google Scholar] [CrossRef]
- Yudaev, P.A.; Chistyakov, E.M. Ionic Liquids as Components of Systems for Metal Extraction. ChemEngineering 2022, 6, 6. [Google Scholar] [CrossRef]
- Makanyire, T.; Sanchez-Segado, S.; Jha, A. Separation and Recovery of Critical Metal Ions Using Ionic Liquids. Adv. Manuf. 2016, 4, 33–46. [Google Scholar] [CrossRef]
- Xu, L.; Chen, C.; Fu, M.L. Separation of Cobalt and Lithium from Spent Lithium-Ion Battery Leach Liquors by Ionic Liquid Extraction Using Cyphos IL-101. Hydrometallurgy 2020, 197, 105439. [Google Scholar] [CrossRef]
- Dhiman, S.; Gupta, B. Partition Studies on Cobalt and Recycling of Valuable Metals from Waste Li-Ion Batteries via Solvent Extraction and Chemical Precipitation. J. Clean. Prod. 2019, 225, 820–832. [Google Scholar] [CrossRef]
- Ilyas, S.; Ranjan Srivastava, R.; Singh, V.K.; Chi, R.; Kim, H. Recovery of Critical Metals from Spent Li-Ion Batteries: Sequential Leaching, Precipitation, and Cobalt–Nickel Separation Using Cyphos IL104. Waste Manag. 2022, 154, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, A.; Devi, N. Separation of Critical Metals Using Trihexyl(Tetradecyl) Phosphonium Thiocyanate from Spent Lithium-Ion Battery. Trans. Indian Inst. Met. 2023, 77, 119–125. [Google Scholar] [CrossRef]
- Parmentier, D.; Vander Hoogerstraete, T.; Metz, S.J.; Binnemans, K.; Kroon, M.C. Selective Extraction of Metals from Chloride Solutions with the Tetraoctylphosphonium Oleate Ionic Liquid. Ind. Eng. Chem. Res. 2015, 54, 5149–5158. [Google Scholar] [CrossRef]
- Cai, C.; Hanada, T.; Fajar, A.T.N.; Goto, M. Novel Ionic Liquid-Based Aqueous Biphasic System with Amino Acids for Critical Metal Recovery from Lithium-Ion Batteries. Ind. Eng. Chem. Res. 2022, 61, 5306–5313. [Google Scholar] [CrossRef]
- Cai, C.; Fajar, A.T.N.; Hanada, T.; Wakabayashi, R.; Goto, M. Amino Acid Leaching of Critical Metals from Spent Lithium-Ion Batteries Followed by Selective Recovery of Cobalt Using Aqueous Biphasic System. ACS Omega 2022, 8, 3198–3206. [Google Scholar] [CrossRef] [PubMed]
- Gras, M.; Papaiconomou, N.; Schaeffer, N.; Chainet, E.; Tedjar, F.; Coutinho, J.A.P.; Billard, I. Ionic-Liquid-Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions. Angew. Chemie Int. Ed. 2018, 57, 1563–1566. [Google Scholar] [CrossRef]
- Schaeffer, N.; Gras, M.; Passos, H.; Mogilireddy, V.; Mendonça, C.M.N.; Pereira, E.; Chainet, E.; Billard, I.; Coutinho, J.A.P.; Papaiconomou, N. Synergistic Aqueous Biphasic Systems: A New Paradigm for the “One-Pot” Hydrometallurgical Recovery of Critical Metals. ACS Sustain. Chem. Eng. 2019, 7, 1769–1777. [Google Scholar] [CrossRef]
- Onghena, B.; Opsomer, T.; Binnemans, K. Separation of Cobalt and Nickel Using a Thermomorphic Ionic-Liquid-Based Aqueous Biphasic System. Chem. Commun. 2015, 51, 15932–15935. [Google Scholar] [CrossRef]
- Barrueto, Y.; Hernández, P.; Jiménez, Y.; Morales, J. Leaching of Metals from Printed Circuit Boards Using Ionic Liquids. J. Mater. Cycles Waste Manag. 2021, 23, 2028–2036. [Google Scholar] [CrossRef]
- Barrueto, Y.; Hernández, P.; Jiménez, Y.P.; Morales, J. Properties and Application of Ionic Liquids in Leaching Base/Precious Metals from e-Waste. A Review. Hydrometallurgy 2022, 212, 105895. [Google Scholar] [CrossRef]
