Advances and Challenges in Anaerobic Digestion for Biogas Production: Policy, Technological, and Microbial Perspectives
Abstract
1. Introduction
2. Strategies to Optimise Anaerobic Co-Digestion for Biomethane Production
3. Functional Additives
4. Innovations in Biogas Upgrading Technologies
5. Operating Parameters and Predictive Models
6. Microbiology and Microbial Community Dynamics
7. Policies, Barriers and Market Prospects
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Anaerobic digestion |
| ADM1 | Anaerobic Digestion Model No. 1 |
| ADM1_ME | Extension of Anaerobic Digestion Model No. 1 |
| AI | Artificial Intelligence |
| ANN | Artificial Neural Networks |
| An-CoD | Anaerobic co-digestion |
| BMP | Biomethanation potential |
| COD | Chemical oxygen demand |
| C/N | Carbon-to-nitrogen |
| DIET | Direct interspecies electron transfer |
| EAD | Electro-anaerobic digestion |
| FOG | Fats, oils and grease |
| GA | Genetic algorithm |
| HRT | Hydraulic retention time |
| IWA | International Water Association |
| LCA | Life cycle analysis |
| LSTM | Long Short-Term Memory |
| MEC | Microbial electrochemical cells |
| MES | Microbial electrosynthesis |
| ML | Machine Learning |
| OLR | Organic loading rate |
| RED-II | Renewable Energy Directive |
| RSM | Response surface methodology |
| SIR | substrate-to-inoculum ratio |
| SVM | Support Vector Machine |
| TEA | Techno-economic analysis |
| TS/VS | Solids concentration |
| VFA | Volatile fatty acid |
| VS | Volatile solids |
| XGBoost | Extreme Gradient Boosting |
| ZVI | Zero-valent iron particles |
References
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Parchami, M.; Varjani, S.; Khanal, S.K.; Wong, J.; Awasthi, M.K.; et al. Microbiological Insights into Anaerobic Digestion for Biogas, Hydrogen or Volatile Fatty Acids (VFAs): A Review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef]
- Bose, A.; O’Shea, R.; Lin, R.; Long, A.; Rajendran, K.; Wall, D.; De, S.; Murphy, J.D. The Marginal Abatement Cost of Co-Producing Biomethane, Food and Biofertiliser in a Circular Economy System. Renew. Sustain. Energy Rev. 2022, 169, 112946. [Google Scholar] [CrossRef]
- Ganesh Saratale, R.; Kumar, G.; Banu, R.; Xia, A.; Periyasamy, S.; Dattatraya Saratale, G. A Critical Review on Anaerobic Digestion of Microalgae and Macroalgae and Co-Digestion of Biomass for Enhanced Methane Generation. Bioresour. Technol. 2018, 262, 319–332. [Google Scholar] [CrossRef]
- Cordoba, V.E.; Mussi, J.; De Paula, M.; Acosta, G.G. Prediction of Biomethane Production of Cheese Whey by Using Artificial Neural Networks. IEEE Lat. Am. Trans. 2023, 21, 1032–1039. [Google Scholar] [CrossRef]
- Salamattalab, M.M.; Hasani Zonoozi, M.; Molavi-Arabshahi, M. Innovative Approach for Predicting Biogas Production from Large-Scale Anaerobic Digester Using Long-Short Term Memory (LSTM) Coupled with Genetic Algorithm (GA). Waste Manag. 2024, 175, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.J.; Ferreira, A.F.; Fernandes, E.C. Biogas and Biomethane Production Potential via Anaerobic Digestion of Manure: A Case Study of Portugal. Renew. Sustain. Energy Rev. 2023, 188, 113846. [Google Scholar] [CrossRef]
- Shah, S.V.; Yadav Lamba, B.; Tiwari, A.K.; Chen, W.H. Sustainable Biogas Production via Anaerobic Digestion with Focus on CSTR Technology: A Review. J. Taiwan Inst. Chem. Eng. 2024, 162, 105575. [Google Scholar] [CrossRef]
- Hu, Y.; Bao, Y.; Meng, J.; Li, D.; Yuan, X.; Dong, Z. Biomethane Production Efficiency and Degradation Mechanism of Tar-Rich Coal in Anaerobic Digestion. Fuel 2024, 375, 132560. [Google Scholar] [CrossRef]
- Aworanti, O.A.; Ajani, A.O.; Agbede, O.O.; Agarry, S.E.; Ogunkunle, O.; Laseinde, O.T.; Kalam, M.A.; Fattah, I.M.R. Enhancing and Upgrading Biogas and Biomethane Production in Anaerobic Digestion: A Comprehensive Review. Front. Energy Res. 2023, 11, 1170133. [Google Scholar] [CrossRef]
- Neri, A.; Bernardi, B.; Zimbalatti, G.; Benalia, S. An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production. Energies 2023, 16, 6851. [Google Scholar] [CrossRef]
- Salman, C.A.; Schwede, S.; Thorin, E.; Yan, J. Enhancing Biomethane Production by Integrating Pyrolysis and Anaerobic Digestion Processes. Appl. Energy 2017, 204, 1074–1083. [Google Scholar] [CrossRef]
- de la Cruz-Azuara, J.E.; Ruiz-Marin, A.; Canedo-Lopez, Y.; Aguilar-Ucan, C.A.; Ceron-Breton, R.M.; Ceron-Breton, J.G.; Anguebes-Franseschi, F. Biomethane Production from the Two-Stage Anaerobic Co-Digestion of Cow Manure: Residual Edible Oil with Two Qualities of Waste-Activated Sludge. Energies 2024, 17, 2848. [Google Scholar] [CrossRef]
- Philipp, M.; Ackermann, H.; Barbana, N.; Pluschke, J.; Geißen, S.U. Possibilities for Anaerobic Digestion of Slaughter Waste and Flotates for Biomethane Production. Water 2023, 15, 1818. [Google Scholar] [CrossRef]
- Noor, R.S.; Ahmed, A.; Abbas, I.; Hussain, F.; Umair, M.; Noor, R.; Sun, Y. Enhanced Biomethane Production by 2-Stage Anaerobic Co-Digestion of Animal Manure with Pretreated Organic Waste. Biomass Convers. Biorefinery 2023, 13, 2833–2847. [Google Scholar] [CrossRef]
- Ripoll, V.; Agabo-García, C.; Perez, M.; Solera, R. Improvement of Biomethane Potential of Sewage Sludge Anaerobic Co-Digestion by Addition of “Sherry-Wine” Distillery Wastewater. J. Clean. Prod. 2020, 251, 119667. [Google Scholar] [CrossRef]
- Carneiro, R.B.; Gomes, G.M.; Camargo, F.P.; Zaiat, M.; Santos-Neto, Á.J. Anaerobic Co-Metabolic Biodegradation of Pharmaceuticals and Personal Care Products Driven by Glycerol Fermentation. Chemosphere 2024, 357, 142006. [Google Scholar] [CrossRef]
- D’Silva, T.C.; Isha, A.; Verma, S.; Shirsath, G.; Chandra, R.; Vijay, V.K.; Subbarao, P.M.V.; Kovács, K.L. Anaerobic Co-Digestion of Dry Fallen Leaves, Fruit/Vegetable Wastes and Cow Dung without an Active Inoculum—A Biomethane Potential Study. Bioresour. Technol. Rep. 2022, 19, 101189. [Google Scholar] [CrossRef]
- Dhull, P.; Lohchab, R.K.; Kumar, S.; Kumari, M.; Shaloo; Bhankhar, A.K. Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy. Bioenergy Res. 2023, 17, 1228–1249. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Tena, M.; Sillero, L.; Magrini, F.E.; Sophiatti, I.V.M.; Gaio, J.; Paesi, S.; Forster-Carneiro, T.; Solera, R.; Perez, M. Application of Anaerobic Co-Digestion of Brewery by-Products for Biomethane and Bioenergy Production in a Biorefinery Concept. Bioenergy Res. 2023, 16, 2560–2573. [Google Scholar] [CrossRef]
