Ageing Studies of Pt- and Pd-Based Catalysts for the Combustion of Lean Methane Mixtures
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kesselring, J. Catalytic combustion. In Advanced Combustion Methods; Weinberg, J., Ed.; Academic Press: London, UK; pp. 237–275.
- Prasad, R.; Kennedy, L.; Ruckenstein, E. Catalytic combustion. Catal. Rev. Sci. Eng. 1984, 29, 219–267. [Google Scholar] [CrossRef]
- Hayes, R.E.; Kolaczkowski, S.T. Introduction to Catalytic Combustion; Gordon and Breach Science Publishers: Reading, UK, 1997. [Google Scholar]
- Ismagilov, Z.; Kerzhentsev, M. Catalytic fuel combustion—A way of reducing emission of nitrogen oxides. Catal. Rev. Sci. Eng. 1990, 32, 51–103. [Google Scholar] [CrossRef]
- Sadamori, H. Application concepts and evaluation of small-scale catalytic combustors for natural gas. Catal. Today 1999, 47, 325–338. [Google Scholar] [CrossRef]
- Etemad, S.; Karim, H.; Smith, L.; Pfefferle, W. Advanced technology catalytic combustor for high temperature ground power gas turbine applications. Catal. Today 1999, 47, 305–313. [Google Scholar] [CrossRef]
- Forzatti, P. Status and perspectives of catalytic combustion for gas turbines. Catal. Today 2003, 83, 3–188. [Google Scholar] [CrossRef]
- Hayes, R.E. Catalytic solutions for fugitive methane emissions in the oil and gas sector. Chem. Eng. Sci. 2004, 59, 4073–4080. [Google Scholar] [CrossRef]
- Zanoletti, M.; Klvana, D.; Kirchnerova, J.; Perrier, M.; Guy, C. Auto-cyclic reactor: Design and evaluation for the removal of unburned methane from emissions of natural gas engines. Chem. Eng. Sci. 2009, 64, 945–954. [Google Scholar] [CrossRef]
- Kolios, G.; Gritsch, A.; Morillo, A.; Tuttlies, U.; Bernnat, J.; Opferkuch, F.; Eigenberger, G. Heat-integrated reactor concepts for catalytic reforming and automotive exhaust purification. Appl. Catal. B Environ. 2007, 70, 16–30. [Google Scholar] [CrossRef]
- Bernnat, J.; Rink, M.; Tuttlies, U.; Danner, T.; Nieken, U.; Eigenberger, G. Heat-integrated concepts for automotive exhaust purification. Top. Catal. 2009, 52, 2052–2057. [Google Scholar] [CrossRef]
- Chen, J.; Arandiyan, H.; Gao, X.; Li, J. Recent advances in catalysts for methane combustion. Catal. Surv. Asia 2015, 19, 140–171. [Google Scholar] [CrossRef]
- Cimino, S.; Di Benedetto, A.; Pirone, R.; Russo, G. Transient behaviour of perovskite-based monolithic reactors in the catalytic combustion of methane. Catal. Today 2001, 69, 95–103. [Google Scholar] [CrossRef]
- Park, S.; Hwang, H.; Moon, J. Catalytic combustion of methane over rare earth stannate pyrochlore. Catal. Lett. 2003, 87, 219–223. [Google Scholar] [CrossRef]
- Feng, S.; Wang, Z.; Yang, P. Effect of Substitution of Cobalt for Iron in Sr4Fe6O13-delta on the Catalytic Activity for Methane Combustion. Chin. J. Chem. 2011, 29, 451–454. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane. Chin. Chem. Lett. 2018, 29, 252–260. [Google Scholar] [CrossRef]
- Zhu, W.; Jin, J.; Chen, X.; Li, C.; Wang, T.; Tsang, C.; Liang, C. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion. Environ. Sci. Pollut. Res. 2018, 25, 5643–5654. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Z.; Du, W.; Zhu, G. Morphological effect of CeO2 catalysts on their catalytic performance in lean methane combustion. Chem. Lett. 2020, 49, 461–464. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Arandiyan, H.; Peng, Y.; Chang, H.; Li, J. Low temperature complete combustion of methane over cobalt chromium oxides catalysts. Catal. Today 2013, 201, 12–18. [Google Scholar] [CrossRef]
