Insight into the Crack Evolution Characteristics Around the Ridged PDC Cutter During Rock Breaking Based on the Finite–Discrete Element Method
Abstract
1. Introduction
2. Basic Principle of the FDEM
2.1. Rock Constitutive Model
2.2. Discrete Elements Constitutive Model
3. Numerical Modeling
3.1. Geometry Model
3.2. Mesh and Boundary Conditions
4. Results
4.1. Fragmentation Process Analysis
4.2. Analysis of Cracks Ahead of the Cutter
4.3. Analysis of Cracks in Flank Side of the Cutter
4.4. Analysis of Sub-Cutter Cracks
5. Discussion
6. Conclusions
- (1)
- The ridged cutter breaks rock primarily through a combination of tension and shear, distinct from the shear-based mechanism of conventional planar cutters.
- (2)
- The rock-breaking proceeds through three stages: compaction, micro-failure, and volumetric fragmentation, with damage patterns exhibiting regional heterogeneity.
- (3)
- Crack evolution follows a consistent “tension-initiated and shear-propagated” sequence. Tensile damage initiates first at crack fronts due to stress concentration, while shear damage subsequently develops at the rear under high shear stress, culminating in mixed macro-cracks.
- (4)
- The spatial distribution of cracks is highly heterogeneous. The zone ahead of the cutter contains mixed tensile–shear cracks, forming upward-concave, horizontal, and 45° oblique cracks. The sub-cutter zone is dominated by tensile cracks. The flank zone features a radial stress field accompanied by oblique 45° cracks.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, D.F.; Jia, C.Z.; Zhao, W.Z.; Xu, F.Y.; Luo, X.R.; Liu, W.H.; Tang, Y.; Gao, S.L.; Zheng, X.J.; Li, D.; et al. Research progress and key issues of ultra-deep oil and gas exploration in China. Pet. Explor. Dev. 2023, 50, 1333–1344. [Google Scholar] [CrossRef]
- Hussein, A.; Al-Anezi, N.; Al-Sarraf, A.; Akshaya, K.; Hussain, A.; Harish, M.; Osama, G.; Zhang, Y. Thermally Stable Cutter Technology Advances PDC Performance in Hard and Abrasive Formations. In Proceedings of the IPTC 2013: International Petroleum Technology Conference, Beijing, China, 26–28 March 2013. [Google Scholar] [CrossRef]
- Clegg, J. Faster, Longer, and More Reliable Bit Runs With New-Generation Thermostable PDC Cutter. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–27 September 2006. [Google Scholar] [CrossRef]
- Zou, D.; Pan, L.; Cui, Y.; Xu, J. Rock Breaking Mechanism and Experimental Study of Axe-shaped PDC Cutter. Chin. Pet. Mach. 2022, 50, 34–40. [Google Scholar] [CrossRef]
- Xu, W.; Shi, H.; Cao, Q.; Shi, X.; Hu, X.; Xiong, C.; Chen, H. Experimental Study on Conglomerate Breaking Characteristic of Conical PDC cutter. Chin. Pet. Mach. 2021, 49, 9–16. [Google Scholar] [CrossRef]
- Xiong, C.; Huang, Z.; Shi, H.; Yang, R.; Wu, G.; Chen, H.; He, W. Performances of a stinger PDC cutter breaking granite: Cutting force and mechanical specific energy in single cutter tests. Pet. Sci. 2023, 20, 1087–1103. [Google Scholar] [CrossRef]
- Fu, X.; Huang, Z.; Shi, H.; Song, H.; Wu, H. Comparison of fracture characteristics of different PDC cutters penetrating carbonate rock. Geoenergy Sci. Eng. 2023, 223, 211536. [Google Scholar] [CrossRef]
- Shao, F.; Liu, W.; Gao, D. Effects of the chamfer and materials on performance of PDC cutters. J. Pet. Sci. Eng. 2021, 205, 108887. [Google Scholar] [CrossRef]
- Zhang, M. Simulation of PDC Bit Rock Breaking Based on Discrete Element Method. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2017. [Google Scholar]
- Yao, J.L.; Liu, B. Discrete element study on rock failure mechanism by shaped PDC cutter under formation conditions with in-situ stress and temperature. In Proceedings of the International Geomechanics Symposium, Abu Dhabi, United Arab Emirates, 7–9 November 2022. [Google Scholar] [CrossRef]
- Kuang, Y.C.; Peng, Y.Z.; Zhang, Y. Numerical Simulation and Experiment on Rock Breaking of PDC Bits. Chin. Pet. Mach. 2015, 43, 10–13. [Google Scholar] [CrossRef]
