Optimization of NaOH Chemical Treatment Parameters for Biomass-Based Adsorbents in Cationic Dye Removal
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Full Factorial Experimental Design
2.3. Adsorption Experiment
2.4. Characterization of the Optimized Material
2.5. Effect of Physicochemical Parameters on Methylene Blue Adsorption
2.6. Kinetic and Isotherm Studies
2.7. Thermodynamic Analysis Methods
3. Results and Discussion
3.1. Optimization of Biosorbent Treatment Conditions
3.1.1. Experimental Matrix
3.1.2. Analysis of Experimental Results
Mathematical Modeling
Model Fitting Quality and Validation of DP
Model Fitting Quality and Validation of SCG
- ❖
- Main Effects of different factors
- ❖
- Interaction effects of different factors
- ❖
- Student’s t-Test
- ❖
- Analysis of Variance (ANOVA)
- ❖
- Response Optimization
3.2. Characterization of Materials
3.2.1. Physical Characterization
Characterization by Gas Adsorption–Desorption
Characterization by Scanning Electron Microscopy (SEM)
3.2.2. Chemical Characterization
Characterization of Surface Functional Groups by FTIR Spectroscopy
| Wave Number (cm−1) | In the Bibliography | Type of Vibration |
|---|---|---|
| 3365 | 3600–3300 | O–H stretching vibrations of Hydroxyl (carboxylic acids, alcohols and phenols) and O–H stretching vibrations of cellulose, pectin, absorbed water and lignin [40,41,42] |
| 2922–2853 | 3000–2800 | Symmetric and asymmetric C–H stretching vibrations of aliphatic molecules [43] |
| 1744 | 1729 | Stretch of C=O [44] |
| 1010 | 1350–900 | C–O stretching vibrations in alcohols, phenols, acids, ethers or ester [41,42] |
pH at the Point of Zero Charge (pHpzc)
3.3. Evaluation of the MB Adsorption Performance onto SCG3
3.3.1. Effect of pH
3.3.2. Effect of Contact Time
3.3.3. Effect of Adsorbent Dosage
3.3.4. Effect of Temperature
3.4. Thermodynamic Analysis
3.5. Adsorption Kinetic Modeling
3.6. Adsorption Isotherm Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, T.; Zounemat-Kermani, M.; Scholz, M. Climate Change, Water Quality and Water-Related Challenges: A Review with Focus on Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 8518. [Google Scholar] [CrossRef]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Derbal, K.; Benalia, A.; Pizzi, A. Effect of Washing Temperature on Adsorption of Cationic Dyes by Raw Lignocellulosic Biomass. Appl. Sci. 2024, 14, 10365. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Vo, D.V.N. Critical Review on Hazardous Pollutants in Water Environment: Occurrence, Monitoring, Fate, Removal Technologies and Risk Assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef] [PubMed]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Gatica, J.M.; Vidal, H. Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue. Arab. J. Sci. Eng. 2021, 46, 325–341. [Google Scholar] [CrossRef]
- Baatache, O.; Derbal, K.; Benalia, A.; Aberkane, I.; Guizah, Q.E.; Khalfaoui, A.; Pizzi, A. Valorization of Pine Cones (Pinus Nigras) for Industrial Wastewater Treatment and Crystal Violet Removal: A Sustainable Approach Based on Bio-Coagulants and a Bio-Adsorbent. Water 2024, 16, 260. [Google Scholar] [CrossRef]