- Pan, S.Y.; Tsai, C.Y.; Liu, C.W.; Wang, S.W.; Kim, H.; Fan, C. Anaerobic Co-Digestion of Agricultural Wastes toward Circular Bioeconomy. iScience 2021, 24, 102704. [Google Scholar] [CrossRef]
- Wang, C.; Feng, D.; Xia, A.; Nizami, A.S.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q.; Murphy, J.D. A Comparative Life Cycle Assessment of Electro-Anaerobic Digestion to Evaluate Biomethane Generation from Organic Solid Waste. Renew. Sustain. Energy Rev. 2024, 196, 114347. [Google Scholar] [CrossRef]
- Ibro, M.K.; Ancha, V.R.; Lemma, D.B. Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review. Sustainability 2022, 14, 9387. [Google Scholar] [CrossRef]
- Castel, L.; Cazaudehore, G.; Beigbeder, J.B.; Guyoneaud, R.; Peyrelasse, C. Pilot-Scale Study of CO2 Enrichment Effects on Anaerobic Digestion Performance. Chem. Eng. Sci. 2025, 304, 121070. [Google Scholar] [CrossRef]
- Quintana-Najera, J.; Blacker, A.J.; Fletcher, L.A.; Ross, A.B. Influence of Augmentation of Biochar during Anaerobic Co-Digestion of Chlorella Vulgaris and Cellulose. Bioresour. Technol. 2022, 343, 126086. [Google Scholar] [CrossRef] [PubMed]
- Rawoof, S.A.A.; Kumar, P.S.; Vo, D.V.N.; Subramanian, S. Sequential Production of Hydrogen and Methane by Anaerobic Digestion of Organic Wastes: A Review. Environ. Chem. Lett. 2021, 19, 1043–1063. [Google Scholar] [CrossRef]
- Ferrari, G.; Holl, E.; Steinbrenner, J.; Pezzuolo, A.; Lemmer, A. Environmental Assessment of a Two-Stage High Pressure Anaerobic Digestion Process and Biological Upgrading as Alternative Processes for Biomethane Production. Bioresour. Technol. 2022, 360, 127612. [Google Scholar] [CrossRef]
- Saravanakumar, A.; Sudha, M.R.; Chen, W.H.; Pradeshwaran, V.; Ashokkumar, V.; Selvarajoo, A. Biomethane Production as a Green Energy Source from Anaerobic Digestion of Municipal Solid Waste: A State-of-the-Art Review. Biocatal. Agric. Biotechnol. 2023, 53, 102866. [Google Scholar] [CrossRef]
- Kaur, G.; Basak, N.; Kumar, S. State-of-the-Art Techniques to Enhance Biomethane/Biogas Production in Thermophilic Anaerobic Digestion. Process Saf. Environ. Prot. 2024, 186, 104–117. [Google Scholar] [CrossRef]
- Roy, U.K.; Radu, T.; Wagner, J.L. Carbon-Negative Biomethane Fuel Production: Integrating Anaerobic Digestion with Algae-Assisted Biogas Purification and Hydrothermal Carbonisation of Digestate. Biomass Bioenergy 2021, 148, 106029. [Google Scholar] [CrossRef]
- Ding, L.; Cheng, J.; Lin, R.; Deng, C.; Zhou, J.; Murphy, J.D. Improving Biohydrogen and Biomethane Co-Production via Two-Stage Dark Fermentation and Anaerobic Digestion of the Pretreated Seaweed Laminaria Digitata. J. Clean. Prod. 2020, 251, 119666. [Google Scholar] [CrossRef]
- Ding, L.; Cheng, J.; Qiao, D.; Li, H.; Zhang, Z. Continuous Co-Generation of Biohydrogen and Biomethane through Two-Stage Anaerobic Digestion of Hydrothermally Pretreated Food Waste. Energy Convers. Manag. 2022, 268, 116000. [Google Scholar] [CrossRef]
- Caposciutti, G.; Baccioli, A.; Ferrari, L.; Desideri, U. Biogas from Anaerobic Digestion: Power Generation or Biomethane Production? Energies 2020, 13, 743. [Google Scholar] [CrossRef]
- Jha, B.; Isha, A.; Trivedi, A.; Chandra, R.; Subbarao, P.M.V. Anaerobic Co-Digestion of Rice Straw and de-Oiled Rice Bran for Biomethane Production. Energy Rep. 2021, 7, 704–710. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Huang, C.Y.; Kit Leong, Y.; Lu, P.H.; Yen, H.W.; Lee, D.J.; Chang, J.S. Integration of Microalgae Cultivation and Anaerobic Co-Digestion with Dairy Wastewater to Enhance Bioenergy and Biochemicals Production. Bioresour. Technol. 2023, 376, 128858. [Google Scholar] [CrossRef]
- Saif, I.; Thakur, N.; Zhang, P.; Zhang, L.; Xing, X.; Yue, J.; Song, Z.; Nan, L.; Yujun, S.; Usman, M.; et al. Biochar Assisted Anaerobic Digestion for Biomethane Production: Microbial Symbiosis and Electron Transfer. J. Environ. Chem. Eng. 2022, 10, 107960. [Google Scholar] [CrossRef]
- Ghiotto, G.; De Bernardini, N.; Orellana, E.; Fiorito, G.; Cenci, L.; Kougias, P.; Campanaro, S.; Treu, L. Impact of Trace Metal Supplementation on Anaerobic Biological Methanation under Hydrogen and Carbon Dioxide Starvation. NPJ Biofilms Microbiomes 2025, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Bardi, M.; Vinardell, S.; Astals, S.; Koch, K. Opportunities and Challenges of Micronutrients Supplementation and Its Bioavailability in Anaerobic Digestion: A Critical Review. Renew. Sustain. Energy Rev. 2023, 186, 113689. [Google Scholar] [CrossRef]
- Świechowski, K.; Rasaq, W.A.; Syguła, E. Anaerobic Digestion of Brewer’s Spent Grain with Biochars—Biomethane Production and Digestate Quality Effects. Front. Energy Res. 2023, 11, 1141684. [Google Scholar] [CrossRef]
- Salama, E.S.; Saha, S.; Kurade, M.B.; Dev, S.; Chang, S.W.; Jeon, B.H. Recent Trends in Anaerobic Co-Digestion: Fat, Oil, and Grease (FOG) for Enhanced Biomethanation. Prog. Energy Combust. Sci. 2019, 70, 22–42. [Google Scholar] [CrossRef]
- Thakur, N.; Sharma, M.; Alghamdi, H.; Zheng, Y.; Xue, W.; Jeon, B.H.; Salama, E.S.; Li, X. A Recent Trend in Anaerobic Digestion (AD): Enhancement of Microbiome and Digestibility of Feedstocks via Abiotic Stress Factors for Biomethanation. Chem. Eng. J. 2023, 472, 145047. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.; Zhao, Z.; Zhang, Y. Regulating Secretion of Extracellular Polymeric Substances through Dosing Magnetite and Zerovalent Iron Nanoparticles To Affect Anaerobic Digestion Mode. ACS Sustain. Chem. Eng. 2019, 7, 9655–9662. [Google Scholar] [CrossRef]
- Ghofrani-Isfahani, P.; Baniamerian, H.; Tsapekos, P.; Alvarado-Morales, M.; Kasama, T.; Shahrokhi, M.; Vossoughi, M.; Angelidaki, I. Effect of Metal Oxide Based TiO2 Nanoparticles on Anaerobic Digestion Process of Lignocellulosic Substrate. Energy 2020, 191, 116580. [Google Scholar] [CrossRef]
- Baniamerian, H.; Ghofrani-Isfahani, P.; Tsapekos, P.; Alvarado-Morales, M.; Shahrokhi, M.; Angelidaki, I. Multicomponent Nanoparticles as Means to Improve Anaerobic Digestion Performance. Chemosphere 2021, 283, 131277. [Google Scholar] [CrossRef]