- Gao, M.Y.; Zhang, K.; Zhou, Q.; Zhou, Y.F.; Liu, B. Research on PDC High Speed Rock Cutting Mechanism Based on ABAQUS. Chin. Pet. Mach. 2019, 47, 471–477. [Google Scholar] [CrossRef]
- Zhu, X.H.; Li, H. Numerical Simulation on Mechanical Special Energy of PDC Cutter Rock-cutting. J. Basic Sci. Eng. 2015, 23, 182–191. [Google Scholar] [CrossRef]
- Liu, J.X.; Zheng, H.L.; Kuang, Y.C.; Xie, H.; Qin, C. 3D numerical simulation of rock cutting of an innovative non-planar face PDC cutter and experimental verification. Appl. Sci. 2019, 9, 4372. [Google Scholar] [CrossRef]
- Chen, H.D.; Liu, H.M.; Han, X.; Jin, Y.; Liang, J.W.; Wang, S.G.; Lu, Y.H. Study on Rock Breaking Mechanism and Optimization of PDC Cutter for Deep Water HTHP Plastic Mudstone. In Proceedings of the ARMA U.S. Rock Mechanics/Geomechanics Symposium, Santa Fe, NM, USA, 26–29 June 2022. [Google Scholar] [CrossRef]
- Shao, F.Y.; Liu, W.; Gao, D.L.; Ye, Y.C. Study on rock-breaking mechanism of axe-shaped PDC cutter. J. Pet. Sci. Eng. 2021, 205, 108922. [Google Scholar] [CrossRef]
- Qin, C.S.; Sun, H.B.; Li, L.P.; Liu, X.G.; Liu, Z.H.; Feng, C.; Sun, Z.Z. Continuous and discontinuous numerical simulation of the breaking process for PDC cutter under composite impact loading. Coal Geol. Explor. 2025, 51, 109–120. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z.J.; Chu, Z.F.; Weng, L.; Xu, X.Y.; Zhou, Y.; Gao, B.; Mao, C.G. Rock breaking mechanism with mechanical impact under confining pressure based on FDEM. J. Cent. South Univ. Sci. Technol. 2023, 54, 866–879. [Google Scholar] [CrossRef]
- Wu, Z.J.; Zhang, P.L.; Liu, Q.S.; Li, W.F.; Jiang, H.Z. Dynamic failure analysis of reinforced concrete slab based on cohesive element under explosive load. Eng. Mech. 2018, 35, 79–90. [Google Scholar] [CrossRef]
- Feng, C.; Li, S.H.; Zheng, B.X.; Cui, X.R.; Jia, J.J. Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM. Explos. Shock Waves 2019, 39, 110–120. [Google Scholar] [CrossRef]
- Munjiza, A. The Combined Finite-Discrete Element Method; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Li, P.T.; Liu, Q.S. Investigation of tunnel excavation numerical analysis method for the combined finite-discrete element method. Eng. Anal. Bound. Elem. 2024, 165, 105779. [Google Scholar] [CrossRef]
- Wu, S.C.; Li, L.P.; Zhang, X.P. Rock Mechanics; Higher Education Press: Beijing, China, 2021. [Google Scholar]
- Huang, A.L.; Guo, W.; Zou, Y.; Zou, J.W.; Deng, R.; Ye, B.L. Numerical simulation of rock breaking by PDC cutter with finite-discrete-infinite element method. Geoenergy Sci. Eng. 2023, 225, 211725. [Google Scholar] [CrossRef]
- Du, C.L.; Liu, Q.S.; Lei, Y.M.; Liu, H.; Bo, Y. The Calibration of Microscopic Parameters for the 3D Finite-Discrete Element Method. Rock Mech. Rock Eng. 2024, 57, 2195–2212. [Google Scholar] [CrossRef]
- Zhao, H. Experimental and Simulation Research on Rock-Breaking Mechanism of Axe-Shaped PDC Cutter. Master’s Thesis, China University of Petroleum (Beijing), Beijing, China, 2023. [Google Scholar]
- Shao, L.T.; Li, M.; Ding, M.L. Study on the Mechanical Model of Slag and Quasi-Static Analysis of Slag Samples in the Radiant Syngas Cooler. Asia-Pac. J. Chem. Eng. 2025, e70066. [Google Scholar] [CrossRef]
- Zhou, G.T.; Xu, Z.L. 3D mesoscale investigation on the compressive fracture of concrete with different aggregate shapes and interface transition zones. Constr. Build. Mater. 2023, 393, 132111. [Google Scholar] [CrossRef]
- Naderi, S.; Tu, W.L.; Zhang, M.Z. Meso-Scale Modelling of Compressive Fracture in Concrete with Irregularly Shaped Aggregates. Constr. Build. Mater. 2021, 140, 106317. [Google Scholar] [CrossRef]
- Liu, Z.H.; Kong, C.Y.; Lv, R.; Ma, Z.K.; Wei, C.Y. Characteristic of rock breaking by a saw blade-impact hammer combination cutterhead. J. Vib. Shock 2024, 43, 301–311. [Google Scholar] [CrossRef]
- Liu, Z.H.; Lv, R.; Zheng, Y.L.; Ma, Z.G.; Liu, K.; Wei, C.Y. Experimental and Numerical Investigation of Rock Breaking Performance by Single Impact Hammer Under Saw Blade Pre-slotted Conditions. Rock Mech. Rock Eng. 2025, 58, 3501–3521. [Google Scholar] [CrossRef]