- Chen, M.; Huang, J.; Ogunseitan, O.A.; Zhu, N.; Wang, Y. Comparative Study on Copper Leaching from Waste Printed Circuit Boards by Typical Ionic Liquid Acids. Waste Manag. 2015, 41, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, S.; Huang, J.; Chen, H. Lead during the Leaching Process of Copper from Waste Printed Circuit Boards by Five Typical Ionic Liquid Acids. J. Clean. Prod. 2015, 95, 142–147. [Google Scholar] [CrossRef]
- Huang, J.; Chen, M.; Chen, H.; Chen, S.; Sun, Q. Leaching Behavior of Copper from Waste Printed Circuit Boards with Brønsted Acidic Ionic Liquid. Waste Manag. 2014, 34, 483–488. [Google Scholar] [CrossRef]
- Zhang, D.J.; Dong, L.; Li, Y.T.; Wu, Y.; Ma, Y.X.; Yang, B. Copper Leaching from Waste Printed Circuit Boards Using Typical Acidic Ionic Liquids Recovery of E-Wastes’ Surplus Value. Waste Manag. 2018, 78, 191–197. [Google Scholar] [CrossRef]
- Hao, J.; Wang, X.; Wang, Y.; Guo, F.; Wu, Y. Optimization, Kinetic Studies of Tin Leaching from Waste Printed Circuit Boards and Selective Tin Recovery from Its Pregnant Solution. Metals 2022, 12, 954. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, M.; Dong, Q.; Zou, X.; Yu, J.; Guo, S.; Yan, F. Green and Sustainable Recycling of Lithium-Ion Batteries via an Ionic Liquid-Driven Cathode Reduction Method. Energy Environ. Sci. 2024, 17, 4238–4247. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Ferreira, C.; Sarraguça, M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals 2024, 17, 124. [Google Scholar] [CrossRef]
- Yang, F.; Zheng, Q.; Tan, H.; Wang, X. Insight into the Role of Hydrogen Bond Donor in Deep Eutectic Solvents. J. Mol. Liq. 2024, 399, 124332. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Šima, J. Use of Deep Eutectic Solvents in Polymer Chemistry–A Review. Molecules 2019, 24, 3978. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; McKenzie, K.J.; Obi, S.U. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. J. Chem. Eng. Data 2006, 51, 1280–1282. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Ionic Liquids and Deep-Eutectic Solvents in Extractive Metallurgy: Mismatch Between Academic Research and Industrial Applicability. J. Sustain. Metall. 2023, 9, 423–438. [Google Scholar] [CrossRef]
- Peeters, N.; Binnemans, K.; Riaño, S. Solvometallurgical Recovery of Cobalt from Lithium-Ion Battery Cathode Materials Using Deep-Eutectic Solvents. Green Chem. 2020, 22, 4210–4221. [Google Scholar] [CrossRef]
- Wang, C.; Ai, T.; Gao, X.; Lu, J.; Liu, J.; Zhu, W.; Luo, Y. Effective Recycling of Critical Metals from LiCoO2 Batteries by Hydrated Deep Eutectic Solvents: Performance, Kinetic and Mechanism. J. Water Process Eng. 2024, 59, 105088. [Google Scholar] [CrossRef]
- Zhou, Z.; Lei, F.; Dai, M.; Zheng, F.; Qiao, Y.; Chang, J.; Bai, H.; Wang, S.; Yang, X. Closed-Loop Cathode Recycling of Spent Lithium Batteries via Green Deep Eutectic Solvents and Oxalic Acid. J. Hazard. Mater. 2025, 496, 139224. [Google Scholar] [CrossRef]
- Xu, Z.; Shao, H.; Zhao, Q.; Liang, Z. Use of Microwave-Assisted Deep Eutectic Solvents to Recycle Lithium Manganese Oxide from Li-Ion Batteries. Jom 2021, 73, 2104–2110. [Google Scholar] [CrossRef]