- Carranza-Abaid, A.; Wanderley, R.R.; Knuutila, H.K.; Jakobsen, J.P. Analysis and Selection of Optimal Solvent-Based Technologies for Biogas Upgrading. Fuel 2021, 303, 121327. [Google Scholar] [CrossRef]
- Francisco López, A.; Lago Rodríguez, T.; Faraji Abdolmaleki, S.; Galera Martínez, M.; Bello Bugallo, P.M. From Biogas to Biomethane: An In-Depth Review of Upgrading Technologies That Enhance Sustainability and Reduce Greenhouse Gas Emissions. Appl. Sci. 2024, 14, 2342. [Google Scholar] [CrossRef]
- Comesaña-Gándara, B.; García-Depraect, O.; Santos-Beneit, F.; Bordel, S.; Lebrero, R.; Muñoz, R. Recent Trends and Advances in Biogas Upgrading and Methanotrophs-Based Valorization. Chem. Eng. J. Adv. 2022, 11, 100325. [Google Scholar] [CrossRef]
- Adnan, A.I.; Ong, M.Y.; Nomanbhay, S.; Chew, K.W.; Show, P.L. Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering 2019, 6, 92. [Google Scholar] [CrossRef]
- Le Pera, A.; Sellaro, M.; Pellegrino, C.; Limonti, C.; Siciliano, A. Combined Pre-Treatment Technologies for Cleaning Biogas before Its Upgrading to Biomethane: An Italian Full-Scale Anaerobic Digester Case Study. Appl. Sci. 2024, 14, 2053. [Google Scholar] [CrossRef]
- Struk, M.; Kushkevych, I.; Vítězová, M. Biogas Upgrading Methods: Recent Advancements and Emerging Technologies. Rev. Environ. Sci. Biotechnol. 2020, 19, 651–671. [Google Scholar] [CrossRef]
- Mhadmhan, S.; Ngamcharussrivichai, C.; Hinchiranan, N.; Kuchonthara, P.; Li, Y.; Wang, S.; Reubroycharoen, P. Direct Biogas Upgrading via CO2 Methanation to High-Quality Biomethane over NiMg/CNT-SiO2 Fiber Catalysts. Fuel 2022, 310, 122289. [Google Scholar] [CrossRef]
- Martín-Hernández, E.; Guerras, L.S.; Martín, M. Optimal Technology Selection for the Biogas Upgrading to Biomethane. J. Clean. Prod. 2020, 267, 122032. [Google Scholar] [CrossRef]
- Moya, C.; Santiago, R.; Hospital-Benito, D.; Lemus, J.; Palomar, J. Design of Biogas Upgrading Processes Based on Ionic Liquids. Chem. Eng. J. 2022, 428, 132103. [Google Scholar] [CrossRef]
- Assunção, L.R.C.; Mendes, P.A.S.; Matos, P.; Borschiver, S. Technology Roadmap of Renewable Natural Gas: Identifying Trends for Research and Development to Improve Biogas Upgrading Technology Management. Appl. Energy 2021, 292, 116849. [Google Scholar] [CrossRef]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Fu, S.; Angelidaki, I.; Zhang, Y. In Situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends Biotechnol. 2021, 39, 336–347. [Google Scholar] [CrossRef]
- Sher, F.; Smječanin, N.; Hrnjić, H.; Karadža, A.; Omanović, R.; Šehović, E.; Sulejmanović, J. Emerging Technologies for Biogas Production: A Critical Review on Recent Progress, Challenges and Future Perspectives. Process Saf. Environ. Prot. 2024, 188, 834–859. [Google Scholar] [CrossRef]
- Pothakos, V.; De Vuyst, L.; Zhang, S.J.; De Bruyn, F.; Verce, M.; Torres, J.; Callanan, M.; Moccand, C.; Weckx, S. Temporal Shotgun Metagenomics of an Ecuadorian Coffee Fermentation Process Highlights the Predominance of Lactic Acid Bacteria. Curr. Res. Biotechnol. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Y.; Dhar, B.R. A Critical Review of Microbial Electrolysis Cells Coupled with Anaerobic Digester for Enhanced Biomethane Recovery from High-Strength Feedstocks. Crit. Rev. Environ. Sci. Technol. 2022, 52, 50–89. [Google Scholar] [CrossRef]
- Chu, X.; Ren, Y.; Qu, G.; Ren, N.; Xie, R.; Cheng, M.; Chen, X.; Wang, Z.; Yuan, Y. Current Status of Research on Microbial Electrocatalytic CH4 Production for Biogas Upgrading and Challenges. J. Environ. Chem. Eng. 2024, 12, 112088. [Google Scholar] [CrossRef]
- Chung, T.H.; Dhillon, S.K.; Shin, C.; Pant, D.; Dhar, B.R. Microbial Electrosynthesis Technology for CO2 Mitigation, Biomethane Production, and Ex-Situ Biogas Upgrading. Biotechnol. Adv. 2024, 77, 108474. [Google Scholar] [CrossRef]
- Khan, M.U.; Lee, J.T.E.; Bashir, M.A.; Dissanayake, P.D.; Ok, Y.S.; Tong, Y.W.; Shariati, M.A.; Wu, S.; Ahring, B.K. Current Status of Biogas Upgrading for Direct Biomethane Use: A Review. Renew. Sustain. Energy Rev. 2021, 149, 111343. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; le Saché, E.; Pastor-Pérez, L.; Reina, T.R. Membrane-Based Technologies for Biogas Upgrading: A Review. Environ. Chem. Lett. 2020, 18, 1649–1658. [Google Scholar] [CrossRef]
- Fajrina, N.; Yusof, N.; Ismail, A.F.; Aziz, F.; Bilad, M.R.; Alkahtani, M. A Crucial Review on the Challenges and Recent Gas Membrane Development for Biogas Upgrading. J. Environ. Chem. Eng. 2023, 11, 110235. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Kumar, J.; Vu, M.T.; Mohammed, J.A.H.; Pathak, N.; Commault, A.S.; Sutherland, D.; Zdarta, J.; Tyagi, V.K.; Nghiem, L.D. Biomethane Production from Anaerobic Co-Digestion at Wastewater Treatment Plants: A Critical Review on Development and Innovations in Biogas Upgrading Techniques. Sci. Total Environ. 2021, 765, 142753. [Google Scholar] [CrossRef]
- Naquash, A.; Qyyum, M.A.; Haider, J.; Lim, H.; Lee, M. Renewable LNG Production: Biogas Upgrading through CO2 Solidification Integrated with Single-Loop Mixed Refrigerant Biomethane Liquefaction Process. Energy Convers. Manag. 2021, 243, 114363. [Google Scholar] [CrossRef]
- Di Profio, P.; Ciulla, M.; Di Giacomo, S.; Barbacane, N.; Wolicki, R.D.; Fontana, A.; Moffa, S.; Pilato, S.; Siani, G. Emerging Green Strategies for Biogas Upgrading through CO2 Capture: From Unconventional Organic Solvents to Clathrate and Semi-Clathrate Hydrates. J. Mol. Liq. 2023, 391, 123196. [Google Scholar] [CrossRef]
- Golmakani, A.; Ali Nabavi, S.; Wadi, B.; Manovic, V. Advances, Challenges, and Perspectives of Biogas Cleaning, Upgrading, and Utilisation. Fuel 2022, 317, 123085. [Google Scholar] [CrossRef]
- Wantz, E.; Lemonnier, M.; Benizri, D.; Dietrich, N.; Hébrard, G. Innovative High-Pressure Water Scrubber for Biogas Upgrading at Farm-Scale Using Vacuum for Water Regeneration. Appl. Energy 2023, 350, 121781. [Google Scholar] [CrossRef]
- Su, B.; Wang, H.; Zhang, X.; He, H.; Zheng, J. Using Photovoltaic Thermal Technology to Enhance Biomethane Generation via Biogas Upgrading in Anaerobic Digestion. Energy Convers. Manag. 2021, 235, 113965. [Google Scholar] [CrossRef]
