The Beneficial Effect of Selenium-Enriched Broccoli on the Quality Characteristics of Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Raw Materials
2.2. Crop Trial
2.3. Sample Preparation
2.4. Bread Production Trial
2.4.1. Specific Volume of Bread
2.4.2. Bread Acidity
2.4.3. Dry Matter
2.4.4. Bread Porosity
2.5. Ascorbic Acid
2.6. Total Polyphenols (TPs)
2.7. Sugars
2.8. Protein Content
2.9. Selenium
2.10. Microbiological Parameters
2.11. Heavy Metals and Radionuclides
2.12. Statistical Analysis
3. Results and Discussion
3.1. Broccoli Floret Powder
3.2. Bread Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amoah, I.; Cairncross, C.; Osei, E.O.; Yeboah, J.A.; Cobbinah, J.C.; Rush, E. Bioactive Properties of Bread Formulated with Plant-based Functional Ingredients before Consumption and Possible Links with Health Outcomes after Consumption—A Review. Plant Foods Hum. Nutr. 2022, 77, 329–339. [Google Scholar] [CrossRef]
- Klopsch, R.; Baldermann, S.; Hanschen, F.S.; Voss, A.; Rohn, S.; Schreiner, M.; Neugart, S. Brassica-enriched wheat bread: Unraveling the impact of ontogeny and bread making on bioactive secondary plant metabolites of pak choi and kale. Food Chem. 2019, 295, 412–422. [Google Scholar] [CrossRef]
- Syed, R.U.; Moni, S.S.; Break, M.K.B.; Khojali, W.M.A.; Jafar, M.; Alshammari, M.D.; Abdelsalam, K.; Taymour, S.; Alreshidi, K.S.M.; Elhassan Taha, M.M.; et al. Broccoli: A Multi-Faceted Vegetable for Health: An In-Depth Review of Its Nutritional Attributes, Antimicrobial Abilities, and Anti-inflammatory Properties. Antibiotics 2023, 12, 1157. [Google Scholar] [CrossRef]
- Mahn, A.; Reyes, A. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci. Technol. Int. 2012, 18, 503–514. [Google Scholar] [CrossRef]
- Berndtsson, E.; Andersson, R.; Johansson, E.; Olsson, M.E. Side Streams of Broccoli Leaves: A Climate Smart and Healthy Food Ingredient. Int. J. Environ. Res. Public Health 2020, 17, 2406. [Google Scholar] [CrossRef]
- Anwar, B.R.; Rakha, A.; Mahmood, M.A.; Batool, I.; Sohail, M.; Sammar, R. Enrichment of wheat flour bread to enhance physicochemical and sensory attributes using broccoli powder. Pak. J. Food Sci. 2017, 27, 39–45. [Google Scholar]
- Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chem. 2017, 267, 170–177. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Bademunt, A.; Viñas, I.; Bobo, G.; Villaró, S.; Aguiló-Aguayo, I. Bioaccessibility, physicochemical, sensorial, and nutritional characteristics of bread containing broccoli co-products. J. Food Process. Preserv. 2019, 43, e13861. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabińska, N.; Bączek, N.; Šimková, K.; Starowicz, M.; Jeliński, T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Sęczyk, Ł.; Złotek, U.; Różyło, R.; Kaszuba, K.; Ryszawy, D.; Czyż, J. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts. BioMed Res. Int. 2014, 2014, 608053. [Google Scholar] [CrossRef]
- Bouranis, D.L.; Stylianidis, G.P.; Manta, V.; Karousis, E.N.; Tzanaki, A.; Dimitriadi, D.; Bouzas, E.A.; Siyiannis, V.F.; Constantinou-Kokotou, V.; Chorianopoulou, S.N.; et al. Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods. Plants 2023, 12, 1272. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, F.F.; Stoffel, M.M.; Céccoli, G.; Trod, B.S.; Daurelio, L.D.; Bouzo, C.A.; Guevara, M.G. Improving the foliar biofortification of broccoli with selenium without commercial quality losses. Crop Sci. 2021, 61, 4218–4228. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Papazyan, T.T. Selenium in nutrition. In Plants, Animals and Human Beings; Pechatny Gorod: Moscow, Russia, 2006. (In Russian) [Google Scholar]