- Singh, J.K.J.; Rana, M.; Khan, M.I.H.; Jo, Y.T.; Park, J.H. Choline Chloride-Lactic Acid-Ascorbic Acid (ChCl-LA-AA) Based Green Deep Eutectic Solvent for Leaching LiMn2O4 Cathode Material of Spent Li-Ion Batteries. Hydrometallurgy 2025, 236, 106529. [Google Scholar] [CrossRef]
- Cao, C.; Yuan, Z.; Liu, H.; Fei, X.; She, Q. Lactic-Acid-Based Deep Eutectic Solvent for Sustainable Recovery of Critical Metals from Spent Lithium-Ion Batteries under Mild Conditions. J. Clean. Prod. 2025, 505, 145460. [Google Scholar] [CrossRef]
- Morina, R.; Callegari, D.; Merli, D.; Alberti, G.; Mustarelli, P.; Quartarone, E. Cathode Active Material Recycling from Spent Lithium Batteries: A Green (Circular) Approach Based on Deep Eutectic Solvents. ChemSusChem 2022, 15, e202102080. [Google Scholar] [CrossRef]
- Ma, C.; Svärd, M.; Forsberg, K. Recycling Cathode Material LiCo1/3Ni1/3Mn1/3O2 by Leaching with a Deep Eutectic Solvent and Metal Recovery with Antisolvent Crystallization. Resour. Conserv. Recycl. 2022, 186, 106579. [Google Scholar] [CrossRef]
- Tran, M.K.; Rodrigues, M.T.F.; Kato, K.; Babu, G.; Ajayan, P.M. Deep Eutectic Solvents for Cathode Recycling of Li-Ion Batteries. Nat. Energy 2019, 4, 339–345. [Google Scholar] [CrossRef]
- Peeters, N.; Janssens, K.; de Vos, D.; Binnemans, K.; Riaño, S. Choline Chloride-Ethylene Glycol Based Deep-Eutectic Solvents as Lixiviants for Cobalt Recovery from Lithium-Ion Battery Cathode Materials: Are These Solvents Really Green in High-Temperature Processes? Green Chem. 2022, 24, 6685–6695. [Google Scholar] [CrossRef]
- Alhashim, S.H.; Bhattacharyya, S.; Tromer, R.; Kabbani, A.; Babu, G.; Oliveira, E.F.; Galvao, D.S.; Ajayan, P.M. Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2023, 11, 6914–6922. [Google Scholar] [CrossRef]
- Wang, K.; Hu, T.; Shi, P.; Min, Y.; Wu, J.; Xu, Q. Efficient Recovery of Value Metals from Spent Lithium-Ion Batteries by Combining Deep Eutectic Solvents and Coextraction. ACS Sustain. Chem. Eng. 2022, 10, 1149–1159. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Lu, Z.; Xu, Z. A Novel Method for Screening Deep Eutectic Solvent to Recycle the Cathode of Li-Ion Batteries. Green Chem. 2020, 22, 4473–4482. [Google Scholar] [CrossRef]
- Roldán-Ruiz, M.J.; Ferrer, M.L.; Gutiérrez, M.C.; Del Monte, F. Highly Efficient P-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Cathode Recycling of Li-Ion Batteries. ACS Sustain. Chem. Eng. 2020, 8, 5437–5445. [Google Scholar] [CrossRef]
- Lu, B.; Du, R.; Wang, G.; Wang, Y.; Dong, S.; Zhou, D.; Wang, S.; Li, C. High-Efficiency Leaching of Valuable Metals from Waste Li-Ion Batteries Using Deep Eutectic Solvents. Environ. Res. 2022, 212, 113286. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; He, J.; Li, J.; Li, J.; Ding, Z.; Ren, Y. Efficient Recovery and Regeneration Method of Spent LiNi0.5Co0.2Mn0.3O2 Cathode Materials Based on Novel Deep Eutectic Solvent Design. J. Power Sources 2024, 610, 234731. [Google Scholar] [CrossRef]