- Guo, J.; He, P.; Wu, H.; Xi, Y.; Li, C.; Zhang, H.; Zhou, J.; Liao, J.; Lü, F. Novel Material-Oriented Valorization of Biogas Can Achieve More Carbon Reduction than Traditional Utilization by Bioelectricity or Biomethane. Bioresour. Technol. 2024, 395, 130333. [Google Scholar] [CrossRef] [PubMed]
- Kazimierowicz, J.; Dębowski, M.; Zieliński, M. Innovative Method for Biomethane Production Based on a Closed Cycle of Biogas Upgrading and Organic Substrate Pretreatment—Technical, Economic, and Technological Fundamentals. Energies 2025, 18, 1033. [Google Scholar] [CrossRef]
- Jeong, K.; Abbas, A.; Shin, J.; Son, M.; Kim, Y.M.; Cho, K.H. Prediction of Biogas Production in Anaerobic Co-Digestion of Organic Wastes Using Deep Learning Models. Water Res. 2021, 205, 117697. [Google Scholar] [CrossRef]
- Upadhyay, A.; Kovalev, A.A.; Zhuravleva, E.A.; Kovalev, D.A.; Litti, Y.V.; Masakapalli, S.K.; Pareek, N.; Vivekanand, V. A Review of Basic Bioinformatic Techniques for Microbial Community Analysis in an Anaerobic Digester. Fermentation 2023, 9, 62. [Google Scholar] [CrossRef]
- Matobole, K.; Seodigeng, T.; Banza, M.; Rutto, H. Modeling of the Biomethane Production from Ultrasonic Pretreated Fruit and Vegetable Waste via Anaerobic Digestion. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2024, 59, 513–522. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Olugbemide, A.D.; Akerejola, R.F.; Madyira, D.M. Kinetic Modelling of the Biomethane Production Potential of Acidic Pretreated Groundnut Shells. Biomass Convers. Biorefinery 2025, 15, 17139–17153. [Google Scholar] [CrossRef]
- Bertacchi, S.; Ruusunen, M.; Sorsa, A.; Sirviö, A.; Branduardi, P. Mathematical Analysis and Update of Adm1 Model for Biomethane Production by Anaerobic Digestion. Fermentation 2021, 7, 237. [Google Scholar] [CrossRef]
- Meola, A.; Weinrich, S. Hybrid Modelling of Dynamic Anaerobic Digestion Process in Full-Scale with LSTM NN and BMP Measurements. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 4–6 October 2023; pp. 543–548. [Google Scholar] [CrossRef]
- Tisocco, S.; Weinrich, S.; Lyons, G.; Wills, M.; Zhan, X.; Crosson, P. Application of a Simplified ADM1 for Full-Scale Anaerobic Co-Digestion of Cattle Slurry and Grass Silage: Assessment of Input Variability. Front. Environ. Sci. Eng. 2023, 18, 1–15. [Google Scholar] [CrossRef]
- Youssef, B.; Mohamed, S.; Abderrahim, F. Towards Enhanced Prediction of Biomethane Production Using Random Forest and Artificial Neural Network Models. In Proceedings of the 2023 IEEE International Conference on Agrosystem Engineering, Technology & Applications (AGRETA), Shah Alam, Malaysia, 9 September 2023; pp. 23–27. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavalostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, D.; Wen, Z.; Fei, F.; Caicedo, L.; Yuan, K.; Shang, R. Interpretable Machine Learning for Predicting Biomethane Production in Industrial-Scale Anaerobic Co-Digestion. Sci. Total Environ. 2020, 712, 134574. [Google Scholar] [CrossRef]
- Acosta-Pavas, J.C.; Robles-Rodríguez, C.E.; Morchain, J.; Dumas, C.; Cockx, A.; Aceves-Lara, C.A. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1. Fuel 2023, 344, 128106. [Google Scholar] [CrossRef]
- Arotingo Guandinango, H.P.; del Espín Valladares, R.C.; Núñez Pérez, J.; Lara Fiallos, M.V.; Pereda Reyes, I.; Pais-Chanfrau, J.M. Modelisation of the Biomethane Accumulation in Anaerobic Co-Digestion of Whey and Sugarcane Molasse Mixtures. Fermentation 2023, 9, 834. [Google Scholar] [CrossRef]
- Ripoll, V.; Solera, R.; Perez, M. Validation of a New Kinetic Model for Biomethane Production from Anaerobic Co-Digestion of Sewage Sludge and Sherry-Wine Distillery Wastewater. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Fidan, B.; Bodur, F.G.; Öztep, G.; Güngören-Madenoğlu, T.; Kabay, N.; Baba, A. Comparison of Conventional and Machine Learning Models for Kinetic Modelling of Biomethane Production from Pretreated Tomato Plant Residues. Ind. Crops Prod. 2025, 223, 120235. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Mootswi, K.D.; Olatunji, O.O.; Zwane, M.I.; van Rensburg, N.J.; Madyira, D.M. Anaerobic Co-Digestion of Food Waste and Groundnut Shells: Synergistic Impact Assessment and Kinetic Modeling. Waste Biomass Valorization 2025, 16, 3745–3760. [Google Scholar] [CrossRef]
- Mouftahi, M.; Tlili, N.; Hidouri, N.; Bartocci, P.; Fantozzi, F. Bioenergy Recovery from Southern Tunisia’s Organic Wastes: Analysis and Kinetic Modeling Study of Biomethane Production. Biomass Convers. Biorefinery 2023, 13, 6345–6361. [Google Scholar] [CrossRef]
- Da Silva, C.; Peces, M.; Jaques, A.; Muñoz, J.J.; Dosta, J.; Astals, S. Fractional Calculus as a Generalized Kinetic Model for Biochemical Methane Potential Tests. Bioresour. Technol. 2024, 396, 130412. [Google Scholar] [CrossRef]
- van der Berg, D.J.; Teke, G.M.; Görgens, J.F.; van Rensburg, E. Predicting Commercial-Scale Anaerobic Digestion Using Biomethane Potential. Renew. Energy 2024, 235, 121304. [Google Scholar] [CrossRef]
- Ahire, P.D.; Upadhyay, A.; Talwar, P.; Khatri, H.; Singh, R.; Lindenberger, C.; Pareek, N.; Vivekanand, V. Tool Development for Estimation of Biomethane Potential of Different Food Waste for a Sustainable Bioeconomy. Biomass Bioenergy 2024, 182, 107107. [Google Scholar] [CrossRef]
- Khashaba, N.H.; Ettouney, R.S.; Abdelaal, M.M.; Ashour, F.H.; El-Rifai, M.A. Artificial Neural Network Modeling of Biochar Enhanced Anaerobic Sewage Sludge Digestion. J. Environ. Chem. Eng. 2022, 10, 107988. [Google Scholar] [CrossRef]
- Ahmad, A.; Yadav, A.K.; Singh, A.; Singh, D.K. A Comprehensive Machine Learning-Coupled Response Surface Methodology Approach for Predictive Modeling and Optimization of Biogas Potential in Anaerobic Co-Digestion of Organic Waste. Biomass Bioenergy 2024, 180, 106995. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Dentice d’Accadia, M.; Vicidomini, M. Dynamic Analysis and Investigation of the Thermal Transient Effects in a CSTR Reactor Producing Biogas. Energy 2023, 263, 126010. [Google Scholar] [CrossRef]