- Choya, A.; de Rivas, B.; González-Velasco, J.; Gutiérrez-Ortiz, J.; López-Fonseca, R. Oxidation of residual methane from VNG vehicles over Co3O4-based catalysts: Comparison among bulk, Al2O3-supported and Ce-doped catalysts. Appl. Catal. B Environ. 2018, 237, 844–854. [Google Scholar] [CrossRef]
- Liotta, L.; Di Carlo, G.; Pantaleo, G.; Deganello, G. Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity. Catal. Commun. 2005, 6, 329–336. [Google Scholar] [CrossRef]
- Cullis, C.F.; Willatt, B.M. Oxidation of methane over supported precious metal catalysts. J. Catal. 1983, 83, 267–285. [Google Scholar] [CrossRef]
- Gélin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. App. Cat. B Environ. 2002, 39, 1–37. [Google Scholar] [CrossRef]
- Choudhary, T.; Banerjee, S.; Choudhary, V. Catalysts for combustion of methane and lower alkanes. Appl. Catal. A Gen. 2002, 234, 1–23. [Google Scholar] [CrossRef]
- Ciuparu, D.; Lyubovsky, M.; Altman, E.; Pfefferle, L.; Datye, A. Catalytic combustion of methane over palladium-based catalysts. Catal. Rev. Sci. Eng. 2002, 44, 593–649. [Google Scholar] [CrossRef]
- Monai, M.; Montini, T.; Gorte, R.; Fornasiero, P. Catalytic Oxidation of Methane: Pd and Beyond. Eur. J. Inorg. Chem. 2018, 25, 2884–2893. [Google Scholar] [CrossRef]
- Becker, E.; Carlsson, P.A.; Grönbeck, H.; Skoglundh, M. Methane oxidation over alumina supported platinum investigated by time-resolved in situ XANES spectroscopy. J. Catal. 2007, 252, 11–17. [Google Scholar] [CrossRef]
- Deutschmann, O.; Maier, L.; Riedel, U.; Stroemman, A.; Dibble, R. Hydrogen assisted catalytic combustion of methane on platinum. Catal. Today 2000, 59, 141–150. [Google Scholar] [CrossRef]
- Bui, P.; Vlachos, D.; Westmoreland, P. Catalytic ignition of methane/oxygen mixtures over platinum surfaces: Comparison of detailed simulations and experiments. Surf. Sci. 1997, 385, L1029–L1034. [Google Scholar] [CrossRef]
- Deutschmann, O.; Behrendt, F.; Warnatz, J. Modeling and simulation of heterogeneous oxidation of methane on a platinum foil. Catal. Today 1994, 21, 461–470. [Google Scholar] [CrossRef]
- Reinke, M.; Mantzaras, J.; Bombach, R.; Schenker, S.; Yylli, N. Effects of H2O and CO2 Dilution on the Catalytic and Gas-Phase Combustion of Methane, over Platinum at Elevated Pressures. Combust. Sci. Tech 2006, 179, 553–600. [Google Scholar] [CrossRef][Green Version]
- Mazzarino, I.; Barresi, A. Catalytic combustion of VOC mixtures in a monolith reactor. Catal. Today 1993, 17, 335–348. [Google Scholar] [CrossRef]
- Niwa, M.; Awano, K.; Murakami, Y. Activity of supported platinum catalysts for methane oxidation. Appl. Catal. 1983, 7, 317–325. [Google Scholar] [CrossRef]
- O’Connell, M.; Kolb, G.; Zapf, R.; Men, Y.; Hessel, V. Bimetallic catalysts for the catalytic combustion of methane using microreactor technology. Catal. Today 2009, 144, 306–311. [Google Scholar] [CrossRef]
- Trimm, D.; Lam, C. The combustion of methane on platinum-alumina fibre catalysts I Kinetics and Mechanism. Chem. Eng. Sci. 1980, 35, 1405–1413. [Google Scholar] [CrossRef]