- Ketegenov, T.; Kamunur, K.; Mussapyrova, L.; Batkal, A.; Nadirov, R. Enhanced Recovery of Lithium and Cobalt from Spent Lithium-Ion Batteries Using Ultrasound-Assisted Deep Eutectic Solvent Leaching. Metals 2024, 14, 1052. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Liu, Z.; Zhou, L.; Li, Z.; Jiang, J.; Wei, L.; Ren, P.; Mu, T. Efficient Dissolution of Lithium-Ion Batteries Cathode LiCoO2 by Polyethylene Glycol-Based Deep Eutectic Solvents at Mild Temperature. ACS Sustain. Chem. Eng. 2020, 8, 11713–11720. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Wang, Y.; Tian, Y.; Li, Y.; Feng, M.; Guo, Y.; Han, J.; Mu, T. Efficient Recovery of Valuable Metals from Lithium-Ion Battery Cathodes Using Phytic Acid-Based Deep Eutectic Solvents at a Mild Temperature. Energy Fuels 2023, 37, 5361–5369. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Bai, Y.; Feng, M.; Zhou, F.; Lu, Y.; Guo, Y.; Zhang, Y.; Mu, T. Mild and Efficient Recovery of Lithium-Ion Battery Cathode Material by Deep Eutectic Solvents with Natural and Cheap Components. Green Chem. Eng. 2023, 4, 303–311. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Zhang, W.; Ren, S.; Hou, Y.; Wu, W. Recyclable Deep Eutectic Solvents for Recycling LiCoO2 from Spent Lithium-Ion Batteries with High Selectivity. Sep. Purif. Technol. 2024, 330, 125498. [Google Scholar] [CrossRef]
- Sarma, S.; Sahu, T.K.; Sharma, R.K.; Prasun, A.; Vishwakarma, R.; Kumar Sarma, T. Polyphenol Derived Natural Deep Eutectic Solvents for High Efficiency Cathode Recycling of Li-Ion Batteries. ACS Sustain. Resour. Manag. 2025, 2, 190–200. [Google Scholar] [CrossRef]
- He, X.; Wen, Y.; Wang, X.; Cui, Y.; Li, L.; Ma, H. Leaching NCM Cathode Materials of Spent Lithium-Ion Batteries with Phosphate Acid-Based Deep Eutectic Solvent. Waste Manag. 2023, 157, 8–16. [Google Scholar] [CrossRef]
- Carreira, A.R.F.; Nogueira, A.; Crema, A.P.S.; Passos, H.; Schaeffer, N.; Coutinho, J.A.P. Super Concentrated HCl in a Deep Eutectic Solvent as Media for the Integrated Leaching and Separation of Metals from End-of-Life Lithium-Ion Batteries. Chem. Eng. J. 2023, 475, 146374. [Google Scholar] [CrossRef]
- Hanada, T.; Goto, M. Cathode Recycling of Lithium-Ion Batteries Based on Reusable Hydrophobic Eutectic Solvents. Green Chem. 2022, 24, 5107–5115. [Google Scholar] [CrossRef]
- Liu, S.; Chung, W.; Foster, R.I.; Choi, S. The Effect of Water Content on Cathode Materials Leaching Using Deep Eutectic Solvent. J. Mol. Liq. 2025, 426, 127483. [Google Scholar] [CrossRef]
- Cheng, M.; Hua, Y.; Zhang, Q.; Li, Q.; Li, H.; Wang, D.; Wang, X.; Zhao, Y.; Ru, J.; Li, B. H2O-balance-regulated cation–anion competitive coordination for selective elements extraction from spent lithium-ion batteries. Escience 2024, 4, 100275. [Google Scholar] [CrossRef]
- Hammond, O.S.; Bowron, D.T.; Edler, K.J. The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew. Chem. Int. Ed. 2017, 56, 9782–9785. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New Horizons in the Extraction of Bioactive Compounds Using Deep Eutectic Solvents: A Review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef]
- Guimarães, L.F.; Botelho Junior, A.B.; Espinosa, D.C.R. Sulfuric Acid Leaching of Metals from Waste Li-Ion Batteries without Using Reducing Agent. Miner. Eng. 2022, 183, 107597. [Google Scholar] [CrossRef]