- Miyah, Y.; Lahrichi, A.; Idrissi, M.; Boujraf, S.; Taouda, H.; Zerrouq, F. Assessment of Adsorption Kinetics for Removal Potential of Crystal Violet Dye from Aqueous Solutions Using Moroccan Pyrophyllite. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 23, 20–28. [Google Scholar] [CrossRef]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Reffas, A.; Gatica, J.M.; Amrane, A. Batch Adsorption of Synthetic Dye by Maclura Pomifera, a New Eco-Friendly Waste Biomass: Experimental Studies and Modeling. Int. J. Chem. React. Eng. 2019, 17, 20180063. [Google Scholar] [CrossRef]
- Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.K.; Saint, C. Kinetic Study and Equilibrium Isotherm Analysis of Congo Red Adsorption by Clay Materials. Chem. Eng. J. 2009, 148, 354–364. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Chen, J.; Mo, L.; Wei, P.; Yuan, Q.; Fu, Y.; Liu, X. A Novel Biomass-Based NOB-Rich Porous Carbon Self-Assembled into Crosslinked 3D Layered Structures for Supercapacitors. Chem. Eng. J. 2025, 520, 165740. [Google Scholar] [CrossRef]
- Swain, J.; Samal, P.P.; Qaiyum, M.A.; Dey, B.; Dey, S. Biosorption of Crystal Violet, a Cationic Dye onto Alkali Treated Rauvolfia Tetraphylla Leaf: Kinetics, Isotherm and Thermodynamics. Water Conserv. Sci. Eng. 2024, 9, 1. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Benalia, A.; Selama, Z.; Hammoud, A.; Derbal, K.; Panico, A.; Pizzi, A. Removal of Chromium (VI) from Water Using Orange Peel as the Biosorbent: Experimental, Modeling, and Kinetic Studies on Adsorption Isotherms and Chemical Structure. Water 2024, 16, 742. [Google Scholar] [CrossRef]
- Das, S.; Samal, P.P.; Qaiyum, M.A.; Dutta, S.; Dey, B.; Dey, S. Neolamarckia Cadamba (Cadamba) Waste Pulp as a Natural and Techno-Economic Scavenger for Methylene Blue from Aqueous Solutions. Int. J. Phytoremediation 2024, 26, 208–218. [Google Scholar] [CrossRef]
- Panda, A.; Samal, P.P.; Qaiyum, M.A.; Dey, B.; Dey, S. Think before Throw: Waste Chili Stalk Powder for Facile Scavenging of Cationic Dyes from Water. Environ. Monit. Assess. 2024, 196, 118. [Google Scholar] [CrossRef]
- Mahato, R.; Qaiyum, M.A.; Samal, P.P.; Dutta, S.; Dey, B.; Dey, S. Exploring the Promising Potential of Fallen Bamboo Leaves (Bambusa bambos) for Efficient Removal of Crystal Violet from Wastewater. Int. J. Phytoremediation 2023, 25, 1042–1051. [Google Scholar] [CrossRef]
- Laggoun, Z.; Khalfaoui, A.; Benalia, A.; Ghomrani, A.F.; Bouchareb, R.; Mahfouf, A.; Pizzi, A.; Panico, A.; Derbal, K. Application of Response Surface Design for Optimization of Direct Red Dye Biosorption onto Cockleshells. Appl. Sci. 2023, 13, 12333. [Google Scholar] [CrossRef]
- Nayeem, A.; Mizi, F.; Ali, M.F.; Shariffuddin, J.H. Utilization of Cockle Shell Powder as an Adsorbent to Remove Phosphorus-Containing Wastewater. Environ. Res. 2023, 216, 114514. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, Y.; Wang, L.; Tuo, Y.; Yan, S.; Ma, J.; Zhang, X.; Shen, Y.; Guo, H.; Han, L. Experimental and DFT Insights into the Adsorption Mechanism of Methylene Blue by Alkali-Modified Corn Straw Biochar. RSC Adv. 2024, 14, 1854–1865. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bollinger, J.C.; Lima, E.C.; Mouni, L.; Salvestrini, S.; Tran, H.N. Molecular Properties of Methylene Blue, a Common Probe in Sorption and Degradation Studies: A Review. Environ. Chem. Lett. 2025, 23, 1403–1424. [Google Scholar] [CrossRef]
