Polymer Template Selection for 1D Metal Oxide Gas Sensors: A Review
Abstract
1. Introduction
2. Fundamentals of 1D MOS Gas Sensors
2.1. Structural Properties
2.2. Morphological Properties of 1D MOS for Gas Sensing
2.2.1. Surface Topography and Porosity
2.2.2. Homogeneity and Defect Sites
2.3. Electronic Properties
2.4. Optical Properties
3. Gas Sensing Mechanism and Contributing Factors
4. Polymeric Template Selection, Synthesis, and Gas Sensing Performance
4.1. Polymetric Template Selection
4.2. Synthesis Strategies
Polymer and Precursor | Conditions | Post Treatment | Verdict |
---|---|---|---|
PVP Zn(NO3)2·6H2O | -Voltage = 19 kV -Feeding rate = 0.05 mL/h -Tip-to-collector distance = 15 cm | Annealed at 550 °C | Polycrystalline ZnO fibers with diameters ranging from 50 to 200 nm were obtained, consisting of multiple layers measuring approximately 10 to 25 nm each [101]. |
PVA Co(NO)2·6H2O ≥98% | -Feeding rate = 0.3 μL h−1 -Voltage = 20 kV | Dried at 60 °C for 3 h, followed by annealing at 600 °C for 3 h | The resulting crystalline Co3O4 1D nanostructures retained a spiderweb-like arrangement, with fiber diameters ranging from 100 to 200 nm. These fibers were composed of interconnected nanoparticles measuring approximately 3 to 10 nm, forming a porous structure [102]. |
PAN/PVP ZnCl2/CoCl2·6H2O | -Voltage = 16 kV -Tip-to-collector distance = 15 cm -Feeding rate = 1 mL/h | Heated in air at 400, 500, and 6000 °C for 1.5 h | The one-dimensional fibrous architecture was preserved after calcination. However, annealing at 600 °C led to more pronounced fragmentation of the resulting fibers. The fibers exhibited mesoporosity, with specific surface areas of 6.015, 19.521, and 10.424 m2/g for samples annealed at 400 °C, 500 °C, and 600 °C, respectively [79]. |
PVA (CH3CO2)2Zn | -Tip-to-collector distance = 20 cm -Voltage = 10 kV -Feeding rate = 0.5 mL/h | Annealed in air at 400–800 °C for 2 h | Although the fibrous architecture was retained, the fibers consisted of nanograins approximately 20 nm in size. Structural perfection improved with annealing up to 700 °C; however, further temperature increases led to a decline in structural integrity [82]. |
PVP SnCl2·2H2O | -Feeding rate = 0.3 mL/h -Voltage = 14 kV -Tip-to-collector distance = 15 cm | Annealed in air at 500 °C for 2 h at different heating rates of 2 °C/min, 6 °C/min, and 10 °C/min | The heating rate influenced the structure of the resulting one-dimensional materials: a rate of 2 °C/min produced solid fibers, and 6 °C/min resulted in the formation of hollow nanotubes. In comparison, a rate of 10 °C/min caused most of the nanotubes to collapse [97]. |
PVP SnCl2·2H2O/PdCl2 | -Voltage = 20 kV -Tip-to-collector distance = 10 cm | Annealed at 600 °C for 2 h | Hollow nanotubes of Pd-doped SnO2 nanofiber were attained using single needle electrospinning [83]. |
PAN SnO2 | -Voltage = 20 kV -Tip-to-collector distance = 10 cm -Feeding rate = 0.5 mL/h | PAN was stabilized at 250 °C for 2 h, followed by calcination at 700 °C for 1 h. | Coating a PAN template with a SnO2 precursor via atomic layer deposition (ALD), followed by calcination, resulted in smooth, wrinkle-free SnO2 nanotubes. This was attributed to the stabilizing effect of PAN during the deposition and thermal treatment processes [84]. |
PVP Zn(AC)2·2H2O | -Voltage = 19 kV -Tip-to-collector distance = 20 cm | Annealed at 600 °C for 3 h in air | Solvent evaporation-induced phase separation resulted in the formation of one-dimensional ZnO nanotubes with a surface area of 99.2 m2/g [95]. |
PVP SnCl4·2H2O/Zn(NO3)2·6H2O | -Voltage = 20 kV -Tip-to-collector distance = 20 cm -Humidity = 40–50 | Annealed at 600 °C for 3 h in air with a heating rate of 10 °C/min | Porous hollow SnO2 and ZnO nanotubes composed of nanoparticles approximately 10 ± 5 nm in size [98]. |
PVP SnCl2·2H2O/Zn(NO3)2·6H2O | -Voltage = 18 kV -Tip-to-collector distance =15 cm | Annealed at 600 °C for 3 h in air at a heating rate of 1 °C/minute | Smooth fibers were initially obtained before annealing. However, during the annealing process, Sn and Zn ions diffused toward the fiber surface. Continued heating led to the decomposition of the polymer matrix, along with chloride and nitrate ions, facilitating the oxidation of Zn and Sn into nanograins. As the temperature increased, these nanograins grew and reorganized to form hollow nanotubes. The resulting structures were mesoporous, with pore sizes ranging from 2 to 50 nm and a specific surface area of approximately 17 m2/g [77]. |