- Gao, W.; Liu, X.; Hu, J.; Feng, Y.T. A novel bilinear constitutive law for cohesive elements to model the fracture of pressure-dependent rocks. Rock Mech. Rock Eng. 2022, 55, 521–540. [Google Scholar] [CrossRef]
- Yang, R.S.; Kang, Y.Q.; Yang, L.Y.; Liu, K.; Ding, C.X.; Fan, J.H. Influence of the postion and depth of pre-cutting kerfs on the rock breaking by SBM cutter. J. China Coal Soc. 2024, 49, 415–425. [Google Scholar] [CrossRef]
- Guan, Z.C.; Hu, H.G.; Wang, B.; Sun, M.W.; Liu, Y.W.; Xu, Y.Q. Experimental study on rock-breaking efficiency of PDC bit based on mechanical specific energy and sliding frictional coefficient. J. China Univ. Pet. Nat. Sci. Ed. 2019, 43, 92–100. [Google Scholar] [CrossRef]
- Yang, X.W.; Xiang, J.S.; Latham, J.P.; Naderi, S.; Wang, Y.H. Cracking and fragmentation in percussive drilling: Insight from FDEM simulation. J. Rock Mech. Geotech. Eng. 2025. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Density (kg/m3) | 2230 |
Young’s modulus (GPa) | 4.049 |
Poisson’s ratio | 0.3 |
Compressive strength (MPa) | 25.54 |
Tensile strength (MPa) | 1.631 |
Shear strength (MPa) | 7.0 |
Friction angle (°) | 27 |
Cohesion (MPa) | 7.0 |
Normal stiffness (N/mm) | 125 |
Shear stiffness (N/mm) | 62.5 |
Mode-I fracture energies (N/mm2) | 0.02 |
Mode-II fracture energies (N/mm2) | 0.25 |
Location | Element Number | SDEG (n.s.t) |
---|---|---|
A1 | 177,000 | (0.81, 0.74, 0.73) |
A2 | 129,858 | (0.83, 0.79, 0.79) |
A3 | 131,456 | (0.87, 0.76,0.78) |
A4 | 179,636 | (0.90, 0.90, 0.90) |
A5 | 93,987 | (0.90, 0.90, 0.90) |
A6 | 111,701 | (0.90, 0.90, 0.90) |
Location | Element Number | SDEG (n.s.t) |
---|---|---|
B1 | 122,949 | (0.81, 0, 0) |
B2 | 178,263 | (0.86, 0, 0) |
B3 | 183,816 | (0.90, 0.19, 0.90) |
B4 | 92,743 | (0.90, 0.90, 0.90) |
B5 | 94,289 | (0.90, 0.90, 0.90) |
B6 | 134,529 | (0.90, 0.90, 0.90) |
Location | Element Number | SDEG (n.s.t) |
---|---|---|
C1 | 103,827 | (0.68, 0.50, 0.53) |
C2 | 168,377 | (0.89, 0.55, 0.58) |
C3 | 89,598 | (0.90, 0.83, 0.88) |
C4 | 167,640 | (0.90, 0.83, 0.84) |
C5 | 190,704 | (0.90, 0.77, 0.23) |
C6 | 111,522 | (0.90, 0.90, 0.90) |
Region | Element Number | Dominant Failure Mode (Based on SDEG) | Local Stress State Cause | Boundary and Loading Conditions |
---|---|---|---|---|
Ahead of cutter | Concave arc crack, 45° crack, horizontal crack | Tensile–shear mixed | Intersection of prominent tensile and shear stress bands | Free surface ahead; direct extrusion load from cutter |
Sub cutter | Obliquely downward crack (at 25°) | Tensile-dominated | Prominent tensile stress band; weak shear stress band | High confinement; tensile deformation induced by direct extrusion |
Cutter flank | Radially distributed, oblique cracks (at 45°) | Tensile initiation, mixed-mode propagation | Radial tensile stress field; complex stress from point load | Local point load effect of the ridge |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Hu, T.; Ma, X.; Mei, C.; Dong, C. Insight into the Crack Evolution Characteristics Around the Ridged PDC Cutter During Rock Breaking Based on the Finite–Discrete Element Method. Processes 2025, 13, 3039. https://doi.org/10.3390/pr13103039
Liu J, Hu T, Ma X, Mei C, Dong C. Insight into the Crack Evolution Characteristics Around the Ridged PDC Cutter During Rock Breaking Based on the Finite–Discrete Element Method. Processes. 2025; 13(10):3039. https://doi.org/10.3390/pr13103039
Chicago/Turabian StyleLiu, Jianxun, Taixue Hu, Xikun Ma, Chengbin Mei, and Chaoqun Dong. 2025. "Insight into the Crack Evolution Characteristics Around the Ridged PDC Cutter During Rock Breaking Based on the Finite–Discrete Element Method" Processes 13, no. 10: 3039. https://doi.org/10.3390/pr13103039
APA StyleLiu, J., Hu, T., Ma, X., Mei, C., & Dong, C. (2025). Insight into the Crack Evolution Characteristics Around the Ridged PDC Cutter During Rock Breaking Based on the Finite–Discrete Element Method. Processes, 13(10), 3039. https://doi.org/10.3390/pr13103039