- Henrotin, A.; Hantson, A.L.; Dewasme, L. Dynamic Modeling and Parameter Estimation of Biomethane Production from Microalgae Co-Digestion. Bioprocess. Biosyst. Eng. 2023, 46, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Yadav, A.K.; Pal, A.; Hasan, S. A Novel Intensified Anaerobic Co-Digestion Process for High-Quality Biomethane Production Using Ultrasound Energy: Optimization and Robustness Tests with ML-RSM-TLBO Algorithm. Energy Convers. Manag. 2025, 325, 119408. [Google Scholar] [CrossRef]
- Meola, A.; Winkler, M.; Weinrich, S. Metaheuristic Optimization of Data Preparation and Machine Learning Hyperparameters for Prediction of Dynamic Methane Production. Bioresour. Technol. 2023, 372, 128604. [Google Scholar] [CrossRef]
- Ferreira, C.M.; Akisue, R.A.; de Sousa Júnior, R. Mathematical Modeling and Computational Simulation Applied to the Study of Glycerol and/or Molasses Anaerobic Co-Digestion Processes. Processes 2023, 11, 2121. [Google Scholar] [CrossRef]
- Long, F.; Wang, L.; Cai, W.; Lesnik, K.; Liu, H. Predicting the Performance of Anaerobic Digestion Using Machine Learning Algorithms and Genomic Data. Water Res. 2021, 199, 117182. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, H.; Li, X. Low-Temperature Hydrothermal Modification with Fe/C Catalysts for Enhancing Corn Stover Anaerobic Digestion Performance and Modeling Development for Predicting Biomethane Yield. Catalysts 2025, 15, 362. [Google Scholar] [CrossRef]
- Sappl, J.; Harders, M.; Rauch, W. Machine Learning for Quantile Regression of Biogas Production Rates in Anaerobic Digesters. Sci. Total Environ. 2023, 872, 161923. [Google Scholar] [CrossRef]
- Akram, J.; Song, C.; El Mashad, H.M.; Chen, C.; Zhang, R.; Liu, G. Advances in Microbial Community, Mechanisms and Stimulation Effects of Direct Interspecies Electron Transfer in Anaerobic Digestion. Biotechnol. Adv. 2024, 76, 108398. [Google Scholar] [CrossRef]
- Ng, H.J.; Goh, K.M.; Yahya, A.; Abdul-Wahab, M.F. Microbial Community Dynamics and Functional Potentials in the Conversion of Oil Palm Wastes into Biomethane. 3 Biotech. 2024, 14, 91. [Google Scholar] [CrossRef]
- Basak, B.; Kumar, R.; Tanpure, R.S.; Mishra, A.; Tripathy, S.K.; Chakrabortty, S.; Roh, H.S.; Yadav, K.K.; Chung, W.; Jeon, B.H. Roles of Engineered Lignocellulolytic Microbiota in Bioaugmenting Lignocellulose Biomethanation. Renew. Sustain. Energy Rev. 2025, 207, 114913. [Google Scholar] [CrossRef]
- Bonugli-Santos, R.C.; Marteres, T.J.; Luiz, F.N.; Somer, J.G.; Mari, Â.G.; Passarini, M.R.Z. Prolonged Acetogenic Phase and Biological Succession during Anaerobic Digestion Using Swine Manure. Folia Microbiol. 2022, 67, 733–745. [Google Scholar] [CrossRef]
- Kabaivanova, L.; Nacheva, L.; Petrova, P. Microbial Community Structure in Anaerobic Digestion for Green Energy Production: A Mini Review. Open Access J. Microbiol. Biotechnol. 2024, 9, 1–4. [Google Scholar] [CrossRef]
- Bedoya, K.; Hoyos, O.; Zurek, E.; Cabarcas, F.; Alzate, J.F. Annual Microbial Community Dynamics in a Full-Scale Anaerobic Sludge Digester from a Wastewater Treatment Plant in Colombia. Sci. Total Environ. 2020, 726, 138479. [Google Scholar] [CrossRef]
- Faisal, S.; Thakur, N.; Jalalah, M.; Harraz, F.A.; Al-Assiri, M.S.; Saif, I.; Ali, G.; Zheng, Y.; Salama, E.S. Facilitated Lignocellulosic Biomass Digestibility in Anaerobic Digestion for Biomethane Production: Microbial Communities’ Structure and Interactions. J. Chem. Technol. Biotechnol. 2021, 96, 1798–1817. [Google Scholar] [CrossRef]
- Saha, S.; Basak, B.; Hwang, J.-H.; Salama, E.-S.; Chatterjee, P.K.; Jeon, B.-H. Microbial Symbiosis: A Network towards Biomethanation. Trends Microbiol. 2020, 28, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.K.; Bhatia, A.; Kubota, K.; Rajpal, A.; Ahmed, B.; Khan, A.A.; Kazmi, A.A.; Kumar, M. Microbial Community Dynamics in Anaerobic Digesters Treating Organic Fraction of Municipal Solid Waste. Environ. Technol. Innov. 2021, 21, 101303. [Google Scholar] [CrossRef]
- Ruiz Hernández, V.C.; Legaría Solano, J.P.; Sahagún Castellanos, J.; De la O Olan, M. Variabilidad Genética En Algunas Especies Cultivadas y Silvestres de Amaranto. Rev. Mex. Ciencias Agrícolas 2018, 9, 405–416. [Google Scholar] [CrossRef]
- Blasco, L.; Kahala, M.; Ervasti, S.; Tampio, E. Dynamics of Microbial Community in Response to Co-Feedstock Composition in Anaerobic Digestion. Bioresour. Technol. 2022, 364, 128039. [Google Scholar] [CrossRef]
- de Jonge, N.; Davidsson, Å.; la Cour Jansen, J.; Nielsen, J.L. Characterisation of Microbial Communities for Improved Management of Anaerobic Digestion of Food Waste. Waste Manag. 2020, 117, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Xie, J.; Wang, Y.; Wei, W.; Li, L.; Li, L.; Li, W.; Lv, S.; He, J.; Zhang, L. Electro-Assisted Anaerobic Digestion of Waste Activated Sludge for Biomethane Production Enhanced by Hyperosmosis of Sodium Chloride: Characteristics and Microbial Mechanisms. Process Saf. Environ. Prot. 2024, 187, 1390–1402. [Google Scholar] [CrossRef]
- Ketsub, N.; Whatmore, P.; Abbasabadi, M.; Doherty, W.O.S.; Kaparaju, P.; O’Hara, I.M.; Zhang, Z. Effects of Pretreatment Methods on Biomethane Production Kinetics and Microbial Community by Solid State Anaerobic Digestion of Sugarcane Trash. Bioresour. Technol. 2022, 352, 127112. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Z.; Ran, W.; Yuan, H.; Li, X. Performance and Microbial Community Dynamics in Anaerobic Co-Digestion of Chicken Manure and Corn Stover with Different Modification Methods and Trace Element Supplementation Strategy. Bioresour. Technol. 2021, 325, 124713. [Google Scholar] [CrossRef]
- Pasalari, H.; Gharibi, H.; Darvishali, S.; Farzadkia, M. The Effects of Different Pretreatment Technologies on Microbial Community in Anaerobic Digestion Process: A Systematic Review. J. Environ. Health Sci. Eng. 2024, 22, 439–453. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, L.; Zuo, X.; Yan, B.; Li, X.; Yuan, H. Depolymerization of Corn Stover by Urea-Hydrothermal Pretreatment for Efficient Biomethane Production and Microbial Community Analysis of Anaerobic Digestion. J. Clean. Prod. 2022, 380, 134978. [Google Scholar] [CrossRef]
- Pan, S.; Liu, Q.; Wen, C.; Li, Z.; Du, L.; Wei, Y. Producing Biogas from Rice Straw: Kinetic Analysis and Microbial Community Dynamics. Bioenergy Res. 2021, 14, 1338–1348. [Google Scholar] [CrossRef]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies 2019, 12, 1106. [Google Scholar] [CrossRef]