- Jodeiri, N.; Wu, L.; Mmbaga, J.; Hayes, R.E.; Wanke, S.E. Catalytic Combustion of VOC in a Counter-diffusive Reactor. Catal. Today 2010, 155, 147–153. [Google Scholar] [CrossRef]
- Cullis, C.; Nevell, T.; Trimm, D. Role of the catalyst support in the oxidation of methane over palladium. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1972, 68, 1406–1412. [Google Scholar] [CrossRef]
- Schwartz, W.; Ciuparu, D.; Pfefferle, L. Combustion of methane over palladium-based catalysts: Catalytic deactivation and role of the Support. J. Phys. Chem. C 2012, 116, 8587–8593. [Google Scholar] [CrossRef]
- Schwartz, W.; Pfefferle, L.D. Combustion of methane over palladium-based catalysts: Support interactions. J. Phys. Chem. C 2012, 116, 8571–8578. [Google Scholar] [CrossRef]
- Escandon, L.; Ordonez, S.; Vega, A.; Diez, F. Oxidation of methane over palladium catalysts: Effect of the support. Chemosphere 2005, 58, 9–17. [Google Scholar] [CrossRef]
- Kumar, R.; Hayes, R.; Semagina, N. Effect of support on Pd-catalyzed methane-lean combustion in the presence of water: Review. Catal. Today 2021, 382, 82–95. [Google Scholar] [CrossRef]
- Garbowski, E.; Feumi-Jantou, C.; Mouaddib, N.; Primet, M. Catalytic combustion of methane over palladium supported on alumina catalysts: Evidence for reconstruction of particles. Appl. Catal. A Gen. 1994, 109, 277–292. [Google Scholar] [CrossRef]
- Friberg, I.; Sadokhina, N.; Olsson, L. Complete methane oxidation over Ba modified Pd/Al2O3: The effect of water vapour. Appl. Catal. B Environ. 2018, 231, 242–250. [Google Scholar] [CrossRef]
- Demoulin, O.; Navez, M.; Ruiz, P. Investigation of the behavior of a Pd/γ-Al2O3 catalyst during methane combustion reaction using in situ DRIFT spectroscopy. Appl. Catal. A Gen. 2005, 295, 59–70. [Google Scholar] [CrossRef]
- Demoulin, O.; Navez, M.; Gaigneaux, E.; Ruiz, P.; Mamede, A.; Granger, P.; Payen, E. Operando resonance Raman spectroscopic characterisation of the oxidation state of palladium in Pd/g-Al2O3 catalysts during the combustion of methane. Phys. Chem. Chem. Phys. 2003, 5, 4394–4401. [Google Scholar] [CrossRef]
- Datye, A.; Bravo, J.; Nelson, T.; Atanasova, P.; Lyubovsky, M.; Pfefferle, L. Catalyst microstructure and methane oxidation reactivity during the Pd-PdO transformation on alumina supports. Appl. Catal. A Gen. 2000, 198, 179–196. [Google Scholar] [CrossRef]
- Ciuparu, D.; Perkins, E.; Pfefferle, L. In situ DR-FTIR investigation of surface hydroxyls on γ-Al2O3 supported PdO catalysts during methane combustion. Appl. Catal. A Gen. 2004, 263, 145–153. [Google Scholar] [CrossRef]
- Castellazzi, P.; Groppi, G.; Forzatti, P.; Baylet, A.; Marecot, P.; Duprez, D. Role of Pd loading and dispersion on redox behaviour and CH4 combustion activity of Al2O3 supported catalysts. Catal. Today 2010, 155, 18–26. [Google Scholar] [CrossRef]
- Hicks, R.; Qi, H.; Young, M.; Lee, R. Effect of catalyst structure on methane oxidation over palladium on alumina. J. Catal. 1990, 122, 295–306. [Google Scholar] [CrossRef]
- Hong, E.; Kim, C.; Lim, D.; Cho, H.; Shin, C. Catalytic methane combustion over Pd/ZrO2 catalysts: Effects of crystalline structure and textural properties. Appl. Catal. B Environ. 2018, 232, 544–552. [Google Scholar] [CrossRef]
- Guerrero, S.; Araya, P.; Wolf, E. Methane oxidation on Pd supported on high area zirconia catalysts. Appl. Catal. A Gen. 2006, 298, 243–253. [Google Scholar] [CrossRef]