- Dobó, Z.; Dinh, T.; Kulcsár, T. A Review on Recycling of Spent Lithium-Ion Batteries. Energy Rep. 2023, 9, 6362–6395. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Yang, P.; He, Y.; Wang, S.; Zhao, P.; Wang, H. Recovery of Valuable Metals from Spent LiNi0.8Co0.1Mn0.1O2 Cathode Materials Using Compound Leaching Agents of Sulfuric Acid and Oxalic Acid. Sustainability 2022, 14, 14169. [Google Scholar] [CrossRef]
- Quijada-Maldonado, E.; Olea, F.; Sepúlveda, R.; Castillo, J.; Cabezas, R.; Merlet, G.; Romero, J. Possibilities and Challenges for Ionic Liquids in Hydrometallurgy. Sep. Purif. Technol. 2020, 251, 117289. [Google Scholar] [CrossRef]
- Gujjala, L.K.S.; Kundu, D.; Dutta, D.; Kumar, A.; Bal, M.; Kumar, A.; Singh, E.; Mishra, R.; Kumar, S.; Vo, D.V.N. Advances in Ionic Liquids: Synthesis, Environmental Remediation and Reusability. J. Mol. Liq. 2024, 396, 123896. [Google Scholar] [CrossRef]
- Siriwardana, A.I. Industrial Applications of Ionic Liquids; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783319151328. [Google Scholar]
- Gonçalves, A.R.P.; Paredes, X.; Cristino, A.F.; Santos, F.J.V.; Queirós, C.S.G.P. Ionic Liquids—A Review of Their Toxicity to Living Organisms. Int. J. Mol. Sci. 2021, 22, 5612. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M. Review on Hydrometallurgical Recovery of Metals with Deep Eutectic Solvents. Sustain. Chem. 2020, 1, 238–255. [Google Scholar] [CrossRef]
- Martín, M.I.; García-Díaz, I.; López, F.A. Properties and Perspective of Using Deep Eutectic Solvents for Hydrometallurgy Metal Recovery. Miner. Eng. 2023, 203, 108306. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, B.S. Toxicity Test Profile for Deep Eutectic Solvents: A Detailed Review and Future Prospects. Chemosphere 2024, 350, 141097. [Google Scholar] [CrossRef] [PubMed]
- Toleugazykyzy, A.; Bekbayev, K.; Bolkenov, B.; Alwazeer, D. Comprehensive Review of Recent Trends in the Use of Deep Eutectic Solvents for the Valorization of Secondary Lignocellulosic Biomass. Sustainability 2025, 17, 9492. [Google Scholar] [CrossRef]
- Khoo, Y.S.; Tjong, T.C.; Chew, J.W.; Hu, X. Techniques for Recovery and Recycling of Ionic Liquids: A Review. Sci. Total Environ. 2024, 922, 171238. [Google Scholar] [CrossRef] [PubMed]









| Cathode Type | Name | Crystal Structure | Safety | Energy Density | Power Capability | Cycle Life | Overall Performance | Cost Efficiency | Typical Applications |
|---|---|---|---|---|---|---|---|---|---|
| LCO | Lithium cobalt oxide | Layered | Moderate | Very high | Good | Good | Very good | Low | Portable electronics |
| LFP | Lithium iron phosphate | Olivine | Excellent | Good | Very good | Very good | Very good | High | Electric buses, bikes |
| LMO | Lithium manganese oxide | Spinel | Very good | Good | Very good | Good | Good | High | Power tools, hybrids |
| NCA | Lithium nickel cobalt aluminum oxide | Layered | Good | Excellent | Very good | Very good | Very good | Moderate | Long-range EVs |
| NMC | Lithium nickel manganese cobalt oxide | Layered | Good | Excellent | Good | Very good | Very good | Moderate | EVs, energy storage |
| Solvent System | Cathode | Conditions (T, Time, S/L) | Recovery (%) | Ref. |
|---|---|---|---|---|
| IL systems | ||||
| 1-(2,3-dihydroxypropyl)-3-methylimidazolium Cl | LCO | Mild, no reductant, S/L ratio = ≤30 g L−1 | Li 100%, Co 99.6% | [111] |