PVP Zn(CH3COO)2·2H2O/SnCl2·2H2O/AgNO3 | -Voltage = 15 kV | Annealed at 600 °C for 2 h | Rough, porous tubular structures were formed, exhibiting an average diameter of about 248 nm and a wall thickness of around 24 nm [103]. |
PVP SnCl2·2 H2O/AuCl3·HCl·4H2O | -Voltage = 15 kV -Feeding rate = 8 µL/min -Tip-to-collector distance = 15 cm | Annealed at 500 °C for 2 h in air at a heating rate of 3 °C/min | Nanotubes with diameters ranging from 60 to 90 nm were decorated with gold nanoparticles via ultraviolet light irradiation, resulting in well-dispersed nanoparticles uniformly distributed along the nanotube surfaces [104]. |
PVP/PS Zn (CH3COO)2·H2O/Co (CH3COO)2·4H2O/Ni (CH3COO)2·4H2O | -Voltage = 20 kV -Tip-to-collector distance = 15 cm -Feeding rate = 0.6 mL/h | Annealed for 2 h at 400 °C with a heating rate of 1 °C/min in air | Salt precursors were mixed with PVP, and the PS was introduced into the system to produce nanotubes after electrospinning and annealing at 400 °C for 2 h, with a surface area reaching ~29 m2/g [78]. |
PVP Zn(NO3)2·6H2O/SnCl2·2H2O | - | Annealed at 600 °C for 5 h | Before calcination, smooth fibers with diameters of up to 200 nm were obtained. Following annealing, the fibers developed a wrinkled and rough surface morphology, with an average diameter reduced to approximately 150 nm. The resulting hollow nanotubes exhibited a rough and porous surface, composed of ZnO and SnO2 nanoparticles ranging in size from 5 to 20 nm, and featured wall thicknesses of around 20 nm [105]. |
PVP SnCl2·2H2O/Zn(AC)2 | -Voltage = 15 kV -Tip-to-collector distance = 15 cm | Annealed at 600 °C for 3 h at a rate of 2 °C/min | The resulting tubes had a diameter of approximately 800 nm, with a wall thickness of about 100 nm [75]. |
4.3. Gas Sensing Performance
5. Challenges and Prospects
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saxena, P.; Shukla, P. A review on recent developments and advances in environmental gas sensors to monitor toxic gas pollutants. Environ. Prog. Sustain. Energy 2023, 42, e14126. [Google Scholar] [CrossRef]
- Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal oxide semiconductors for gas sensing. Eng. Rep. 2023, 5, e12604. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Korotcenkov, G. Current trends in nanomaterials for metal oxide-based conductometric gas sensors: Advantages and limitations. part 1: 1D and 2D nanostructures. Nanomaterials 2020, 10, 1392. [Google Scholar] [CrossRef]
- Saleh, T.A. Nanomaterials: Classification, properties, and environmental toxicities. Environ. Technol. Innov. 2020, 20, 101067. [Google Scholar] [CrossRef]
- Martín, J.; Maiz, J.; Sacristan, J.; Mijangos, C. Tailored polymer-based nanorods and nanotubes by" template synthesis": From preparation to applications. Polymer 2012, 53, 1149–1166. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, Q.; Wang, C.; Wei, Z.; Xu, L.; Gui, Y. Electrospun ZnO–SnO2 composite nanofibers and enhanced sensing properties to SF6 decomposition byproduct H2S. Front. Chem. 2018, 6, 540. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; He, X.; Li, J.; Gao, X.; Jia, J. Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties. Sens. Actuators B Chem. 2012, 165, 82–87. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, W.; Peng, S.; Zeng, W. Hydrothermal synthesis and acetylene sensing properties of variety low dimensional zinc oxide nanostructures. Sci. World J. 2014, 2014, 489170. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Comini, E. One-dimensional nanostructured oxide chemoresistive sensors. Langmuir 2020, 36, 6326–6344. [Google Scholar] [CrossRef]
- Yang, B.; Myung, N.V.; Tran, T. 1D metal oxide semiconductor materials for chemiresistive gas sensors: A review. Adv. Electron. Mater. 2021, 7, 2100271. [Google Scholar] [CrossRef]
- Hontañón, E.; Vallejos, S. One-Dimensional Metal Oxide Nanostructures for Chemical. In 21st Century Nanostructured Materials: Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture; Intechopen: London, UK, 2022; Volume 927.11, p. 151. [Google Scholar]
- Tong, Y.; Liu, Y.; Dong, L.; Zhao, D.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B 2006, 110, 20263–20267. [Google Scholar] [CrossRef]
- Shen, G.; Tandio, A.R.; Hong, F.C. Hydrothermally synthesized ultrathin zinc oxide nanowires based field-effect transistors. Thin Solid Film. 2016, 618, 100–106. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Q.; Yang, C.; Zhao, Z. Interfacial micro-structure and properties of TiO2/SnO2 heterostructures with rutile phase: A DFT calculation investigation. Appl. Surf. Sci. 2018, 451, 258–271. [Google Scholar] [CrossRef]