- Fujimoto, F.; Ribiero, R.; Avalos Borja, A.; Iglesia, E. Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J. Catal. 1998, 179, 431–442. [Google Scholar] [CrossRef][Green Version]
- Carstens, J.; Su, S.; Bell, A. Factors Affecting the Catalytic Activity of Pd/ZrO2 for the Combustion of Methane. J. Catal. 1998, 176, 136–142. [Google Scholar] [CrossRef]
- Ibashi, W.; Groppi, G.; Forzatti, P. Kinetic measurement of CH4 combustion over a 10% PdO/ZrO2 catalyst using an annular flow micro reactor. Catal. Today 2003, 83, 115–129. [Google Scholar] [CrossRef]
- Araya, P.; Guerrero, S.; Robertson, J.; Gracia, F. Methane combustion over Pd/SiO2 catalysts with different degrees of hydrophobicity. Appl. Catal. A Gen. 2005, 283, 225–233. [Google Scholar] [CrossRef]
- Bassil, J.; Al Barazi, A.; Da Costa, P.; Boutros, M. Catalytic combustion of methane over mesoporous silica supported palladium. Catal. Today 2011, 176, 36–40. [Google Scholar] [CrossRef]
- Hoyos, L.; Praliaud, H.; Primet, M. Catalytic combustion of methane over palladium supported on alumina and silica in presence of hydrogen sulfide. Appl. Catal. A Gen. 1993, 98, 125–138. [Google Scholar] [CrossRef]
- Gannouni, A.; Albela, B.; Said Zina, M.; Bonneviot, L. Metal dispersion, accessibility and catalytic activity in methane oxidation of mesoporous templated aluminosilica supported palladium. Appl. Catal. A Gen. 2013, 464–465, 116–127. [Google Scholar] [CrossRef]
- Ercolino, G.; Grzybek, G.; Stelmachowski, P.; Specchia, S.; Kotarba, A.; Specchia, V. Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions. Catal. Today 2015, 257, 66–71. [Google Scholar] [CrossRef]
- Li, Z.; Xu, G.; Hoflund, G. In situ IR studies on the mechanism of methane oxidation over Pd/Al2O3 and Pd/Co3O4 catalysts. Fuel Process. Technol. 2003, 84, 1–11. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kreft, S.; Georgi, G.; Fulda, G.; Pohla, M.; Seeburg, D.; Berger-Karin, C.; Kondratenko, E.; Wohlrab, S. Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration. Appl. Catal. B Environ. 2015, 179, 313–320. [Google Scholar] [CrossRef]
- Lei, Y.; Li, W.; Liu, Q.; Lin, Q.; Zhenga, X.; Huanga, Q.; Guan, S.; Wanga, X.; Wang, C.; Li, F. Typical crystal face effects of different morphology ceria on the activity of Pd/CeO2 catalysts for lean methane combustion. Fuel 2018, 233, 10–20. [Google Scholar] [CrossRef]
- Huang, Q.; Li, W.; Lei, Y.; Guan, S.; Zheng, X.; Pan, Y.; Wen, W.; Zhu, J.; Zhang, H.; Lin, Q. Catalytic Performance of Novel Hierarchical Porous Flower-Like NiCo2O4 Supported Pd in Lean Methane Oxidation. Catal. Lett. 2018, 148, 2799–2811. [Google Scholar] [CrossRef]
- Roth, D.; Gelin, P.; Tena, E.; Primet, M. Combustion of methane at low temperature over Pd and Pt catalysts supported on Al2O3, SnO2 and Al2O3-grafted SnO2. Top. Catal. 2001, 16/17, 77–82. [Google Scholar] [CrossRef]
- Urfels, L.; Gelin, P.; Primet, M.; Tena, E. Complete oxidation of methane at low temperature over Pt catalysts supported on high surface area SnO2. Top. Catal. 2004, 30/31, 427–432. [Google Scholar] [CrossRef]
- Kinnunen, N.; Suvanto, M.; Moreno, M.; Savimaki, A.; Kallinen, K.; Kinnunen, T.; Pakkanen, T. Methane oxidation on alumina supported palladium catalysts: Effect of Pd precursor and solvent. Appl. Catal. A Gen. 2009, 370, 78–87. [Google Scholar] [CrossRef]