- Lee, Y.G.; Shin, J.; Kwak, J.; Kim, S.; Son, C.; Cho, K.H.; Chon, K. Effects of Naoh Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues. Energies 2021, 14, 1297. [Google Scholar] [CrossRef]
- Cazetta, A.L.; Vargas, A.M.M.; Nogami, E.M.; Kunita, M.H.; Guilherme, M.R.; Martins, A.C.; Silva, T.L.; Moraes, J.C.G.; Almeida, V.C. NaOH-Activated Carbon of High Surface Area Produced from Coconut Shell: Kinetics and Equilibrium Studies from the Methylene Blue Adsorption. Chem. Eng. J. 2011, 174, 117–125. [Google Scholar] [CrossRef]
- Teğin, İ.; Öc, S.; Saka, C. Adsorption of Copper (II) from Aqueous Solutions Using Adsorbent Obtained with Sodium Hydroxide Activation of Biochar Prepared by Microwave Pyrolysis. Biomass Convers. Biorefin. 2025, 15, 6805–6816. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A Review on the Influence of Chemical Modification on the Performance of Adsorbents. Resour. Environ. Sustain. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Musah, M.; Azeh, Y.; Mathew, J.; Umar, M.; Abdulhamid, Z.; Muhammad, A. Adsorption Kinetics and Isotherm Models: A Review. Caliphate J. Sci. Technol. 2022, 4, 20–26. [Google Scholar] [CrossRef]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Reffas, A.; Harizi, I.; Rouabah, F.; Amrane, A. High Efficiency of Methylene Blue Removal Using a Novel Low-Cost Acid Treated Forest Wastes, Cupressus Semperirens Cones: Experimental Results and Modeling. Part. Sci. Technol. 2019, 37, 500–509. [Google Scholar] [CrossRef]
- do Nascimento, N.N.R.; Silva, A.L.M.d.T.; Silva, W.L.; Rodrigues, M.G.F. Valorization of Coffee Agro-Industrial Residue for Biochar Production: Use as Adsorbent for Methylene Blue Removal. Desalin. Water Treat. 2024, 320, 100767. [Google Scholar] [CrossRef]
- Nitayaphat, W.; Jintakosol, T.; Engkaseth, K.; Wanrakakit, Y. Removal of Methylene Blue from Aqueous Solution by Coffee Residues. Chiang Mai J. Sci. 2015, 42, 407–416. [Google Scholar]
- Franca, A.S.; Oliveira, L.S.; Ferreira, M.E. Kinetics and Equilibrium Studies of Methylene Blue Adsorption by Spent Coffee Grounds. Desalination 2009, 249, 267–272. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Trinh, T.K.; Kang, L.S. Response Surface Methodological Approach to Optimize the Coagulation-Flocculation Process in Drinking Water Treatment. Chem. Eng. Res. Des. 2011, 89, 1126–1135. [Google Scholar] [CrossRef]
- Vivier, S. Stratégies D’Optimisation par la Méthode des Plans D’Expériences et Application aux Dispositifs Électrotechniques Modélisés par Éléments Finis. Doctoral Dissertation, Université des Sciences et Technologie de Lille-Lille I, Lille, France, 2002. [Google Scholar]
- Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A. Application of Response Surface Methodology (RSM) to Optimize Coagulation-Flocculation Treatment of Leachate Using Poly-Aluminum Chloride (PAC) and Alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef]