- Sharma, D.K.; Shukla, S.; Sharma, K.K.; Kumar, V. A review on ZnO: Fundamental properties and applications. Mater. Today Proc. 2022, 49, 3028–3035. [Google Scholar] [CrossRef]
- Jagadale, S.B.; Patil, V.L.; Vanalakar, S.A.; Patil, P.S.; Deshmukh, H.P. Preparation, characterization of 1D ZnO nanorods and their gas sensing properties. Ceram. Int. 2018, 44, 3333–3340. [Google Scholar] [CrossRef]
- Tshabalala, Z.P.; Mokoena, T.P.; Jozela, M.; Tshilongo, J.; Hillie, T.K.; Swart, H.C.; Motaung, D.E. TiO2 nanowires for humidity-stable gas sensors for toluene and xylene. ACS Appl. Nano Mater. 2020, 4, 702–716. [Google Scholar] [CrossRef]
- Samykano, M. Progress in one-dimensional nanostructures. Mater. Charact. 2021, 179, 111373. [Google Scholar] [CrossRef]
- Cai, Y.H.; Ma, S.Y.; Wei, J.S. Highly sensitive triethylamine sensor with ppb level detection limit based on SnSe nanofibers. Ceram. Int. 2023, 49, 15333–15340. [Google Scholar] [CrossRef]
- Yin, M.; Liu, S. Preparation of ZnO hollow spheres with different surface roughness and their enhanced gas sensing property. Sens. Actuators B Chem. 2014, 197, 58–65. [Google Scholar] [CrossRef]
- Shingange, K. The exploration of lanthanum Based Complexes Oxides: Preparation, Characterization and Gas Sensing Properties. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2019. [Google Scholar]
- Yuan, Z.; Zhang, H.; Li, J.; Meng, F.; Yang, Z.; Zhang, H. Ag nanoparticle-modified ZnO–In2O3 nanocomposites for low-temperature rapid detection hydrogen gas sensors. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Shingange, K.; Swart, H.C.; Mhlongo, G.H. H2S detection capabilities with fibrous-like La-doped ZnO nanostructures: A comparative study on the combined effects of La-doping and post-annealing. J. Alloys Compd. 2019, 797, 284–301. [Google Scholar] [CrossRef]
- Quitério, P.; Apolinário, A.; Sousa, C.T.; Costa, J.D.; Ventura, J.; Araújo, J.P. The cyclic nature of porosity in anodic TiO2 nanotube arrays. J. Mater. Chem. A 2015, 3, 3692–3698. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Xia, C.; Yan, X.; Cheng, P. Template-free hydrothermal synthesis of Flower-like hierarchical zinc oxide nanostructures. Optik 2018, 168, 778–783. [Google Scholar] [CrossRef]
- Moumen, A.; Kaur, N.; Poli, N.; Zappa, D.; Comini, E. One dimensional ZnO nanostructures: Growth and chemical sensing performances. Nanomaterials 2020, 10, 1940. [Google Scholar] [CrossRef]
- Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P.R.; Dutt, A. Photoluminescence of ZnO nanowires: A review. Nanomaterials 2020, 10, 857. [Google Scholar] [CrossRef]
- Nadargi, D.Y.; Umar, A.; Nadargi, J.D.; Lokare, S.A.; Akbar, S.; Mulla, I.S.; Suryavanshi, S.S.; Bhandari, N.L.; Chaskar, M.G. Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors. J. Mater. Sci. 2023, 58, 559–582. [Google Scholar] [CrossRef]
- Shingange, K.; Mhlongo, G.H. Correlating Luminescence Characteristics to Gas-Sensing Performance of Metal Oxides Based Heterostructures. In Luminescent Nanomaterials; Jenny Stanford Publishing: Singapore, 2022; pp. 163–178. [Google Scholar]
- Ye, K.; Li, K.; Lu, Y.; Guo, Z.; Ni, N.; Liu, H.; Huang, Y.; Ji, H.; Wang, P. An overview of advanced methods for the characterization of oxygen vacancies in materials. TrAC Trends Anal. Chem. 2019, 116, 102–108. [Google Scholar] [CrossRef]
- Mhlongo, G.H.; Shingange, K.; Tshabalala, Z.P.; Dhonge, B.P.; Mahmoud, F.A.; Mwakikunga, B.W.; Motaung, D.E. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping. Appl. Surf. Sci. 2016, 390, 804–815. [Google Scholar] [CrossRef]
- Benghanem, M.; Ahmad, Z.; Shkir, M.; Alshahrani, T. Growth of Y3 doped CeO2 films and their structural, optical, photoluminescence, and gas sensing studies. J. Sol-Gel Sci. Technol. 2025, 115, 1567–1579. [Google Scholar] [CrossRef]
- Tyagi, S.; Kumar, A.; Kumar, A.; Gautam, Y.K.; Kumar, V.; Kumar, Y.; Singh, B.P. Enhancement in the sensitivity and selectivity of Cu functionalized MoS2 nanoworm thin films for nitrogen dioxide gas sensor. Mater. Res. Bull. 2022, 150, 111784. [Google Scholar] [CrossRef]
- Kgomo, M.B.; Shingange, K.; Nemufulwi, M.I.; Swart, H.C.; Mhlongo, G.H. Belt-like In2O3 based sensor for methane detection: Influence of morphological, surface defects and textural behavior. Mater. Res. Bull. 2023, 158, 112076. [Google Scholar] [CrossRef]
- Shingange, K.; Mhlongo, G.H.; Motaung, D.E.; Ntwaeaborwa, O.M. Tailoring the sensing properties of microwave-assisted grown ZnO nanorods: Effect of irradiation time on luminescence and magnetic behaviour. J. Alloys Compd. 2016, 657, 917–926. [Google Scholar] [CrossRef]