- Lu, Y.; Michalow, K.; Matam, S.; Winkler, A.; Maeglia, A.; Yoona, S.; Heele, A.; Weidenkaffa, A.; Ferri, D. Methane abatement under stoichiometric conditions on perovskite-supported palladium catalysts prepared by flame spray synthesis. Appl. Catal. B Environ. 2014, 144, 631–643. [Google Scholar] [CrossRef]
- Lu, Y.; Eyssler, A.; Otala, E.; Matam, S.; Brunko, O.; Weidenkaff, A.; Ferri, D. Influence of the synthesis method on the structure of Pd-substituted perovskite catalysts for methane oxidation. Catal. Today 2013, 208, 42–47. [Google Scholar] [CrossRef]
- Auvray, X.; Lindholm, A.; Milh, M.; Olsson, L. The addition of alkali and alkaline earth metals to Pd/Al2O3 to promote methane combustion. Effect of Pd and Ca loading. Catal. Today 2018, 299, 212–218. [Google Scholar] [CrossRef]
- Colussi, S.; Trovarelli, A.; Cristiani, C.; Lietti, L.; Groppi, G. The influence of ceria and other rare earth promoters on palladium-based methane combustion catalysts. Catal. Today 2012, 180, 124–130. [Google Scholar] [CrossRef]
- Kang, T.; Kim, J.; Kang, S.; Seo, G. Promotion of methane combustion activity of Pd catalyst by titania loading. Catal. Today 2000, 59, 87–93. [Google Scholar] [CrossRef]
- Bounechada, D.; Groppi, G.; Forzatti, P.; Kallinen, K.; Kinnunen, T. Effect of periodic lean/rich switch on methane conversion over a Ce–Zr promoted Pd-Rh/Al2O3 catalyst in the exhausts of natural gas vehicles. Appl. Catal. B Environ. 2012, 119–120, 91–99. [Google Scholar] [CrossRef]
- Ersson, A.; Kušar, H.; Carroni, R.; Griffin, T.; Järås, S. Catalytic combustion of methane over bimetallic catalysts a comparison between a novel annular reactor and a high-pressure reactor. Catal. Today 2003, 83, 265–277. [Google Scholar] [CrossRef]
- Kul Ryu, C.; Wong Ryoo, M.; Soo Ryu, I.; Kang, S. Catalytic combustion of methane over supported bimetallic Pd catalysts: Effects of Ru or Rh addition. Catal. Today 1999, 47, 141–147. [Google Scholar] [CrossRef]
- Lyubovsky, M.; Smith, L.; Castaldi, M.; Karim, H.; Nentwick, B.; Etemad, S.; LaPierre, R.; Pfefferle, W. Catalytic combustion over platinum group catalysts: Fuel-lean versus fuel-rich operation. Catal. Today 2003, 83, 71–84. [Google Scholar] [CrossRef]
- Oh, S.; Mitchell, P. Effects of rhodium addition on methane oxidation behavior of alumina-supported noble metal catalysts. Appl. Catal. B Environ. 1994, 5, 165–179. [Google Scholar] [CrossRef]
- Yang, N.; Liu, J.; Sun, Y.; Zhu, Y. Au@PdOx with a PdOx-rich shell and Au-rich core embedded in Co3O4 nanorods for catalytic combustion of methane. Nanoscale 2019, 9, 4108–4109. [Google Scholar] [CrossRef][Green Version]
- Venezia, A.; Murania, R.; Pantaleo, G.; Deganello, G. Pd and PdAu on mesoporous silica for methane oxidation: Effect of SO2. J. Catal. 2007, 251, 94–102. [Google Scholar] [CrossRef]
- Miao, S.; Deng, Y. Au-Pt/Co3O4 catalyst for methane combustion. Appl. Catal. B Environ. 2001, 31, l1–l4. [Google Scholar] [CrossRef]
- Lapisardi, G.; Urfels, L.; Gelin, P.; Primet, M.; Kaddouri, A.; Garbowski, E.; Toppi, S.; Tena, E. Superior catalytic behaviour of Pt-doped Pd catalysts in the complete oxidation of methane at low temperature. Catal. Today 2006, 117, 564–568. [Google Scholar] [CrossRef]