- Sampaio, N.A.d.S.; Caraschi, J.C.; de Miranda, F.F.; Prates, G.A.; Galli, L.C.d.L.A.; Bezerra, G.A.; Vieira, M.R. Using a Full Factorial Experiment to Optimize the Performance of an Industrial Chemical Process. Rev. Gestão Soc. Ambient. 2025, 19, e012015. [Google Scholar] [CrossRef]
- Long, Y.; Xu, J.; Shen, D.; Du, Y.; Feng, H. Effective Removal of Contaminants in Landfill Leachate Membrane Concentrates by Coagulation. Chemosphere 2017, 167, 512–519. [Google Scholar] [CrossRef]
- Gottipati, R.; Mishra, S. Process Optimization of Adsorption of Cr(VI) on Activated Carbons Prepared from Plant Precursors by a Two-Level Full Factorial Design. Chem. Eng. J. 2010, 160, 99–107. [Google Scholar] [CrossRef]
- Hegyesi, N.; Vad, R.T.; Pukánszky, B. Determination of the Specific Surface Area of Layered Silicates by Methylene Blue Adsorption: The Role of Structure, PH and Layer Charge. Appl. Clay Sci. 2017, 146, 50–55. [Google Scholar] [CrossRef]
- Kumari, P.; Sharma, P.; Srivastava, S.; Srivastava, M.M. Biosorption Studies on Shelled Moringa Oleifera Lamarck Seed Powder: Removal and Recovery of Arsenic from Aqueous System. Int. J. Miner. Process. 2006, 78, 131–139. [Google Scholar] [CrossRef]
- An, H.K.; Park, B.Y.; Kim, D.S. Crab Shell for the Removal of Heavy Metals from Aqueous Solution. Water Res. 2001, 35, 3551–3556. [Google Scholar] [CrossRef] [PubMed]
- Gnanasambandam, R.; Proctor, A. Determination of Pectin Degree of Esterification by Diffuse Reflectance Fourier Transform Infrared Spectroscopy. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Radenkovi, M. Corn Residue-Based Activated Carbon for Heavy Metal Removal: A Review of Adsorptive Performance and Properties. Processes 2025, 13, 3406. [Google Scholar] [CrossRef]
- Liang, S.; Guo, X.; Feng, N.; Tian, Q. Isotherms, Kinetics and Thermodynamic Studies of Adsorption of Cu2+ from Aqueous Solutions by Mg2+/K+ Type Orange Peel Adsorbents. J. Hazard. Mater. 2010, 174, 756–762. [Google Scholar] [CrossRef]
- Liou, T.H. Development of Mesoporous Structure and High Adsorption Capacity of Biomass-Based Activated Carbon by Phosphoric Acid and Zinc Chloride Activation. Chem. Eng. J. 2010, 158, 129–142. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, H.; Yang, X.; Lei, T.; Guo, Q. Methane Sorption Behavior in Nanopores of Coal: A Molecular Dynamics Simulation Based on a Reconstructed Macromolecular Model. Processes 2025, 13, 3478. [Google Scholar] [CrossRef]
- Mokoena, L.S.; Mpitso, K.; Mofokeng, J.P. Fabrication and Characterization of Poly (Lactic Acid) (PLA)/Ethylene Vinyl Acetate (EVA)/Graphene Oxide (GO) Polymer Composites for the Purpose of Removing Lead Ions (Pb(II)) from Water. Processes 2025, 13, 3697. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Benalia, A.; Laggoun, Z.; Bouchareb, R.; Zaamta, I.; Melloul, R.; Menasria, A.; Merouani, S.; Pizzi, A.; Derbal, K. Effective Synthesis and Application of Artichoke and Orange Peels-Based Bio-Sorbents for Ketoprofen Removal from Wastewater: Process Optimization Using Factorial Methodology. Desalin. Water Treat. 2024, 317, 100197. [Google Scholar] [CrossRef]