- Yu, S.; Dong, J.; Wang, H.; Li, S.; Zhu, H.; Yang, T. High-performance trimethylamine gas sensors based on defect-engineering MOF-derived ZnO nanoclusters with tunable surface oxygen vacancies. J. Mater. Chem. A 2022, 10, 25453–25462. [Google Scholar] [CrossRef]
- Sun, K.; Zhan, G.; Zhang, L.; Wang, Z.; Lin, S. Highly sensitive NO2 gas sensor based on ZnO nanoarray modulated by oxygen vacancy with Ce doping. Sens. Actuators B Chem. 2023, 379, 133294. [Google Scholar] [CrossRef]
- Meng, F.; Guo, X. Tuning the oxygen defects and Fermi levels via In3+ doping in SnO2-In2O3 nanocomposite for efficient CO detection. Sens. Actuators B Chem. 2022, 357, 131412. [Google Scholar] [CrossRef]
- Kim, W.; Choi, M.; Yong, K. Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens. Actuators B Chem. 2015, 209, 989–996. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, M.; Li, L.; Zhang, L. ZnO nanorods with doubly positive oxygen vacancies for efficient xylene sensing. ACS Appl. Nano Mater. 2022, 5, 3512–3520. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Kim, H.W.; Ko, W.C.; Choi, H.; Ko, Y.; Jeong, Y.K. Laser-engineered oxygen vacancies for improving the NO2 sensing performance of SnO2 nanowires. J. Mater. Chem. A 2019, 7, 27205–27211. [Google Scholar] [CrossRef]
- Shingange, K.; Swart, H.; Mhlongo, G.H. Ultrafast detection of low acetone concentration displayed by Au-loaded LaFeO3 nanobelts owing to synergetic effects of porous 1D morphology and catalytic activity of Au nanoparticles. ACS Omega 2019, 4, 19018–19029. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, J.; Li, J.; Zhang, N.; Hong, R.; Deng, X.; Tang, P.; Li, D. Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods. Sens. Actuators B Chem. 2017, 241, 895–903. [Google Scholar] [CrossRef]
- Sun, P.; Yu, Y.; Xu, J.; Sun, Y.; Ma, J.; Lu, G. One-step synthesis and gas sensing characteristics of hierarchical SnO2 nanorods modified by Pd loading. Sens. Actuators B Chem. 2011, 160, 244–250. [Google Scholar] [CrossRef]
- Shingange, K.; Tshabalala, Z.P.; Ntwaeaborwa, O.M.; Motaung, D.E.; Mhlongo, G.H. Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J. Colloid Interface Sci. 2016, 479, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Domènech-Gil, G.; Barth, S.; Samà, J.; Pellegrino, P.; Gràcia, I.; Cané, C.; Romano-Rodriguez, A. Gas sensors based on individual indium oxide nanowire. Sens. Actuators B Chem. 2017, 238, 447–454. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, Y.; Yu, Y.; Zhang, B. Oxygen vacancy engineering in photocatalysis. Sol. RRL 2020, 4, 2000037. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Z.; Yang, Y.; Xing, X.; Zou, T.; Wang, Z.; Hong, P.; Peng, S.; Wang, Y. Pd-functionalized SnO2 nanofibers prepared by shaddock peels as bio-templates for high gas sensing performance toward butane. Nanomaterials 2018, 9, 13. [Google Scholar] [CrossRef]
- Raza, M.H.; Di Chio, R.; Movlaee, K.; Amsalem, P.; Koch, N.; Barsan, N.; Neri, G.; Pinna, N. Role of heterojunctions of core–shell heterostructures in gas sensing. ACS Appl. Mater. Interfaces 2022, 14, 22041–22052. [Google Scholar] [CrossRef]
- Chaiyo, P.; Makhachan, C.; Nutariya, J.; Thiabgoh, O.; Sumran, S.; Pukird, S. Electrical and Sensitivity Properties of ZnO/TiO2 Heterojunction Nanocomposites for Ammonia Gas Sensor. J. Phys. Conf. Ser. 2019, 1259, 012005. [Google Scholar]
- Pura, J.L. Optical and electrical properties of low-dimensional crystalline materials: A review. Crystals 2023, 13, 108. [Google Scholar] [CrossRef]
- Musa, I.; Qamhieh, N. Study of optical energy gap and quantum confinment effects in Zinc Oxide nanoparticles and nanorods. Dig. J. Nanomater. Biostruct 2019, 14, 119–125. [Google Scholar]
- Kamarulzaman, N.; Abdul Aziz, N.D.; Kasim, M.F.; Chayed, N.F.; Yahaya Subban, R.H.; Badar, N. Anomalies in wide band gap SnO2 nanostructures. J. Solid State Chem. 2019, 277, 271–280. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, S.; Xin, X.; Zhang, Y.; Wang, B.; Tang, S.; Li, X. Effective interface contact on the hierarchical 1D/2D CoO/NiCo-LDH heterojunction for boosting photocatalytic hydrogen evolution. Appl. Surf. Sci. 2021, 549, 149108. [Google Scholar] [CrossRef]
- Machín, A.; Fontánez, K.; Arango, J.C.; Ortiz, D.; De León, J.; Pinilla, S.; Nicolosi, V.; Petrescu, F.I.; Morant, C.; Márquez, F. One-dimensional (1D) nanostructured materials for energy applications. Materials 2021, 14, 2609. [Google Scholar] [CrossRef]
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Pourhakkak, P.; Taghizadeh, A.; Taghizadeh, M.; Ghaedi, M.; Haghdoust, S. Chapter 1-Fundamentals of adsorption technology. Interface Sci. Technol. 2021, 33, 1–70. [Google Scholar]
