Thermodynamic Analysis of an Experimental Model of a Solar-Heat Supply System
Abstract
:1. Introduction
1.1. The Main Idea
1.2. Related Ideas
2. Methodology
3. Thermal Characteristics of a Glazed Flat-Plate Collector
4. Experimental Setup and Instruments
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aggarwal, V.; Meena, C.S.; Kumar, A.; Alam, T.; Kumar, A.; Ghosh, A.; Ghosh, A. Potential and future prospects of geothermal energy in space conditioning of buildings: India and worldwide review. Sustainability 2020, 12, 8428. [Google Scholar] [CrossRef]
- Agarwal, N.; Meena, C.S.; Raj, B.P.; Saini, L.; Kumar, A.; Gopalakrishnan, N.; Kumar, A.; Balam, N.B.; Alam, T.; Kapoor, N.R.; et al. Indoor Air Quality Improvement in COVID-19 Pandemic: Review. Sustain. Cities Soc. 2021, 70, 102942. [Google Scholar] [CrossRef]
- Zeng, R.; Wang, X.; Di, H.; Jiang, F.; Zhang, Y. New concepts and approach for developing energy efficient buildings: Ideal specific heat for building internal thermal mass. Energy Build. 2011, 43, 1081–1090. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C.; Moschos, K.; Antonopoulos, K.A. Energetic and financial evaluation of solar assisted heat pump space heating systems. Energy Convers. Manag. 2016, 120, 306–319. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, J.; Chung, T. Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities. Appl. Energy 2013, 103, 97–108. [Google Scholar] [CrossRef]
- Tzivanidis, C.; Bellos, E.; Mitsopoulos, G.; Antonopoulos, K.A.; Delis, A. Energetic and financial evaluation of a solar assisted heat pump heating system with other usual heating systems in Athens. Appl. Therm. Eng. 2016, 106, 87–97. [Google Scholar] [CrossRef]
- Nozik, A.J. Photoelectrochemistry: Applications to Solar Energy Conversion. Annu. Rev. Phys. Chem. 1978, 29, 189–222. [Google Scholar] [CrossRef]
- Lewis, N.S. Toward cost-effective solar energy use. Science 2007, 315, 798–801. [Google Scholar] [CrossRef]
- Li, B. Integration of Solar Systems with Heat Pumps and Other Technologies. In Handbook of Energy Systems in Green Buildings; Wang, R., Zhai, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1372–1407. [Google Scholar]
- Tagliafico, L.A.; Scarpa, F.; Valsuani, F. Direct Expansion Solar-Assisted Heat Pumps—A Clean Steady State Approach for Overall Performnace Analysis. Appl. Therm. Eng. 2014, 66, 216–226. [Google Scholar] [CrossRef]
- Alam, T.; Meena, C.S.; Balam, N.B.; Kumar, A.; Cozzolino, R. Thermo-Hydraulic Performance Characteristics and Optimization of Protrusion Rib Roughness in Solar Air Heater. Energies 2021, 14, 3159. [Google Scholar] [CrossRef]
- Fernández-seara, J.; Piñeiro, C.; Dopazo, J.A.; Fernandes, F.; Sousa, P.X.B. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions. Energy Convers. Manag. 2012, 59, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Kao, W. Performance analysis and economic assessment of solar thermal and heat pump combisystems for subtropical and tropical region. Sol. Energy 2017, 153, 301–316. [Google Scholar] [CrossRef]
- Nuntaphan, A.; Chansena, C.; Kiatsiriroat, T. Performance analysis of solar water heater combined with heat pump using refrigerant mixture. Appl. Energy 2009, 86, 748–756. [Google Scholar] [CrossRef]
- Huan, C.; Li, S.; Wang, F.; Liu, L.; Zhao, Y.; Wang, Z.; Tao, P. Performance Analysis of a Combined Solar-Assisted Heat Pump Heating System in Xi’an, China. Energies 2019, 12, 2515. [Google Scholar] [CrossRef]
- Kong, X.; Li, J.; Wang, B.; Li, Y. Numerical study of a direct-expansion solar-assisted heat pump water heater under frosting conditions based on experiments. Sol. Energy 2020, 196, 10–21. [Google Scholar] [CrossRef]
- Cutic, T.; Pasanec, J.; Baleta, J.; Soldo, V.; Curko, T. Mobile Solar-Assisted Heat Pump with Direct Expansion. In Proceedings of the EuroSun 2012—ISES Europe Solar Conference, Rijeka, Croatia, 18–20 September 2012. [Google Scholar]