| [P4444][HSO4] (20 wt% in H2SO4) | NMC | Room Temperature, time = 45 min, S/L ratio = 200 g L−1 | Li, Co, Ni, Mn > 98% | [30] |
| DES systems | ||||
| ChCl:CA (+35 wt% water) | LCO | T = 40 °C, time = 60 min, S/L ratio = 20 g L−1 | Co > 98% | [118] |
| Hydrated ChCl:CA (≈25.7% H2O) | LCO | T = 120 °C, time = 4 h, S/L ratio = 50 g L−1 | Li 100%, Co 97.6% | [119] |
| Hydrated ChCl:CA (38.16 % water) | NMC | T = 120 °C, time = 3.5 h, and S/L ratio = 21 g L−1 | Li 97.8%, Co 99.6%, Ni 99.9%, Mn 99.6% | [120] |
| ChCl/oxalic acid | LMO | T = 75 °C, time = 15 min, mi-crowave | Li ≈ 99%, Mn ≈ 96% | [121] |
| ChCl/lactic acid (+ascorbic acid) | LMO | T = 90 °C, time = 1 h, S/L ratio = 20 g L−1 | Li > 99%, Mn > 99% | [122] |
| ChCl/lactic acid (1:2) | NMC | T = 50 °C, time = 48 h, S/L ratio = 90 g L−1 | Li 93%, Mn~60%, Ni~60%, Co~60%, | [123] |
| ChCl/lactic acid | LMO LNMO LNCO | T= 70 °C, time = 10 h T= 100 °C, time = 5 h T= 105 °C, time = 5 h, S/L ratio = 16 g L−1 | Li 100%, Mn 90% (Li 75%, Mn 100%, Ni 95% | [124] |
| ChCl/tartaric acid | NMC LCO | T = 70 °C, time = 12 h, S/L ratio = 50 g L−1 T = 80 °C; time = 24 h, S/L ratio = 50 g L−1 | Li 96.0%; Co 97.1% Ni 98.0% Mn 96.7% Li 100%. Co 100% | [125] |
| ChCl/ethylene glycol | LCO | T = 220 °C, time = 24 h | Co 94.1%, Li 89.8% | [126] |
| ChCl/ethylene glycol | NMC | 91.63% Li, 92.52% Co, 94.92% Ni, and 95.47% Mn | [129] | |
| ChCl/urea | LCO | T = 180 °C, time = 12 h | Li ≈ 95%, Co ≈ 95% | [130] |
| PTSA:ChCl | LCO | T = 90 °C, time = 15 min | Co ≈ 94% | [131] |
| Malonic acid/ChCl | LCO | 100 °C | Co 98.6%, Li 98.8% | [132] |
| Guanidine hydrochlo-ride/formic acid | NMC | T = 140 °C, time = 80 min, S/L ratio = 50 g L−1 | Li 99.8%, Ni 98.9%, Co 99.5%, Mn 96.1% | [133] |
| PEG 200/thiourea | LCO | T = 160 °C, time = 24 h, S/L ratio = 50 g L−1 + ultrasound | Li 74%, Co 71% | [134] |
| PEG 200/thiourea | LCO | T = 160 °C | Co 60% | [135] |
| PEG/phytic acid | LCO | T = 80 °C, time = 24 h, S/L ratio = 50 g L−1 | Co 98.7% | [136] |
| PEG/ascorbic acid (6:1) | LCO | T = 80 °C, time = 72 h, S/L ratio = 100 g L−1 | Co 84.2% | [137] |
| Chloroacetic acid/Tet-rabutylammonium chloride (+oxalic acid) | LCO | T = 100 °C, time = 7 h, S/L ratio = 15 g L−1 | Co 100%, Li precipitated 97.8% | [136] |
| NADES (polyphe-nols:ChCl) | LCO, NCM | T = 140 °C | LCO 98%, NCM 94.5% | [139] |
| ChCl/phenilphosphinic acid | NCM | T = 100 °C, time = 80 min, S/L ratio = 90 g L−1, | Li 97.7%, Co 97.0%, Ni 96.4%, Mn 93.0% | [140] |
| Hydrophobic DES (tri-octylphosphine oxide (TOPO): decanoic acid) | NCM | T = 100 °C, time = 4 h, S/L ratio = 44 g L−1 | Co 106%, Ni 10%, Mn 99%, Cu 104% | [141] |
| HBTA/TOPO 2:1 and decanoic acid/TOPO 1:1 | LCO, NCM | T = 70 °C, time = 3 h, S/L ratio = 10 g L−1 | Li, Co > 90% | [142] |
| Criterion | DES | IL |
|---|---|---|
| Cost (raw materials/synthesis) | Low–Medium—DES typically use inexpensive, widely available precursors (e.g., choline chloride + hydrogen-bond donor), making their production cost relatively low (~5–50 EUR kg−1 for common DESs like ChCl/urea) [156]. | Medium–High—Many ILs require more complex or expensive precursors, multi-step syntheses or purification, which increases overall cost for large-scale use (~50–500 EUR kg−1 depending on IL structure, e.g., [C4mim][BF4], [TBP][DTPA]) [117]. |