- Budinski-Petković, L.; Tošić, T. Adsorption, desorption and diffusion of extended objects on a square lattice. Phys. A Stat. Mech. Its Appl. 2003, 329, 350–356. [Google Scholar] [CrossRef]
- Moseley, P.T. Materials selection for semiconductor gas sensors. Sens. Actuators B Chem. 1992, 6, 149–156. [Google Scholar] [CrossRef]
- Padvi, M.N.; Moholkar, A.V.; Prasad, S.R.; Prasad, N.R. A critical review on design and development of gas sensing materials. Eng. Sci. 2021, 15, 20–37. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, S.; Kim, S.S. A synthesis and sensing application of hollow ZnO nanofibers with uniform wall thicknessesgrown using polymer templates. Nanotechnology 2010, 21, 475601. [Google Scholar] [CrossRef] [PubMed]
- Carrow, J.K.; Kerativitayanan, P.; Jaiswal, M.K.; Lokhande, G.; Gaharwar, A.K. Polymers for bioprinting. In Essentials of 3D Biofabrication and Translation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 229–248. [Google Scholar]
- Tamayol, A.; Najafabadi, A.H.; Aliakbarian, B.; Arab-Tehrany, E.; Akbari, M.; Annabi, N.; Juncker, D.; Khademhosseini, A. Hydrogel templates for rapid manufacturing of bioactive fibers and 3D constructs. Adv. Healthc. Mater. 2015, 4, 2146–2153. [Google Scholar] [CrossRef]
- Hossain, M.K.; Drmosh, Q.A. Polymer-Templated Durable and Hydrophobic Nanostructures for Hydrogen Gas Sensing Applications. Polymers 2021, 13, 4470. [Google Scholar] [CrossRef]
- Blaszczyk-Lezak, I.; Maiz, J.; Sacristán, J.; Mijangos, C. Monitoring the thermal elimination of infiltrated polymer from AAO templates: An exhaustive characterization after polymer extraction. Ind. Eng. Chem. Res. 2011, 50, 10883–10888. [Google Scholar] [CrossRef]
- Omotosho, K.; Tran, J.; Shevchenko, E.V.; Berman, D. Polymer infiltration synthesis of inorganic nanoporous coatings: Does polymer template affect their properties? Surf. Coat. Technol. 2023, 452, 129107. [Google Scholar] [CrossRef]
- Gong, B.; Peng, Q.; Jur, J.S.; Devine, C.K.; Lee, K.; Parsons, G.N. Sequential vapor infiltration of metal oxides into sacrificial polyester fibers: Shape replication and controlled porosity of microporous/mesoporous oxide monoliths. Chem. Mater. 2011, 23, 3476–3485. [Google Scholar] [CrossRef]
- Albayati, A.H.; Al-ani, A.F.; Mohammed, A.M.; Al-Kheetan, M.J.; Moudhafar, M.M.; Jweihan, Y.S. Understanding the effectiveness of elastomeric and plastomeric polymers on the high-temperature performance of asphalt binders. Innov. Infrastruct. Solut. 2025, 10, 388. [Google Scholar] [CrossRef]
- Wu, K.; Guo, X.; Feng, J.; Yang, X.; Li, F.; Wang, X.; Guo, H. Novel Zwitterionic Hydrogels with High and Tunable Toughness for Anti-Fouling Application. Gels 2025, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog. Polym. Sci. 2011, 36, 1254–1276. [Google Scholar] [CrossRef]
- Satchanska, G.; Davidova, S.; Petrov, P.D. Natural and synthetic polymers for biomedical and environmental applications. Polymers 2024, 16, 1159. [Google Scholar] [CrossRef]
- Luo, Y.; Hong, Y.; Shen, L.; Wu, F.; Lin, X. Multifunctional role of polyvinylpyrrolidone in pharmaceutical formulations. AAPS PharmSciTech 2021, 22, 34. [Google Scholar] [CrossRef]
- Senthil, T.; Anandhan, S. Structure–property relationship of sol–gel electrospun ZnO nanofibers developed for ammonia gas sensing. J. Colloid Interface Sci. 2014, 432, 285–296. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Zhang, X.; Wei, L.; Zhang, Y.; Hai, G.; Sun, Y. Enhanced acetone sensing performance based on hollow coral-like SnO2–ZnO composite nanofibers. J. Mater. Sci. Mater. Electron. 2019, 30, 15734–15743. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, Y.; Zhou, M. Toluene sensing properties of SnO2–ZnO hollow nanofibers fabricated from single capillary electrospinning. Solid State Commun. 2011, 151, 895–899. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J.; Yao, P.; Li, X. Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sens. Actuators B Chem. 2014, 192, 543–549. [Google Scholar] [CrossRef]
- Alali, K.T.; Liu, T.; Liu, J.; Liu, Q.; Fertassi, M.A.; Li, Z.; Wang, J. Preparation and characterization of ZnO/CoNiO2 hollow nanofibers by electrospinning method with enhanced gas sensing properties. J. Alloys Compd. 2017, 702, 20–30. [Google Scholar] [CrossRef]
- Liming, J.; Xinmei, L.; Rui, Y.; Zhiqi, Y. Effect of calcination temperature on the structure and gas sensing properties of electrospinning ZnO / Co3O4 nanocomposite fibers. Inorg. Chem. Commun. 2025, 179, 114719. [Google Scholar] [CrossRef]