- Marrakchi, F.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous-Activated Carbon Prepared from Chitosan Flakes via Single-Step Sodium Hydroxide Activation for the Adsorption of Methylene Blue. Int. J. Biol. Macromol. 2017, 98, 233–239. [Google Scholar] [CrossRef]
- Bentahar, Y. Caractérisation Physico-Chimique Des Argiles Marocaines: Application à L’Adsorption de L’Arsenic et des Colorants Cationiques en Solution Aqueuse. Doctoral Dissertation, COMUE Université Côte d’Azur, Nice, France, Université Abdelmalek Essaâdi, Tétouan, Morocco, 2016. [Google Scholar]
- Hameed, B.H.; Ahmad, A.A. Batch Adsorption of Methylene Blue from Aqueous Solution by Garlic Peel, an Agricultural Waste Biomass. J. Hazard. Mater. 2009, 164, 870–875. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Sivaranjanee, R.; Vinothini, U.; Raghavi, M.; Rajasekar, K.; Ramakrishnan, K. Adsorption of Dye onto Raw and Surface Modified Tamarind Seeds: Isotherms, Process Design, Kinetics and Mechanism. Desalination Water Treat. 2014, 52, 2620–2633. [Google Scholar] [CrossRef]
- Patil, A.K.; Shrivastava, V.S. Alternanthera Bettzichiana Plant Powder as Low Cost Adsorbent for Removal of Congo Red from Aqueous Solution. Int. J. ChemTech Res. 2010, 2, 842–850. [Google Scholar]
- Vadivelan, V.; Vasanth Kumar, K. Equilibrium, Kinetics, Mechanism, and Process Design for the Sorption of Methylene Blue onto Rice Husk. J. Colloid Interface Sci. 2005, 286, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Ofomaja, A.E.; Ho, Y.S. Equilibrium Sorption of Anionic Dye from Aqueous Solution by Palm Kernel Fibre as Sorbent. Dye. Pigment. 2007, 74, 60–66. [Google Scholar] [CrossRef]
- Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review. Desalination 2011, 280, 1–13. [Google Scholar] [CrossRef]
- Doǧar, Ç.; Gürses, A.; Açikyildiz, M.; Özkan, E. Thermodynamics and Kinetic Studies of Biosorption of a Basic Dye from Aqueous Solution Using Green Algae Ulothrix sp. Colloids Surf. B Biointerfaces 2010, 76, 279–285. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Ou, L. Kinetic, Isotherm, and Thermodynamic Studies of the Adsorption of Methyl Orange from Aqueous Solution by Chitosan/Alumina Composite. J. Chem. Eng. Data 2012, 57, 412–419. [Google Scholar] [CrossRef]
- Sen, T.K. Adsorptive Removal of Dye (Methylene Blue) Organic Pollutant from Water by Pine Tree Leaf Biomass Adsorbent. Processes 2023, 11, 1877. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Senapati, S.; Giri, J.; Mallick, L.; Singha, D.; Bastia, T.K.; Rath, P.; Rana, M.K.; Panda, A.K. Rapid Adsorption of Industrial Cationic Dye Pollutant Using Base-Activated Rice Straw Biochar: Performance, Isotherm, Kinetic and Thermodynamic Evaluation. Discov. Sustain. 2025, 6, 46. [Google Scholar] [CrossRef]
- Franceschini, S.B.; Sendeski, C.P.; DE LIMA, K.D.; Nicolini, K.P.; Nicolini, J. A ‘Green’ Adsorbent: Effect of Chemical Modification of Biosorbents on the Adsorption of Methylene Blue and Malachite Green. An. Acad. Bras. Cienc. 2023, 95, e20210124. [Google Scholar] [CrossRef]
- Karaoglu, M.H.; Ugurlu, M. Adsorption and Recovery of Methylene Blue from Aqueous Solution by NaOH-Treated of Prina. Asian J. Chem. 2011, 23, 2577–2583. [Google Scholar]