| Toxicity/Environmental & Health Impact | Low → Medium (favorable)—DES are often regarded as more benign (“green solvents”) due to lower volatility, simpler composition, and in many cases better biodegradability or lower ecotoxicity (LD50 > 3000 mg/kg oral (rat) for most ChCl-based DESs High biodegradability index (OECD > 60%) [156]. | Medium → High (less favorable)—Many ILs exhibit toxicity, low biodegradability, or environmental persistence; their chemical stability and ionic nature raise concerns for toxicity and waste management (LD50 < 500 mg/kg oral (rat) for many imidazolium/phosphonium ILs) [117]. |
| Recyclability/Solvent Reuse Potential | High → Medium—DESs often enable relatively straightforward regeneration and reuse because of their simple composition and lower chemical complexity (Reusability ≥ 5 cycles with minor efficiency loss) [45]. | Medium → Low/Medium—Although ILs theoretically can be recycled and reused, practical limitations such as viscosity increase, degradation over cycles, difficulties in stripping metals, and limited long-term stability hinder robust recyclability (Stripping efficiency drops after 2–3 cycles; viscosity ↑ 20–50%) [10]. |
| Scalability/Industrial Applicability | Medium—DESs have promising scalability due to low cost and easier handling, yet challenges remain (e.g., leaching kinetics, mass-transfer limitations, viscosity, limited number of pilot-scale demonstrations) [45]. | Low → Medium—IL-based processes face significant hurdles for scaling up: high cost, regulatory/safety issues, limited industrial-scale examples, difficulties in waste handling and process integration [117]. |
| Viscosity at operating T | Lower viscosity (favorable) 20–80 mPa·s [35] | Higher viscosity (↑ recycling issues) 80–300 mPa·s [117,140] |
| Operating temperature (°C) | 80–220 [118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142] | 25–80 [30,111] |
| Leaching efficiency (%) | 70–100% (Li, Co, Ni, Mn) [118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142] | >98% (Li, Co) [30,111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mušović, J.; Jocić, A.; Dimitrijević, A. Recent Advances in Leaching of Lithium-Ion Battery Cathode Materials Using Deep Eutectic Solvents and Ionic Liquids: Efficiency, Mechanisms, and Challenges. Processes 2025, 13, 4015. https://doi.org/10.3390/pr13124015
Mušović J, Jocić A, Dimitrijević A. Recent Advances in Leaching of Lithium-Ion Battery Cathode Materials Using Deep Eutectic Solvents and Ionic Liquids: Efficiency, Mechanisms, and Challenges. Processes. 2025; 13(12):4015. https://doi.org/10.3390/pr13124015
Chicago/Turabian StyleMušović, Jasmina, Ana Jocić, and Aleksandra Dimitrijević. 2025. "Recent Advances in Leaching of Lithium-Ion Battery Cathode Materials Using Deep Eutectic Solvents and Ionic Liquids: Efficiency, Mechanisms, and Challenges" Processes 13, no. 12: 4015. https://doi.org/10.3390/pr13124015
APA StyleMušović, J., Jocić, A., & Dimitrijević, A. (2025). Recent Advances in Leaching of Lithium-Ion Battery Cathode Materials Using Deep Eutectic Solvents and Ionic Liquids: Efficiency, Mechanisms, and Challenges. Processes, 13(12), 4015. https://doi.org/10.3390/pr13124015