- Roy, G.; Sarma, B.K.; Phadnis, P.P.; Mugesh, G. Selenium-containing enzymes in mammals: Chemical perspectives. J. Chem. Sci. 2005, 117, 287–303. [Google Scholar] [CrossRef]
- Jones, G.D.; Droz, B.; Greve, P.; Gottschalk, P.; Poffet, D.; McGrath, S.P.; Seneviratne, S.I.; Smith, P.; Winkel, L.H. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 2848–2853. [Google Scholar] [CrossRef] [PubMed]
- Alfthan, G.; Eurola, M.; Ekholm, P.; Venäläinen, E.R.; Root, T.; Korkalainen, K.; Hartikainen, H.; Salminen, P.; Hietaniemi, V.; Aspila, P.; et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol. 2015, 31, 142–147. [Google Scholar] [CrossRef]
- Newman, R.; Waterland, N.; Moon, Y.; Tou, J.C. Selenium Biofortification of Agricultural Crops and Effects on Plant Nutrients and Bioactive Compounds Important for Human Health and Disease Prevention—A Review. Plant Foods Hum. Nutr. 2019, 74, 449–460. [Google Scholar] [CrossRef]
- Kieliszek, M.; Lipinski, B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med. Hypotheses 2020, 143, 109878. [Google Scholar] [CrossRef]
- Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020, 111, 1297–1299. [Google Scholar] [CrossRef]
- Radomska, D.; Czarnomysy, R.; Radomski, D.; Bielawski, K. Selenium Compounds as Novel Potential Anticancer Agents. Int. J. Mol. Sci. 2021, 22, 1009. [Google Scholar] [CrossRef]
- Matich, A.J.; McKenzie, M.J.; Lill, R.E.; Brummell, D.A.; McGhie, T.K.; Chen, R.K.-Y.; Rowan, D.D. Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 2011, 75, 140–152. [Google Scholar] [CrossRef]
- Wiesner-Reinhold, M.; Schreiner, M.; Baldermann, S.; Schwarz, D.; Hanschen, F.S.; Kipp, A.P.; Rowan, D.D.; Bentley-Hewitt, K.L.; McKenzie, M.J. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health. Front. Plant Sci. 2017, 8, 1365. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, M.; Matich, A.; Hunter, D.; Esfandiari, A.; Trolove, S.; Chen, R.; Lill, R. Selenium Application during Radish (Raphanus sativus) Plant Development Alters Glucosinolate Metabolic Gene Expression and Results in the Production of 4-(methylseleno)but-3-enyl glucosinolate. Plants 2019, 8, 427. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.; Regni, L.; Falcinelli, B.; Mattioli, S.; Benincasa, P.; Bosco, A.D.; Pacheco, P.; Proietti, P.; Troni, E.; Santi, C.; et al. Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. J. Agric. Food Chem. 2020, 68, 4075–4097. [Google Scholar] [CrossRef] [PubMed]
- GOST 26574-2017; Baking Wheat Flour. RussianGost: Moscow, Russia, 2017. (In Russian)
- Khalil, A.H.; Mansour, E.H.; Dawood, F.M. Influence of malt on rheological and baking properties of wheat-cassava composite flours. Lebens Wissen Technol. 2000, 33, 159. [Google Scholar] [CrossRef]
- GOST 5670-96; Bakey Products. Methods of the Acidity Determination. RussianGost: Moscow, Russia, 1996. (In Russian)
- GOST 5669-96; Bakery Products. Method for Determination of Porosity. RussianGost: Moscow, Russia, 1996. (In Russian)
- AOAC Association Official Analytical Chemists. The Official Methods of Analysis of AOAC International; 22 Vitamin C.; AOAC: Rockville, MD, USA, 2012. [Google Scholar]
- Golubkina, N.A.; Kekina, H.G.; Molchanova, A.V.; Antoshkina, M.S.; Nadezhkin, S.M.; Soldatenko, A.V. Plants Antioxidants and Methods of Their Determination; Infra-M: Moscow, Russia, 2020; (In Russian). [Google Scholar] [CrossRef]
- Swamy, P.M. Laboratory Manual on Biotechnology; Rastogi Publications: Meerut, India, 2008; p. 617. [Google Scholar]
- AOAC. Crude protein in cereal grains and oil seeds. In Official Methods of Analysis of Association of Official Analytical Chemists, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000; Method 992.23. [Google Scholar]