- Hamad, H.N.; Idrus, S.; Yusuf, B.; Jamali, N.S.; Ahsan, A.; Suhartini, S.; Wahab, A.M.A. Optimized Bentonite Clay Adsorbents for Methylene Blue Removal. Processes 2024, 12, 738. [Google Scholar] [CrossRef]
- Lata, H.; Garg, V.K.; Gupta, R.K. Removal of a Basic Dye from Aqueous Solution by Adsorption Using Parthenium Hysterophorus: An Agricultural Waste. Dye. Pigment. 2007, 74, 653–658. [Google Scholar] [CrossRef]
- Amode, J.O.; Santos, J.H.; Alam, Z.M.; Mirza, A.H.; Mei, C.C. Adsorption of Methylene Blue from Aqueous Solution Using Untreated and Treated (Metroxylon spp.) Waste Adsorbent: Equilibrium and Kinetics Studies. Int. J. Ind. Chem. 2016, 7, 333–345. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T.; Hashim, R.; Said, N.; Akhtar, M.N.; Mohamad-Saleh, J.; Sulaiman, O. Comparison of Surface Properties of Wood Biomass Activated Carbons and Their Application against Rhodamine B and Methylene Blue Dye. Surf. Interfaces 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Hussin, Z.M.; Talib, N.; Hussin, N.M.; Hanafiah, M.A.K.M.; Khalir, W.K.A.W.M. Methylene Blue Adsorption onto NaOH Modified Durian Leaf Powder: Isotherm and Kinetic Studies. Am. J. Environ. Eng. 2015, 5, 38–43. [Google Scholar]
- Aichour, A.; Zaghouane-Boudiaf, H.; Iborra, C.V.; Polo, M.S. Bioadsorbent Beads Prepared from Activated Biomass/Alginate for Enhanced Removal of Cationic Dye from Water Medium: Kinetics, Equilibrium and Thermodynamic Studies. J. Mol. Liq. 2018, 256, 533–540. [Google Scholar] [CrossRef]
- Nasuha, N.; Hameed, B.H. Adsorption of Methylene Blue from Aqueous Solution onto NaOH-Modified Rejected Tea. Chem. Eng. J. 2011, 166, 783–786. [Google Scholar] [CrossRef]
















| Factors | Unit | Level (−1) | Level (0) | Level (+1) |
|---|---|---|---|---|
| NaOH concentration (C) | (mol·L−1) | 0.2 | 0.45 | 0.7 |
| Activation time (t) | (h) | 1.5 | 3.5 | 5.5 |
| Activation temperature (Ta) | (°C) | 22 | 36 | 50 |
| Factors | Responses Qm (mg·g−1) | |||||||
|---|---|---|---|---|---|---|---|---|
| Experiments | C (M) | t (h) | Ta (°C) | DP | SCG | |||
| 1 | −1 | 0.2 | −1 | 1.5 | −1 | 22 | 15.91 | 73.51 |
| 2 | +1 | 0.7 | −1 | 1.5 | −1 | 22 | 22.51 | 117.34 |
| 3 | −1 | 0.2 | +1 | 5.5 | −1 | 22 | 16.7 | 140.23 |
| 4 | +1 | 0.7 | +1 | 5.5 | −1 | 22 | 17.75 | 109.66 |
| 5 | −1 | 0.2 | −1 | 1.5 | +1 | 50 | 20.9 | 73.9 |
| 6 | +1 | 0.7 | −1 | 1.5 | +1 | 50 | 16.94 | 96.87 |
| 7 | −1 | 0.2 | +1 | 5.5 | +1 | 50 | 16.65 | 122.16 |
| 8 | +1 | 0.7 | +1 | 5.5 | +1 | 50 | 23.22 | 95 |
| 9 | 0 | 0.45 | 0 | 3.5 | 0 | 36 | 15.85 | 110.75 |
| 10 | 0 | 0.45 | 0 | 3.5 | 0 | 36 | 18.98 | 112.23 |
| 11 | 0 | 0.45 | 0 | 3.5 | 0 | 36 | 19.29 | 112.22 |
| Factors and Interactions | tobs-Values | Decision |
|---|---|---|
| C | 1 | Not Significant |
| Ta | 0.19 | |
| T | 0.47 | |
| C × Ta | 0.48 | |
| Ta × t | 0.58 | |
| C × t | 0.49 |
| Sum of Squares | Degrees of Freedom | Mean Square | F Value | |
|---|---|---|---|---|
| Linear | 16.56 | 7 | 5.52 | Fobs = 0.31 |
| Residuals | 39.56 | 3 | 13.19 | Fcrit = 8.89 |
| Total | 68.23 | 10 | 6.82 | Fobs < Fcrit |