- Larpisardi, G.; Gélin, P.; Kaddouri, A.; Garbowski, E.; Da Costa, S. Pt-Pd bimetallic catalysts for methane emissions abatement. Top. Catal. 2007, 42–43, 461–464. [Google Scholar]
- Kinnunen, N.; Hirvi, J.; Suvanto, M.; Pakkanen, T. Methane combustion activity of Pd–PdOx–Pt/Al2O3 catalyst: The role of platinum promoter. J. Mol. Catal. A Chem. 2012, 356, 20–28. [Google Scholar] [CrossRef]
- Bugosh, G.; Easterling, V.; Rusakova, I.; Harold, M. Anomalous steady-state and spatio-temporal features of methane oxidation on Pt/Pd/Al2O3 monolith spanning lean and rich condition. Appl. Catal. B Environ. 2015, 165, 68–78. [Google Scholar] [CrossRef]
- Watanabe, T.; Kawashima, K.; Tagawa, Y.; Tashiro, K.; Anoda, H.; Ichioka, K.; Sumiya, S.; Zhang, G. New DOC for Light Duty Diesel DPF System; SAE Technical Paper Series; SAE: Warrendale, PA, USA, 2007. [Google Scholar]
- Nomura, K.; Noro, K.; Nakamura, Y.; Yazawa, Y.; Yoshida, H.; Satsuma, A.; Hattori, T. Pd–Pt bimetallic catalyst supported on SAPO-5 for catalytic combustion of diluted methane in the presence of water vapor. Catal. Lett. 1998, 53, 167–169. [Google Scholar] [CrossRef]
- Persson, K.; Jansson, K.; Järås, S. Characterisation and microstructure of Pd and bimetallic Pd–Pt catalysts during methane oxidation. J. Catal. 2007, 245, 401–414. [Google Scholar] [CrossRef]
- Nassiri, H.; Hayes, R.E.; Semagina, N. Stability of Pd-Pt catalysts in low-temperature wet methane combustion: Metal ratio and particle reconstruction. Chem. Eng. Sci. 2018, 186, 44–51. [Google Scholar] [CrossRef]
- Goodman, E.; Dai, S.; Yang, A.; Wrasman, C.; Gallo, A.; Bare, S.; Hoffman, A.; Jaramillo, T.; Graham, G.; Pan, X.; et al. Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability. ACS Catal. 2017, 7, 4372–4380. [Google Scholar] [CrossRef]
- Persson, K.; Ersson, A.; Jansson, K.; Fierro, J.; Jaras, S. Influence of molar ratio on Pd–Pt catalysts for methane combustion. J. Catal. 2006, 243, 14–24. [Google Scholar] [CrossRef]
- Yamamoto, H.; Uchida, H. Oxidation of methane over Pt and Pd supported on alumina in lean-burn natural-gas engine exhaust. Catal. Today 1998, 45, 147–151. [Google Scholar] [CrossRef]
- Semagina, N.; Nassiri, H.; Lee, K.; Hu, Y.; Hayes, R.E.; Scott, R.W.J. Water shifts PdO-catalyzed lean methane combustion to Pt-catalyzed rich combustion in Pd-Pt catalysts: In-situ X-ray absorption spectroscopy. J. Catal. 2017, 352, 649–656. [Google Scholar]
- Nassiri, H.; Lee, K.; Hu, Y.; Hayes, R.E.; Scott, R.W.J.; Semagina, N. Platinum inhibits low-temperature dry lean methane combustion via palladium reduction in Pd-Pt/Al2O3: An in-situ X-ray absorption study. ChemPhysChem 2017, 18, 238–244. [Google Scholar] [CrossRef][Green Version]
- Chen, M.; Schmidt, L.D. Morphology and composition of Pt-Pd alloy crystallites on SiO2 in reactive atmospheres. J. Catal. 1979, 56, 198–218. [Google Scholar] [CrossRef]
- Willis, J.; Gallo, A.; Sokaras, D.; Aljama, H.; Nowak, S.; Goodman, E.; Wu, L.; Tassone, C.; Jaramillo, T.; Abild-pedersen, F.; et al. Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion. ACS Catal. 2017, 7, 7810–7821. [Google Scholar] [CrossRef]
- Burch, R. Low NOx options in catalytic combustion and emission control. Catal. Today 1997, 35, 27–36. [Google Scholar] [CrossRef]