- Agabo-García, C.; Solera, R.; Pérez, M. First Approaches to Valorizate Fat, Oil and Grease (FOG) as Anaerobic Co-Substrate with Slaughterhouse Wastewater: Biomethane Potential, Settling Capacity and Microbial Dynamics. Chemosphere 2020, 259, 127474. [Google Scholar] [CrossRef]
- Usman, M.; Salama, E.S.; Arif, M.; Jeon, B.H.; Li, X. Determination of the Inhibitory Concentration Level of Fat, Oil, and Grease (FOG) towards Bacterial and Archaeal Communities in Anaerobic Digestion. Renew. Sustain. Energy Rev. 2020, 131, 110032. [Google Scholar] [CrossRef]
- Bucci, L.; Ghiotto, G.; Zampieri, G.; Raga, R.; Favaro, L.; Treu, L.; Campanaro, S. Adaptation of Anaerobic Digestion Microbial Communities to High Ammonium Levels: Insights from Strain-Resolved Metagenomics. Environ. Sci. Technol. 2024, 58, 580–590. [Google Scholar] [CrossRef]
- Ozsefil, I.C.; Miraloglu, I.H.; Ozbayram, E.G.; Ince, B.; Ince, O. Bioaugmentation of Anaerobic Digesters with the Enriched Lignin-Degrading Microbial Consortia through a Metagenomic Approach. Chemosphere 2024, 355, 141831. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Liang, B.; Jiang, J.; Wang, A. Microbial Fingerprints of Methanation in a Hybrid Electric-Biological Anaerobic Digestion. Water Res. 2022, 226, 119270. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, W.; Dong, Q.; Wu, D.; Yang, P.; Peng, Y.; Li, L.; Peng, X. Integrated Multi-Omics Analyses Reveal the Key Microbial Phylotypes Affecting Anaerobic Digestion Performance under Ammonia Stress. Water Res. 2022, 213, 118152. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Kim, N.-K.; Lee, S.-H.; Trinh, H.P.; Park, H.-D. Gene Abundance and Microbial Syntrophy as Key Drivers of Anaerobic Digestion Revealed through 16S RRNA Gene and Metagenomic Analysis. Chemosphere 2024, 370, 144028. [Google Scholar] [CrossRef]
- Wu, Z.-L.; Shi, W.-J.; Zhang, L.; Xia, Z.; Gou, M.; Sun, Z.-Y.; Tang, Y.-Q. Investigating the Robustness of Microbial Communities in Municipal Sludge Anaerobic Digestion under Organic Loading Rate Disturbance. J. Environ. Manag. 2024, 372, 123326. [Google Scholar] [CrossRef]
- Zhao, Q.; Yuan, H.; Li, X. Effect of Applied Voltages on Corn Stover Biomethanation and Microbial Community Characteristics in a Microbial Electrolytic Cell-Assisted Anaerobic Digestion System. Processes 2025, 13, 1271. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Umetsu, K.; Rooney, D.W. Integration of Biogas Systems into a Carbon Zero and Hydrogen Economy: A Review; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 20, ISBN 0123456789. [Google Scholar]
- Feng, Y.; Rosa, L. Global Biomethane and Carbon Dioxide Removal Potential through Anaerobic Digestion of Waste Biomass. Environ. Res. Lett. 2024, 19, 024024. [Google Scholar] [CrossRef]
- Costa, J.M.; Aguiar, A.B.S.; Montanari, A.F.P.; Damasceno, B.G.; Duran, K.A.; Jerônimo, K.A.; Silva, M.M.; Silva, T.C.T.; Rodriguez, R.P. Environmental Aspects and Perspectives of the Brazilian Market for Biogas and Biomethane from Anaerobic Digestion: A Review. Bioenergy Res. 2024, 17, 59–72. [Google Scholar] [CrossRef]
- Meisterl, K.; Sastre, S.; Puig-Ventosa, I.; Chifari, R.; Martínez Sánchez, L.; Chochois, L.; Fiorentino, G.; Zucaro, A. Circular Bioeconomy in the Metropolitan Area of Barcelona: Policy Recommendations to Optimize Biowaste Management. Sustainability 2024, 16, 1208. [Google Scholar] [CrossRef]
- Lombardi, L.; Francini, G. Techno-Economic and Environmental Assessment of the Main Biogas Upgrading Technologies. Renew. Energy 2020, 156, 440–458. [Google Scholar] [CrossRef]
- Bux, C.; Cangialosi, F.; Amicarelli, V. Biomethane and Compost Production by Anaerobic Digestion of Organic Waste: Suggestions for Rural Communities in Southern Italy. Sustainability 2023, 15, 15644. [Google Scholar] [CrossRef]
- Murano, R.; Maisano, N.; Selvaggi, R.; Pappalardo, G.; Pecorino, B. Critical Issues and Opportunities for Producing Biomethane in Italy. Energies 2021, 14, 2431. [Google Scholar] [CrossRef]
- Hosseini, T.; Culley, S.A.; Zecchin, A.; Maier, H.R.; Ashman, P.J. Impact of Co-Digestion and Degree of Centralization on the Yield and Viability of Biomethane Production: A Case Study in Regional Australia. Energy Convers. Manag. X 2024, 22, 100585. [Google Scholar] [CrossRef]
- Pappalardo, G.; Selvaggi, R.; Pecorino, B. Biomethane Production Potential in Southern Italy: An Empirical Approach. Renew. Sustain. Energy Rev. 2022, 158, 112190. [Google Scholar] [CrossRef]
- Alengebawy, A.; Ran, Y.; Osman, A.; Jin, K.; Samer, M.; Ai, P. Anaerobic Digestion of Agricultural Waste for Biogas Production and Sustainable Bioenergy Recovery: A Review. Environ. Chem. Lett. 2024, 22, 2641–2668. [Google Scholar] [CrossRef]
- Chung, C.-C.; Liu, L.; Zhang, Y.; Wang, Y.; Wei, Z. Evolution of Biogas Policies in China (2001–2019): Dynamics of Policy Instruments towards Energy Transitions. J. Clean. Prod. 2022, 379, 134642. [Google Scholar] [CrossRef]
- Huang, X. The Promotion of Anaerobic Digestion Technology Upgrades in Waste Stream Treatment Plants for Circular Economy in the Context of “Dual Carbon”: Global Status, Development Trend, and Future Challenges. Water 2024, 16, 3718. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, J.; Zhao, M.; Cheng, S.; Wang, L.; Mang, H.-P.; Li, Z. What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry? Sustainability 2020, 12, 1490. [Google Scholar] [CrossRef]
- Xue, S.; Song, J.; Wang, X.; Shang, Z.; Sheng, C.; Li, C.; Zhu, Y.; Liu, J. A Systematic Comparison of Biogas Development and Related Policies between China and Europe and Corresponding Insights. Renew. Sustain. Energy Rev. 2020, 117, 109474. [Google Scholar] [CrossRef]
- Leonhardt, B.; Tyson, R.; Taw, E.; Went, M.; Sanchez, D. Policy Analysis of CO2 Capture and Sequestration with Anaerobic Digestion for Transportation Fuel Production. Environ. Sci. Technol. 2023, 57, 11401–11409. [Google Scholar] [CrossRef]
- Ankathi, S.; Chaudhari, U.; Handler, R.; Shonnard, D. Sustainability of Biogas Production from Anaerobic Digestion of Food Waste and Animal Manure. Appl. Microbiol. 2024, 4, 418–438. [Google Scholar] [CrossRef]