- Park, J.Y.; Asokan, K.; Choi, S.; Kim, S.S. Growth kinetics of nanograins in SnO2 fibers and size dependent sensing properties. Sens. Actuators B Chem. 2011, 152, 254–260. [Google Scholar] [CrossRef]
- Choi, S.; Park, J.Y.; Kim, S.S. Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. J. Mater. Res. 2011, 26, 1662–1665. [Google Scholar] [CrossRef]
- Katoch, A.; Sun, G.; Choi, S.; Byun, J.; Kim, S.S. Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B Chem. 2013, 185, 411–416. [Google Scholar] [CrossRef]
- Choi, J.; Hwang, I.; Kim, S.; Park, J.; Park, S.; Jeong, U.; Kang, Y.C.; Lee, J. Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators B Chem. 2010, 150, 191–199. [Google Scholar] [CrossRef]
- Kim, W.; Lee, B.; Kim, D.; Kim, H.; Yu, W.; Hong, S. SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gassensing performance. Nanotechnology 2010, 21, 245605. [Google Scholar] [CrossRef]
- Cho, N.G.; Yang, D.J.; Jin, M.; Kim, H.; Tuller, H.L.; Kim, I. Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sens. Actuators B Chem. 2011, 160, 1468–1472. [Google Scholar] [CrossRef]
- Han, C.; Li, X.; Shao, C.; Li, X.; Ma, J.; Zhang, X.; Liu, Y. Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. Sens. Actuators B Chem. 2019, 285, 495–503. [Google Scholar] [CrossRef]
- Li, W.; Ma, S.; Li, Y.; Yang, G.; Mao, Y.; Luo, J.; Gengzang, D.; Xu, X.; Yan, S. Enhanced ethanol sensing performance of hollow ZnO–SnO2 core–shell nanofibers. Sens. Actuators B Chem. 2015, 211, 392–402. [Google Scholar] [CrossRef]
- Tian, L.; Sun, Y.; Huang, H.; Guo, X.; Qiao, Z.; Meng, J.; Zhong, C. Porous ZIF-8 Thin Layer Coating on ZnO Hollow Nanofibers for Enhanced Acetone Sensing. ChemistrySelect 2020, 5, 2401–2407. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Qi, B.; Cheng, J.; Wang, X.; Shang, Y.; Jia, J. Design of SnO2/ZnO@ ZIF-8 Hydrophobic Nanofibers for Improved H2S Gas Sensing. ChemistrySelect 2021, 6, 5488–5495. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.; Bae, T.; Cho, D.; Choi, M.; Bae, G.; Shim, Y.; Jeon, S. 3D ZnO/ZIF-8 Hierarchical Nanostructure for Sensitive and Selective NO2 Sensing at Room Temperature. Small Struct. 2024, 5, 2300503. [Google Scholar] [CrossRef]
- Reddy, C.S.; Murali, G.; Reddy, A.S.; Park, S.; In, I. GO incorporated SnO2 nanotubes as fast response sensors for ethanol vapor in different atmospheres. J. Alloys Compd. 2020, 813, 152251. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, T.; Li, F.; Yang, H.; Liu, S. Enhanced ethanol sensing of SnO2 hollow micro/nanofibers fabricated by coaxial electrospinning. New J. Chem. 2013, 37, 2031–2036. [Google Scholar] [CrossRef]
- Ab Kadir, R.; Li, Z.; Sadek, A.Z.; Abdul Rani, R.; Zoolfakar, A.S.; Field, M.R.; Ou, J.Z.; Chrimes, A.F.; Kalantar-zadeh, K. Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J. Phys. Chem. C 2014, 118, 3129–3139. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Wang, C.; Wei, L.; Liu, Y.; Shao, C. ZnO hollow nanofibers: Fabrication from facile single capillary electrospinning and applications in gas sensors. J. Phys. Chem. C 2009, 113, 19397–19403. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, M.; Du, W. Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sens. Actuators B Chem. 2011, 160, 753–759. [Google Scholar] [CrossRef]
- Wang, L.; Luo, X.; Zheng, X.; Wang, R.; Zhang, T. Direct annealing of electrospun synthesized high-performance porous SnO2 hollow nanofibers for gas sensors. RSC Adv. 2013, 3, 9723–9728. [Google Scholar] [CrossRef]
- Su, P.; Li, W.; Zhang, J.; Xie, X. Chemiresistive gas sensor based on electrospun hollow SnO2 nanotubes for detecting NO at the ppb level. Vacuum 2022, 199, 110961. [Google Scholar] [CrossRef]
- Guo, J.; Li, W.; Zhao, X.; Hu, H.; Wang, M.; Luo, Y.; Xie, D.; Zhang, Y.; Zhu, H. Highly sensitive, selective, flexible and scalable room-temperature NO2 gas sensor based on hollow SnO2/ZnO nanofibers. Molecules 2021, 26, 6475. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, Y.K.; Hong, S.H.; Lim, S.K. Cu/CuO@ ZnO hollow nanofiber gas sensor: Effect of hollow nanofiber structure and P–N junction on operating temperature and sensitivity. Sensors 2019, 19, 3151. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Fu, H.; Zhao, Y.; Tian, K.; Luo, R.; Li, D.; Chen, A. On the construction of hollow nanofibers of ZnO-SnO2 heterojunctions to enhance the NO2 sensing properties. Sens. Actuators B Chem. 2018, 266, 692–702. [Google Scholar] [CrossRef]
- Hsu, K.; Fang, T.; Chen, S.; Kuo, E. Gas sensitivity and sensing mechanism studies on ZnO/La0.8Sr0.2Co0.5Ni0.5O3 heterojunction structure. Ceram. Int. 2019, 45, 8744–8749. [Google Scholar] [CrossRef]