- Bastos, H.M.C.; Torres, P.J.G.; Álvarez, C.E.C. Numerical simulation and experimental validation of a solar-assisted heat pump system for heating residential water. Int. J. Refrig. 2018, 86, 28–39. [Google Scholar] [CrossRef]
- Buker, M.S.; Riffat, S.B. Solar assisted heat pump systems for low temperature water heating applications: A systematic review. Renew. Sustain. Energy Rev. 2016, 55, 399–413. [Google Scholar] [CrossRef]
- Chaturvedi, S.K.; Abdel-Salam, T.M.; Sreedharan, S.S.; Gorozabel, F.B. Two-Stage Direct Expansion Solar-Assisted Heat Pump for High Temperature Applications. Appl. Therm. Eng. 2009, 29, 2093–2099. [Google Scholar] [CrossRef]
- Ben, H.; Alshammari, F.; Alatawi, I.; Alhadri, M.; Almeshaal, M.; Hajlaoui, K. Potential of Tubular Solar Still with Rectangular Trough for Water Production under Vacuum Condition. Therm. Sci. 2022, 26, 4271–4283. [Google Scholar] [CrossRef]
- Bel Haj Jrad, A.; Ben Hamida, M.B.; Ghnay, R.; Mhimid, A. Contribution to the study of combined adsorption–ejection system using solar energy. Adv. Mech. Eng. 2017, 9, 1687814017711855. [Google Scholar] [CrossRef]
- Wojcik, W.; Amirgaliyev, Y.; Kunelbayev, M.; Kalizhanova, A.; Kozbakova, A.; Sundetov, T.; Yedilkhan, D. Developing the system of collecting, storing and processing information from solar collectors. Int. J. Electron. Telecommun. 2021, 67, 65–70. [Google Scholar]
- Keshuov, S.; Omarov, R.; Tokmoldayev, A.; Omar, D.; Amirseit, S.; Kunelbayev, M. Hybrid system for using renewable sources of energy for local consumers in agriculture. J. Eng. Appl. Sci. 2017, 12, 1296–1306. [Google Scholar]
- Mohanraj, M.; Belyayev, Y.; Jayaraj, S.; Kaltayev, A. Research and developments on solar assisted compression heat pump systems—A comprehensive review (Part A: Modeling and modifications). Renew. Sustain. Energy Rev. 2018, 83, 90–123. [Google Scholar] [CrossRef]
- Thygesen, R. An Analysis of Different Solar-Assisted Heating Systems and Their Effect on the Energy Performance of Multifamily Buildings—A Swedish Case. Energies 2017, 10, 88. [Google Scholar] [CrossRef]
- Klein, S.A. Calculation of Flat Plate Collector Loss Coefficients. Sol. Energy. 1975, 17, 79–80. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Heat Transfer and Pressure Drop in Packed Beds and Perforated Plates. In Solar Engineering of Thermal Processes; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1991; pp. 164–165. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Radiation Heat Transfer Coefficient; Natural Convection between Flat Parallel Plates and between Concentric Cylinders. In Solar Engineering of Thermal Processes; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1991; pp. 148–149. [Google Scholar]
- Chyng, J.P.; Lee, C.P.; Huang, B.J. Performance analysis of a solar-assisted heat pump water heater. Sol. Energy. 2003, 74, 33–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunelbayev, M.; Bigaliyeva, Z.; Tuleshov, Y.; Ibekeyev, S.; Kerimkulov, D. Thermodynamic Analysis of an Experimental Model of a Solar-Heat Supply System. Processes 2023, 11, 451. https://doi.org/10.3390/pr11020451
Kunelbayev M, Bigaliyeva Z, Tuleshov Y, Ibekeyev S, Kerimkulov D. Thermodynamic Analysis of an Experimental Model of a Solar-Heat Supply System. Processes. 2023; 11(2):451. https://doi.org/10.3390/pr11020451
Chicago/Turabian StyleKunelbayev, Murat, Zhanar Bigaliyeva, Yerkebulan Tuleshov, Serikbek Ibekeyev, and Daniyar Kerimkulov. 2023. "Thermodynamic Analysis of an Experimental Model of a Solar-Heat Supply System" Processes 11, no. 2: 451. https://doi.org/10.3390/pr11020451
APA StyleKunelbayev, M., Bigaliyeva, Z., Tuleshov, Y., Ibekeyev, S., & Kerimkulov, D. (2023). Thermodynamic Analysis of an Experimental Model of a Solar-Heat Supply System. Processes, 11(2), 451. https://doi.org/10.3390/pr11020451