- Ghosh, A.; Sarkar, J.; Das, B. A Critical Analysis on Anaerobic Digestion of OFMSW in India. Waste Valoris. Recycl. 2019, 2, 237–245. [Google Scholar] [CrossRef]
- Mittal, S.; Ahlgren, E.; Shukla, P. Barriers to Biogas Dissemination in India: A Review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
- Meena, P.; Pal, A.; Gautam, S. Zone-Wise Biogas Potential in India: Fundamentals, Challenges, and Policy Considerations. Environ. Sci. Pollut. Res. 2023, 31, 1841–1862. [Google Scholar] [CrossRef]
- Gross, T.; Breitenmoser, L.; Kumar, S.; Ehrensperger, A.; Wintgens, T.; Hugi, C. Anaerobic Digestion of Biowaste in Indian Municipalities: Effects on Energy, Fertilizers, Water and the Local Environment. Resour. Conserv. Recycl. 2021, 170, 105569. [Google Scholar] [CrossRef]
- Ellacuriaga, M.; Cascallana, J.G.; González, R.; Gómez, X. High-Solid Anaerobic Digestion: Reviewing Strategies for Increasing Reactor Performance. Environments 2021, 8, 80. [Google Scholar] [CrossRef]
- Zielińska, M.; Bułkowska, K. Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents. Energies 2024, 17, 3705. [Google Scholar] [CrossRef]
- Nghia, N.K.; Thy, C.T.A.; Xa, L.T.; Luan, D.T. Recycling of Biogas Wastewater to Organic Fertilizers and Influence of Organic Fertilizers on Maize, Mung Bean Growth and Yield under the Field Conditions. Appl. Environ. Biotechnol. 2022, 7, 16–27. [Google Scholar] [CrossRef]
- Wijdeveld, W.; Prot, T.; Sudintas, G.; Kuntke, P.; Korving, L.; Loosdrecht, M. Pilot-Scale Magnetic Recovery of Vivianite from Digested Sewage Sludge. Water Res. 2022, 212, 118131. [Google Scholar] [CrossRef]
- Lorick, D.; Macura, B.; Ahlström, M.; Grimvall, A.; Harder, R. Effectiveness of Struvite Precipitation and Ammonia Stripping for Recovery of Phosphorus and Nitrogen from Anaerobic Digestate: A Systematic Review. Environ. Evid. 2020, 9, 27. [Google Scholar] [CrossRef]
- Wu, Z.-Z.; Zheng, Q.; Zhang, Y.; Pang, Y.; Huang, T.; Peng, D. Phosphorus Recovery from Waste-Activated Sludge through Vivianite Crystallization Enhanced by Magnetic Biochar. J. Clean. Prod. 2023, 392, 136294. [Google Scholar] [CrossRef]
- Bywater, A.; Heaven, S.; Zhang, Y.; Banks, C.J. Potential for Biomethanisation of CO2 from Anaerobic Digestion of Organic Wastes in the United Kingdom. Processes 2022, 10, 1202. [Google Scholar] [CrossRef]
- Sun, H.; Wang, E.; Li, X.; Cui, X.; Guo, J.; Dong, R. Potential Biomethane Production from Crop Residues in China: Contributions to Carbon Neutrality. Renew. Sustain. Energy Rev. 2021, 148, 111360. [Google Scholar] [CrossRef]
- Wu, B.; Lin, R.; Bose, A.; Huerta, J.D.; Kang, X.; Deng, C.; Murphy, J.D. Economic and Environmental Viability of Biofuel Production from Organic Wastes: A Pathway towards Competitive Carbon Neutrality. Energy 2023, 285, 129322. [Google Scholar] [CrossRef]
- Pavicic, J.; Mavar, K.N.; Brkic, V.; Simon, K. Development, Advantages and Challenges in Europe. Energies 2022, 15, 2940. [Google Scholar] [CrossRef]








| Method | Substrate | Maximum Yield |
|---|---|---|
| Microwaves pretreatment | Oat straw | 186.2 ± 10.5 mL CH4/gVS |
| Thermal pretreatment | Food waste | 382.82 mL STP CH4/gVS |
| ultrasonic pretreatment | Fruit, food, and vegetable waste | 29.92 mL CH4/gVS |
| Substrate | Maximum Yield | Yield Increase | Condition | Mechanism |
|---|---|---|---|---|
| mixture of litter, fruit and vegetable wastes | 350–400 mL CH4/g VS | 20–40% | Mesophilic (35–37 °C) | Nutrient balancing, pH buffering, improved microbial diversity |
| Horse manure and food waste | 300–350 mL CH4/gVS | 26.5% | Particle size reduction (grinding), mesophilic | Increased surface area, faster hydrolysis, synergy between fibrous and easily degradable substrates |
| brewery wastewater/sludge with brewery spent grains | 320–360 mL CH4/gVS | 15–30% | Mesophilic, adjusted moisture content | Combines high-moisture wastewater with lignocellulosic grains for balanced organic loading rate (OLR) and improved biodegradability |
| Method | Substrate | Co-Substrate | Maximum Yield | Yield Increase | Conditions | Mechanism |
|---|---|---|---|---|---|---|
| thermophilic An-CoD | Food waste (C/N ≈ 17.5) | Wheat straw (C/N ≈ 42) | - | 4.9–14.8% | ratio 1:1 vs. basis T 55 °C | Synergy, inhibitors dilution |
| AD-MEC | Waste Activated Sludge | - | 97.8 mL CH4/g vs. added | 85.9% | 0.7 V T 55 °C HRT 14 days | Electromethanogenesis, microbial enrichment |
| AD-MEC (Synthetic Substrate) | Glucose-based synthetic substrate | - | 11.03 mL CH4/g COD added | - | 0.7 V T 55 °C HRT 14 days | Enzymatic stimulation, electroactive biofilm |
| Electro-anaerobic digestion (EAD) | Kitchen waste (high carbohydrate) | - | 450 mL CH4/gVS | - | T 35 °C HRT 20 days | AD |
| Thermophilic AD + Conductive Materials | Dairy manure | - | 414.86 mL CH4/gVS removed | - | T 55 °C Biochar 10 g/L | Direct Interspecies Electron Transfer (DIET) |
| Thermophilic AD + Activated Carbon | Lipid-rich fraction of food waste | - | 550 mL CH4/gVS | 40–48% | T 55 °C Activated carbon 15 g/L | DIET |
| Substrate | Maximum Yield | Yield Increase | Conditions | Mechanism |
|---|---|---|---|---|
| Laminaria digitata (brown seaweed) | Biohydrogen: 44.8 mL/gVS Biomethane: 282.2 mL/gVS | +25.5% (H2) and +26.8% (CH4) vs. untreated | Hydrothermal pretreatment (140 °C, 20 min), batch mode, mesophilic digestion | Biomass depolymerisation via hydrothermal process; enhanced solubilisation of carbohydrates |
| Food waste | Biohydrogen: 38.1 mL/gVS Biomethane: 439.6 mL/gVS | +3.8% (H2) and +167.6% (CH4) vs. untreated | Hydrothermal pretreatment (140 °C, 20 min), continuous mode, mesophilic digestion, HRT 18 days | Improved hydrolysis and acidogenesis; stable methanogenesis; microbial community shift |
| Food waste | Biohydrogen: 47.2 mL/gVS Biomethane: 376.6 mL/gVS | - | Raw FW, continuous mode, HRT 30 days | Conventional hydrolysis and methanogenesis |
| Addition | Substrate | Additive Characteristic | Yield Increase | Conditions | Mechanism |
|---|---|---|---|---|---|
| Biochar | Brewer’s spent grain | Biochar (BC300, BC450, BC600) | +1.8% to +10% (Biochar share 2–50%) | Mesophilic (37 °C), 30 days, SIR 0.5–2.0 | DIET facilitation, buffering, adsorption of inhibitors |