- Persson, K.; Pfefferle, L.; Schwartz, W.; Ersson, A.; Järås, S. Stability of palladium-based catalysts during catalytic combustion of methane: The influence of water. Appl. Catal. B Environ. 2007, 74, 242–250. [Google Scholar] [CrossRef]
- van Giezen, J.; Van den Berg, F.; Kleinen, J.; Van Dillen, A.; Geus, J. The effect of water on the activity of supported palladium catalysts in the catalytic combustion of methane. Catal. Today 1999, 47, 287–293. [Google Scholar] [CrossRef]
- Toso, A.; Colussi, S.; Padigapaty, S.; de Leitenburg, C.; Trovarelli, A. High stability and activity of solution combustion synthesized Pd-based catalysts for methane combustion in presence of water. Appl. Catal. B Environ. 2018, 230, 237–245. [Google Scholar] [CrossRef]
- Gélin, P.; Urfels, L.; Primet, M.; Tena, E. Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: Influence of water and sulphur containing compounds. Catal. Today 2003, 83, 45–57. [Google Scholar] [CrossRef]
- Ciuparu, D.; Katsikis, N.; Pfefferle, L. Temperature and time dependence of the water inhibition effect on supported palladium catalyst for methane combustion. Appl. Catal. A Gen. 2001, 216, 209–215. [Google Scholar] [CrossRef]
- Ciuparu, D.; Pfefferle, L. Support and water effects on palladium based methane combustion catalysts. Appl. Catal. A Gen. 2001, 209, 415–428. [Google Scholar] [CrossRef]
- Escandón, L.; Niño, D.; Díaz, E.; Ordóñez, S.; Díez, F. Effect of hydrothermal ageing on the performance of Ce-promoted PdO/ZrO2 for methane combustion. Catal. Commun. 2008, 9, 2291–2296. [Google Scholar] [CrossRef]
- Gholami, R.; Alyani, M.; Smith, K. Deactivation of Pd Catalysts by water during low temperature methane oxidation relevant to natural gas vehicle converters. Catalysts 2015, 5, 561–594. [Google Scholar] [CrossRef][Green Version]
- Burch, R.; Urbano, F.; Loader, P. Methane combustion over palladium catalysts: The effect of carbon dioxide and water on activity. Appl. Catal. A Gen. 1995, 123, 173–184. [Google Scholar] [CrossRef]
- Monai, M.; Montini, T.; Chen, C.; Fonda, E.; Gorte, R.; Fornasiero, P. Methane catalytic combustion over hierarchical Pd@CeO2/Si-Al2O3: Effect of the Presence of Water. ChemCatChem 2015, 7, 2038–2046. [Google Scholar] [CrossRef]
- Ciuparu, D.; Pfefferle, L.; Bozon-Verduraz, F. Oxygen Exchange between Palladium and Oxide Supports in Combustion Catalysts. J. Phys. Chem. B 2002, 106, 3434–3442. [Google Scholar] [CrossRef]
- Burch, R.; Crittle, D.; Hayes, M. C-H bond activation in hydrocarbon oxidation on heterogeneous catalysts. Catal. Today 1999, 47, 229–234. [Google Scholar] [CrossRef]
- Barrett, W.; Nasr, S.; Shen, J.; Hu, Y.; Hayes, R.; Scott, R.; Semagina, N. Strong metal-support interactions in Pd/Co3O4catalyst in wet methane combustion: In situ X-ray absorption study. Catal. Sci. Technol. 2020, 10, 4229–4236. [Google Scholar] [CrossRef]
- Wanke, S.; Flynn, P. The sintering of supported metal catalysts. Catal. Rev. Sci. Eng. 1975, 12, 93–135. [Google Scholar] [CrossRef]
- Abbasi, R.; Wu, L.; Wanke, S.E.; Hayes, R.E. Kinetics of Methane Combustion over Pt and Pt-Pd catalysts. Chem. Eng. Res. Des. 2012, 90, 1930–1942. [Google Scholar] [CrossRef]
- Abbasi, R.; Huang, G.; Istratescu, G.M.; Wu, L.; Hayes, R.E. Methane oxidation over Pt, Pt:Pd and Pd based catalysts: Effects of pre-treatment. Can. J. Chem. Eng. 2015, 93, 1474–1482. [Google Scholar] [CrossRef]