| Sum of Squares | Degrees of Freedom | Mean Square | F Value | |
|---|---|---|---|---|
| Linear | 3889.77 | 7 | 555.68 | Fobs = 22.20 |
| Residuals | 75.08 | 3 | 25.03 | Fcrit = 8.89 |
| Total | 3964.85 | 10 | 369.485 | Fobs > Fcrit |
| SBET (m2·g−1) | R2 | Vp (cm3·g−1) | Dp (nm) |
|---|---|---|---|
| 37.44 | 0.99978 | 21.88 | 4.39 nm |
| Temperature | ∆G (kJ mol−1) | ∆H (kJ mol−1) | ∆S (kJ mol−1 K−1) |
|---|---|---|---|
| 22 | −21.2705 | −6.078 | 0.0515 |
| 30 | −21.6825 | ||
| 50 | −22.7125 |
| Pseudo-First-Order | Pseudo-Second-Order | Elovish | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| C0 (mg L−1) | Qe.exp (mg g−1) | Qe (mg g−1) | K1 (min−1) | R2 | Qe (mg g−1) | K2 (g·mg−1 min−1) | R2 | α (mg·g−1 min−1) | Β (g·mg−1) | R2 |
| 123 | 118.49 | 107.74 | 0.089 | 0.88 | 115.40 | 0.001 | 0.96 | 181.02 | 0.070 | 0.99 |
| Intraparticle diffusion models | Step 1 | Kint1 (mg g−1 min−0.5) | 5.75 |
| C (mg·g−1) | 49.54 | ||
| R2 | 0.98 | ||
| Step 2 | Kint2 (mg g−1 min−0.5) | 0.39 | |
| C (mg·g−1) | 110.48 | ||
| R2 | 0.74 |
| Langmuir | Qmax(mg·g−1) | 160.66 |
| KL (L·mg−1) | 0.074 | |
| R2 | 0.97 | |
| Freundlich | KF ((mg g−1)(L mg−1)1⁄n) | 28.88 |
| n | 3.1 | |
| R2 | 0.81 | |
| Sips | Qmax (mg·g−1) | 145.59 |
| KS (L·mg−1) | 0.1005 | |
| ms | 1.54 | |
| R2 | 0.99 |
| Biomass | Activating Agent | Adsorption Capacity (mg·g−1) | Reference |
|---|---|---|---|
| Lagenaria siceraria | NaOH | 11.87 | [59] |
| Prina | NaOH | 12.90 | [60] |
| Bentonite Clay | NaOH | 22.13 | [61] |
| Parthenium hysterophorus | H2SO4 | 26.1 | [62] |
| sago wastes | H3PO4 | 36.8 | [63] |
| Acacia mangium wood | KOH | 52.92 | [64] |
| Durian Leaf | NaOH | 125 | [65] |
| rice straw | NaOH | 129.87 | [58] |
| Spent coffee grounds | NaOH | 140.23 | This work |
| Maclura pomifera | NaOH | 166.1 | [7] |
| lemon peels | H3PO4 | 208.64 | [66] |
| rejected tea | NaOH | 242.1 | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bounaas, M.; Haouichi, M.; Gattal, B.; Hamza, W.; Benalia, A.; Derbal, K.; Benzina, M.; Pizzi, A.; Trancone, G.; Panico, A. Optimization of NaOH Chemical Treatment Parameters for Biomass-Based Adsorbents in Cationic Dye Removal. Processes 2025, 13, 3932. https://doi.org/10.3390/pr13123932
Bounaas M, Haouichi M, Gattal B, Hamza W, Benalia A, Derbal K, Benzina M, Pizzi A, Trancone G, Panico A. Optimization of NaOH Chemical Treatment Parameters for Biomass-Based Adsorbents in Cationic Dye Removal. Processes. 2025; 13(12):3932. https://doi.org/10.3390/pr13123932
Chicago/Turabian StyleBounaas, Meryem, Manar Haouichi, Boutheyna Gattal, Wiem Hamza, Abderrezzaq Benalia, Kerroum Derbal, Mourad Benzina, Antonio Pizzi, Gennaro Trancone, and Antonio Panico. 2025. "Optimization of NaOH Chemical Treatment Parameters for Biomass-Based Adsorbents in Cationic Dye Removal" Processes 13, no. 12: 3932. https://doi.org/10.3390/pr13123932
APA StyleBounaas, M., Haouichi, M., Gattal, B., Hamza, W., Benalia, A., Derbal, K., Benzina, M., Pizzi, A., Trancone, G., & Panico, A. (2025). Optimization of NaOH Chemical Treatment Parameters for Biomass-Based Adsorbents in Cationic Dye Removal. Processes, 13(12), 3932. https://doi.org/10.3390/pr13123932