- Le, D.T.T.; Tuan, V.A.; Tonezzer, M.; Hung, C.M.; Hoa, N.D. An electrospinning deposited cobalt oxide nanofiber gas sensing device: Selective enhancement as a thermal electronic nose. RSC Adv. 2025, 15, 15293–15301. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ma, S.Y.; Kang, H.; Shen, X.F.; Wang, T.T.; Jiang, X.H.; Chen, Q. Preparation of Ag-doped ZnO-SnO2 hollow nanofibers with an enhanced ethanol sensing performance by electrospinning. Mater. Lett. 2017, 209, 188–192. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Cheng, X.; Luo, D.; Huang, B.; Sun, S.; Li, X.; Yang, Z. Low-temperature and high-sensitivity Au-decorated thin-walled SnO2 nanotubes sensor for ethanol detection. Mater. Today Commun. 2023, 37, 107217. [Google Scholar] [CrossRef]
- Wan, G.X.; Ma, S.Y.; Sun, X.W.; Sun, A.M.; Li, X.B.; Luo, J.; Li, W.Q.; Wang, C.Y. Synthesis of wrinkled and porous ZnO–SnO2 hollow nanofibers and their gas sensing properties. Mater. Lett. 2015, 145, 48–51. [Google Scholar] [CrossRef]
- Ezhilan, M.; JBB, A.J.; Babu, K.J.; Rayappan, J.B.B. Hierarchically connected electrospun WO3 nanowires–an acetaldehyde sensor. J. Alloys Compd. 2021, 863, 158407. [Google Scholar] [CrossRef]
- Khalil, A.; Kim, J.J.; Tuller, H.L.; Rutledge, G.C.; Hashaikeh, R. Gas sensing behavior of electrospun nickel oxide nanofibers: Effect of morphology and microstructure. Sens. Actuators B Chem. 2016, 227, 54–64. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, N.; Wang, S.; Chen, C.; Zhang, H. Researching the crystal phase effect on gas sensing performance in In2O3 nanofibers. Sens. Actuators B Chem. 2020, 305, 127475. [Google Scholar] [CrossRef]
- Pang, Z.; Yang, Z.; Chen, Y.; Zhang, J.; Wang, Q.; Huang, F.; Wei, Q. A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf. A Physicochem. Eng. Asp. 2016, 494, 248–255. [Google Scholar] [CrossRef]
- Morais, P.V.; Suman, P.H.; Silva, R.A.; Orlandi, M.O. High gas sensor performance of WO3 nanofibers prepared by electrospinning. J. Alloys Compd. 2021, 864, 158745. [Google Scholar] [CrossRef]
- Feng, C.; Kou, X.; Chen, B.; Qian, G.; Sun, Y.; Lu, G. One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sens. Actuators B Chem. 2017, 253, 584–591. [Google Scholar] [CrossRef]
- Dong, S.; Yan, S.; Gao, W.; Liu, G.; Hao, H. A phase separation route to synthesize α-Fe2O3 porous nanofibers via electrospinning for ultrafast ethanol Sensing. J. Electron. Mater. 2018, 47, 3934–3941. [Google Scholar] [CrossRef]
- Cho, N.G.; Kim, I. NO2 gas sensing properties of amorphous InGaZnO4 submicron-tubes prepared by polymeric fiber templating route. Sens. Actuators B Chem. 2011, 160, 499–504. [Google Scholar] [CrossRef]
- Kumar, N.; Srivastava, A.K.; Nath, R.; Gupta, B.K.; Varma, G.D. Probing the highly efficient room temperature ammonia gas sensing properties of a luminescent ZnO nanowire array prepared via an AAO-assisted template route. Dalton Trans. 2014, 43, 5713–5720. [Google Scholar] [CrossRef]
- Islam, M.; Srivastava, A.K.; Basavaraja, B.M.; Sharma, A. “Nano-on-Micro” approach enables synthesis of ZnO nano-cactus for gas sensing applications. Sens. Int. 2021, 2, 100084. [Google Scholar] [CrossRef]
- Imran, M.; Rashid, S.S.A.A.H.; Sabri, Y.; Motta, N.; Tesfamichael, T.; Sonar, P.; Shafiei, M. Template based sintering of WO3 nanoparticles into porous tungsten oxide nanofibers for acetone sensing applications. J. Mater. Chem. C 2019, 7, 2961–2970. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, J.; Wang, Y.; Wang, T.; Wei, M.; Li, F.; Li, D.; Yang, Y.; Yu, H.; Dong, X. Polyoxometalates electron acceptor-intercalated In2O3@SnO2 nanofibers for chemiresistive ethanol gas sensors. Sens. Actuators B Chem. 2024, 410, 135728. [Google Scholar] [CrossRef]
- Sun, B.; Liu, M.; Wang, Q.; Song, P. Enhanced formaldehyde gas sensing properties of p-LaFeO3/n-Fe2O3 composite nanofibers synthesized by electrospinning method. Sens. Actuators B Chem. 2025, 426, 137010. [Google Scholar] [CrossRef]
- Nemufulwi, M.I.; Swart, H.C.; Shingange, K.; Mhlongo, G.H. ZnO/ZnFe2O4 heterostructure for conductometric acetone gas sensors. Sens. Actuators B Chem. 2023, 377, 133027. [Google Scholar] [CrossRef]
- Shingange, K.; Swart, H.C.; Mhlongo, G.H. Enhanced ethanol sensing abilities of fiber-like La1−xCexCoO3(0 ≤x ≤ 0.2) perovskites based-sensors at low operating temperatures. Sens. Actuators B Chem. 2023, 377, 133012. [Google Scholar] [CrossRef]