| High Biochar Share | Brewer’s spent grain | 50% Biochar share | 10% | Mesophilic (37 °C), 30 days, SIR 0.5–2.0 | Increased microbial colonisation, pH stabilisation |
| Biochar | Municipal solid waste | 18 g/L | 25–50% | Mesophilic, HRT 25 days | Enhanced hydrolysis, methanogenesis, DIET |
| Graphene | Municipal solid waste sludge | 0.6 g/L | 21–56% | Mesophilic, batch | Direct electron transfer, microbial enrichment |
| Carbon Nanotubes | Municipal solid waste sludge | Multi-walled (550 mg/kg to 6 g/L) | 35–55% | Mesophilic, batch | DIET, conductive network for syntrophic bacteria |
| Hematite-supported Biochar | Organic fraction of Municipal solid waste | - | - | Mesophilic, batch | Electron transfer, adsorption of VFA |
| Sawdust Biochar | Organic fraction of Municipal solid waste | - | 70% | Mesophilic, batch | Surface area for microbes, buffering |
| Wheat Straw Biochar | Organic fraction of Municipal solid waste | - | - | Mesophilic, batch | DIET, improved microbial habitat |
| Bentonite | Municipal solid waste sludge | Bentonite clay | - | Mesophilic, batch | Adsorption of ammonia and inhibitors |
| Ash | Municipal solid waste sludge | Wood ash | - | Mesophilic, batch | pH stabilisation, trace minerals supply |
| Category | Main Process/Technology | Description and Mechanism | Key Advantages | Limitations/Challenges | Representative Studies |
|---|---|---|---|---|---|
| Physical and chemical upgrading | Membrane separation Cryogenic separation Adsorption (sorbents, solvents, ionic liquids) | Physical and chemical removal of CO2, H2S, NH3, and siloxanes. Ionic liquids-based systems reduce energy demand from 0.785 to 0.211 kWh/Nm3 and exhibit autothermal potential | High CH4 purity (>97%) Technological maturity Scalable for industrial plants | High capital and operating costs CH4 loss during separation Susceptibility to impurities | [51,52] |
| Catalytic CO2 conversion | Catalytic methanation (NiMg/carbon nanotubes–SiO2 catalysts) | Direct CO2 hydrogenation to CH4 under controlled T–P–gas hourly space velocity conditions. | CH4 purity ≈ 95% Reduced CO2 emissions | Mass transfer limitations High temperature requirements Industrial scale-up issues | [50] |
| Biological Upgrading | In situ biological methanation Ex situ methanation MES | Biological conversion of CO2 to CH4 using hydrogen and specific methanogens (Methanosarcina sp., Methanobacterium sp.). MES and MEC use electroactive microbes to produce CH4 and acetic acid. | Mild operating conditions Low chemical input CH4 yield up to 96–100% | Slow kinetics pH control issues Low H2 transfer efficiency Enzyme cost | [55,56,59,60] |
| Bio-photosynthetic Routes | Microalgae-assisted upgrading Photobioreactors | Photosynthetic CO2 fixation and O2 production by microalgae; reduces CO2 to 2–6% in raw biogas while generating biomass. | CO2 mitigation + biomass recovery Integrates wastewater treatment | Requires light supply and control Lower productivity in large-scale systems | [53,54,61] |
| Combined Pretreatment Technologies | Thermo-chemical, bio-chemical, and hybrid systems | Multi-step purification and conditioning of raw biogas to protect upgrading equipment and enhance CH4 yield | Removes trace compounds (e.g., H2S) Improves upgrading efficiency | Complex configuration Energy-intensive | [47,48] |
| Integrated Valorisation | Hybrid and CO2 conversion systems | Integration of purification, CO2 valorisation, and subproduct utilisation (e.g., acetic acid, microbial biomass). | Circular economy approach Improved energy and carbon efficiency | High initial investment Need for process coupling |
| Type | Key Parameters | Required Input Data | Accuracy Metrics |
|---|---|---|---|
| ADM1_R3 | Hydrolysis rate, inhibition constants, microbial growth kinetics | Substrate composition (carbs, proteins, lipids), pH, NH4+ | NSE = 0.78 |
| Gompertz | Max production rate, lag phase, max yield | Time-series biogas/methane yield | R2 ≈ 0.93–0.98 |
| Logistic | Growth rate, carrying capacity | Time-series methane yield | R2 = 0.86–1, RMSE = 2.7–16.697 |
| First Order | Rate constant | Substrate concentration, time | R2 = 0.53-0.99, RMSE = 4.5571–39.78 |
| Richards | Shape factor, growth rate, max yield | Time-series methane yield | R2 ≈ 0.93–1.0 |
| ANN | Neuron weights, activation functions | Ultrasonic power, sonication time, temperature | MAE = 4.88, RMSE = 5.85, MAPE = 8.96%, R2 = 0.31 |
| LSTM | Time-dependent memory cells | Sequential methane yield data | R2 ≈ 0.38–0.90 |
| XGBoost | Tree depth, learning rate, number of estimators | Ultrasonic power, sonication time, temperature | MAE = 1.33, RMSE = 2.18, MAPE = 2.45%, R2 = 0.90 |
| SVM | Kernel type, regularisation parameter | Ultrasonic power, sonication time, temperature | MAE = 4.07, RMSE = 5.15, MAPE = 8.04%, R2 = 0.46 |
| Fuzzy Logic | Membership functions, rule base | pH, Total solids, VS, HRT, OLR, voltage, current, oxidation-reduction potential | R2 = 0.98, RMSE = 188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DelaVega-Quintero, J.C.; Nuñez-Pérez, J.; Lara-Fiallos, M.; Barba, P.; Burbano-García, J.L.; Espín-Valladares, R. Advances and Challenges in Anaerobic Digestion for Biogas Production: Policy, Technological, and Microbial Perspectives. Processes 2025, 13, 3648. https://doi.org/10.3390/pr13113648
DelaVega-Quintero JC, Nuñez-Pérez J, Lara-Fiallos M, Barba P, Burbano-García JL, Espín-Valladares R. Advances and Challenges in Anaerobic Digestion for Biogas Production: Policy, Technological, and Microbial Perspectives. Processes. 2025; 13(11):3648. https://doi.org/10.3390/pr13113648
Chicago/Turabian StyleDelaVega-Quintero, Juan Carlos, Jimmy Nuñez-Pérez, Marco Lara-Fiallos, Pedro Barba, Jhomaira L. Burbano-García, and Rosario Espín-Valladares. 2025. "Advances and Challenges in Anaerobic Digestion for Biogas Production: Policy, Technological, and Microbial Perspectives" Processes 13, no. 11: 3648. https://doi.org/10.3390/pr13113648
APA StyleDelaVega-Quintero, J. C., Nuñez-Pérez, J., Lara-Fiallos, M., Barba, P., Burbano-García, J. L., & Espín-Valladares, R. (2025). Advances and Challenges in Anaerobic Digestion for Biogas Production: Policy, Technological, and Microbial Perspectives. Processes, 13(11), 3648. https://doi.org/10.3390/pr13113648