- Hayes, R.E.; Kolaczkowski, S.T. Mass and heat transfer effects in catalytic monolith reactors. Chem. Eng. Sci. 1994, 49, 3587–3599. [Google Scholar] [CrossRef]
PGM Loading on Monolith g/ft3 | Mass % PGM in Washcoat | |||||
---|---|---|---|---|---|---|
Designation | Pt | Pd | Rh | Pt | Pd | Rh |
Pt 95 | 95 | 2.54 | ||||
Pt:Pd 95 | 76 | 19 | 2.03 | 0.51 | ||
Pd 150 | 150 | 4.01 | ||||
Pt:Pd 150 | 25 | 125 | 0.67 | 3.34 | ||
Pd 122 | 122 | 3.26 | ||||
Pd:Rh 120 | 117.15 | 2.85 | 3.13 | 0.076 | ||
Pt:Pd:Rh 95 | 19 | 73 | 2.85 | 0.51 | 1.95 | 0.076 |
Catalyst | TA Dry | TA Wet | HTA Dry | HTA Wet |
---|---|---|---|---|
Pt 95 | 37 | 53 | 48 | 61 |
Pt:Pd 95 | 17 | 192 | 26 | 177 |
Pd 150 | 53 | 143 | 74 | 157 |
Pt:Pd 150 | 18 | 103 | 32 | 101 |
Pd 122 | 51 | 106 | 44 | 106 |
Pd:Rh 120 | 52 | 104 | 66 | 119 |
Pt:Pd:Rh 95 | 50 | 106 | 55 | 111 |
Pt 95 catalyst aged at 650 °C | ||||||
Conversion | Fresh | TA dry | TA wet | Fresh | HTA dry | HTA wet |
25 | 493 | 529 | 550 | 506 | 562 | 584 |
50 | 543 | 580 | 596 | 558 | 606 | 619 |
75 | 583 | 614 | 621 | 595 | 632 | 650 |
Pt:Pd 95 catalyst aged at 650 °C | ||||||
Conversion | Fresh | TA dry | TA wet | Fresh | HTA dry | HTA wet |
25 | 344 | 351 | 507 | 354 | 370 | 511 |
50 | 373 | 390 | 565 | 386 | 412 | 563 |
75 | 405 | 428 | 608 | 421 | 448 | 608 |
Pd 150 catalyst aged at 550 °C | ||||||
Conversion | Fresh | TA dry | TA wet | Fresh | HTA dry | HTA wet |
25 | 301 | 353 | 435 | 304 | 372 | 459 |
50 | 323 | 376 | 466 | 334 | 410 | 491 |
75 | 345 | 399 | 486 | 363 | 442 | 515 |
Pd 122 catalyst aged at 550 °C | ||||||
Conversion | Fresh | TA dry | TA wet | Fresh | HTA dry | HTA wet |
25 | 333 | 388 | 450 | 342 | 389 | 456 |
50 | 367 | 418 | 473 | 373 | 417 | 479 |
75 | 394 | 444 | 498 | 405 | 445 | 507 |
Pt:Pd 150 catalyst aged at 550 °C | ||||||
Conversion | Fresh | TA dry | TA wet | Fresh | HTA dry | HTA wet |
25 | 283 | 302 | 379 | 277 | 311 | 381 |
50 | 313 | 331 | 416 | 309 | 341 | 410 |
75 | 337 | 362 | 449 | 332 | 368 | 432 |
Pd:Rh 120 catalyst aged at 550 °C | ||||||
Conversion | Fresh | TA dry | TA wet | Fresh | HTA dry | HTA wet |
25 | 345 | 387 | 454 | 345 | 400 | 458 |
50 | 370 | 422 | 474 | 372 | 438 | 491 |
75 | 396 | 456 | 495 | 402 | 477 | 527 |
Pt:Pd:Rh 95 catalyst aged at 550 °C | ||||||
Conversion | Fresh | TA dry | TA wet | Fresh | HTA dry | HTA wet |
25 | 365 | 410 | 472 | 363 | 409 | 473 |
50 | 405 | 455 | 511 | 401 | 456 | 512 |
75 | 436 | 489 | 543 | 430 | 496 | 545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Istratescu, G.M.; Hayes, R.E. Ageing Studies of Pt- and Pd-Based Catalysts for the Combustion of Lean Methane Mixtures. Processes 2023, 11, 1373. https://doi.org/10.3390/pr11051373
Istratescu GM, Hayes RE. Ageing Studies of Pt- and Pd-Based Catalysts for the Combustion of Lean Methane Mixtures. Processes. 2023; 11(5):1373. https://doi.org/10.3390/pr11051373
Chicago/Turabian StyleIstratescu, Georgeta M., and Robert E. Hayes. 2023. "Ageing Studies of Pt- and Pd-Based Catalysts for the Combustion of Lean Methane Mixtures" Processes 11, no. 5: 1373. https://doi.org/10.3390/pr11051373
APA StyleIstratescu, G. M., & Hayes, R. E. (2023). Ageing Studies of Pt- and Pd-Based Catalysts for the Combustion of Lean Methane Mixtures. Processes, 11(5), 1373. https://doi.org/10.3390/pr11051373