- Goto, T.; Hyodo, T.; Ueda, T.; Kamada, K.; Kaneyasu, K.; Shimizu, Y. CO-sensing properties of potentiometric gas sensors using an anion-conducting polymer electrolyte and Au-loaded metal oxide electrodes. Electrochim. Acta 2015, 166, 232–243. [Google Scholar] [CrossRef]
- Mabakachaba, B.M.; Numan, N.; Shingange, K.; Madiba, I.G.; Letsoalo, M.R.; Khumalo, Z.M.; Nkosi, M.; Mhlongo, G.H.; Halindintwali, S.; Maaza, M. Synthesis and NO2 sensing characteristics of Mg-functionalized VO2 (M) Nanorods. Mater. Sci. Eng. B 2025, 318, 118232. [Google Scholar] [CrossRef]
- Song, Z.; Zhou, S.; Qin, Y.; Xia, X.; Sun, Y.; Han, G.; Shu, T.; Hu, L.; Zhang, Q. Flexible and wearable biosensors for monitoring health conditions. Biosensors 2023, 13, 630. [Google Scholar] [CrossRef]
Gas Type | Reaction Type | Electron Flow | Effect on n-Type MOS | Effect on p-Type MOS |
---|---|---|---|---|
Reducing gas (e.g., CO, H2, NH3). | Oxidation of gas. | Releases electrons into MOS. | Resistance decreases. | Resistance increases. |
Oxidizing gas (e.g., NO2, O3, Cl2). | Reduction of gas. | Withdraws electrons from MOS. | Resistance increases. | Resistance decreases. |
Type | Polymer | Properties | Applications |
---|---|---|---|
Natural | Chitosan | Biodegradable, biocompatible, antimicrobial | Drug delivery, porous structures |
Alginate | Water-soluble, forms gels, high ion exchange capacity | Tissue engineering, hydrogels | |
Cellulose | Abundant, biodegradable, high tensile strength | Nanocomposites, nanostructures | |
Gelatin | Biocompatible, forms hydrogels, high water affinity | Drug delivery, porous structures | |
Synthetic | Polystyrene | Rigid, transparent, good chemical resistance | Microspheres, nanostructures |
Polyvinyl Alcohol (PVA) | Water-soluble, biodegradable, good film-forming properties | Drug delivery, porous materials | |
Polylactic Acid (PLA) | Biodegradable, biocompatible, good mechanical properties | Tissue engineering, scaffolds | |
Polyvinylpyrrolidone (PVP) | Water-soluble, biocompatible, excellent film-forming | Drug delivery, stabilizers |
Polymer Template/MOS | Method | Morphology | Gas Sensing Performance | Refs. |
---|---|---|---|---|
PVP-WO3 | Electrospinning | Nanofibers | ~ High selectivity towards 0.5 ppm of NO2 at 150 °C. | [110] |
PVP-In doped NiO | Electrospinning | Nanofibers | ~ Enhanced response to 200 ppm towards methanol at 300 °C. Response and recovery time of 273 s/26 s at 200 ppm. | [111] |
PVP-InGaZnO4 | RF sputtering coating. | Submicron tubes | ~ High response of 109.5 towards 2 ppm NO2 at 300 °C. | [113] |
PVP-α-Fe2O3 | Electrospinning | Nanofibers | ~Highly sensitive and ultrafast recovery time of 7 and 5 s towards 1000 ppm ethanol at 340 °C. | [112] |
AAO-ZnO | Vacuum sucking | Nanowires | ~ 68% sensitivity towards 50 ppm NH3 with response and recovery time of 28 s and 29 s at room temperature. | [114] |
PVP-In2O3 | Electrospinning | Belt-like | ~ Response factor of 1.1 to 90 ppm of methane at 100 °C, with response and recovery time of 36 s and 44 s, and LOD of 0.18 ppm. | [35] |
PAN-ZnO | Vapour Liquid Solid | Nanofibers | ~ Excellent sensitivity and selectivity towards ethanol. ~ The sensitivity for ethanol increased from 2.59 for 10 ppm to 20.23 for 500 ppm. | [115] |
PVP-WO3 | Electrospinning | Nanofibers | ~ The porous WO3 nanofibers detected 700 ppb of acetone with 3 V bias voltage using photo-activation with a response/recovery time of 33 s/42 s and excellent repeatability. | [116] |
PVP/In2O3@PW12@SnO2 | Electrospinning | Nanofibers | ~ Response of 22.6 towards 100 ppm ethanol with LOD of 13.9 ppb. | [117] |
PVP/LaFeO3/Fe2O3 | Electrospinning | Nanofibers | ~ LaFeO3:Fe2O3 = 10:1 sensor had a response of 38.46 towards 100 ppm formaldehyde at 120 °C, with response and recovery time of 3 s and 11 s. | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkuna, K.S.; Mokhena, T.C.; Erasmus, R.; Shingange, K. Polymer Template Selection for 1D Metal Oxide Gas Sensors: A Review. Processes 2025, 13, 3180. https://doi.org/10.3390/pr13103180
Nkuna KS, Mokhena TC, Erasmus R, Shingange K. Polymer Template Selection for 1D Metal Oxide Gas Sensors: A Review. Processes. 2025; 13(10):3180. https://doi.org/10.3390/pr13103180
Chicago/Turabian StyleNkuna, Khanyisile Sheryl, Teboho Clement Mokhena, Rudolph Erasmus, and Katekani Shingange. 2025. "Polymer Template Selection for 1D Metal Oxide Gas Sensors: A Review" Processes 13, no. 10: 3180. https://doi.org/10.3390/pr13103180
APA StyleNkuna, K. S., Mokhena, T. C., Erasmus, R., & Shingange, K. (2025). Polymer Template Selection for 1D Metal Oxide Gas Sensors: A Review. Processes, 13(10), 3180. https://doi.org/10.3390/pr13103180