- Alfthan, G.V. A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry. Anal. Chim. Acta 1984, 165, 187–194. [Google Scholar] [CrossRef]
- GOST 10444.15-94; Food Products. Methods for Determination of Mezophilic Aerobic and Facultative-Anaerobic Microorganisms. RussianGost: Moscow, Russia, 1994. (In Russian)
- GOST 31747-2012; Food Products. Methods for Detection and Quantity Determination of Coliformes. RussianGost: Moscow, Russia, 2012. (In Russian)
- ISO 4832:2006; Horizontal Method for the Enumeration of Coliforms–Colony–Count Technique. Technical Commettee: Moscow, Russia, 2006. (In Russian)
- ISO 7932:2004; Microbiology of Food and Feeding Stuffs—Microbiology of Food and Feed—Horizontal Method for the Enumeration of Presumptive Bacillus cereus. Technical Commettee: Moscow, Russia, 2004. (In Russian)
- ISO 31659:2012; Food Products. Method for the Detection of Salmonella spp. Technical Commettee: Moscow, Russia, 2012. (In Russian)
- ISO 6579:2002; Microbiology of Food and Animal Feeding Stuffs–Horizontal Method for the Detection of Salmonella spp. Technical Commettee: Moscow, Russia, 2002. (In Russian)
- GOST 10444.12-2003; Food Microbiology. Detection and Enumeration Methods of Yeast and Mold. RussianGost: Moscow, Russia, 2003. (In Russian)
- GOST 26932-86; Raw Material and Food-Stuffs. Methods for Determination of Lead. RussianGost: Moscow, Russia, 1986. (In Russian)
- GOST 26933-86; Raw Material and Food-Stuffs. Methods for Determination of Cadmium. RussianGost: Moscow, Russia, 1986. (In Russian)
- GOST 26930-86; Raw Material and Food-Stuffs. Methods for Determination of Arsenicum. RussianGost: Moscow, Russia, 1986. (In Russian)
- GOST 26927-86; Raw Material and Food-Stuffs. Methods for Determination of Mercury. RussianGost: Moscow, Russia, 1986. (In Russian)
- GOST 30349-96; Fruit, Vegetables and Their Processing Products. Methods for Determination of Residual Amounts of Organochlorine Pesticides. RussianGost: Moscow, Russia, 1996. (In Russian)
- GOST 32163-2013; Foodstuffs. Method for Strontium Sr-90 Content Determination. RussianGost: Moscow, Russia, 2013. (In Russian)
- GOST 32161-2013; Foodstuffs. Method for Cesium Cs-137 Content Determination. RussianGost: Moscow, Russia, 2013. (In Russian)
- Liu, H.; Xiao, C.; Qiu, T.; Deng, J.; Cheng, H.; Cong, X.; Cheng, S.; Rao, S.; Zhang, Y. Selenium Regulates Antioxidant, Photosynthesis, and Cell Permeability in Plants under Various Abiotic Stresses: A Review. Plants 2022, 12, 44. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Robbins, R.J.; Keck, A.-S.; Banuelos, G.; Finley, J.W. Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. J. Med. Food 2005, 8, 204–214. [Google Scholar] [CrossRef]
- Ávila, F.W.; Faquin, V.; Yang, Y.; Ramos, S.J.; Guilherme, L.R.G.; Thannhauser, T.W.; Li, L. Assessment of the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (Brassica oleracea L. var. italica) sprouts and florets. J. Agric. Food Chem. 2013, 61, 6216–6223. [Google Scholar] [CrossRef]
- Asgher, M.; Rehaman, A.; ul Islam, S.N.; Arshad, M.; Khan, N.A. Appraisal of Functions and Role of Selenium in Heavy Metal Stress Adaptation in Plants. Agriculture 2023, 13, 1083. [Google Scholar] [CrossRef]
- Golubkina, N.; Seredin, T.; Kriachko, T.; Caruso, G. Nutritional features of leek cultivars and effect of selenium-enriched leaves from Goliath variety on bread physical, quality and antioxidant attributes. Ital. J. Food Sci. 2019, 31, 288. [Google Scholar]
Month | Temperature (°C) | Precipitation (mm) | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
May | 16.3 | 16.1 | 57.0 | 71.8 |
June | 19.6 | 21.0 | 64.1 | 73.0 |
July | 17.8 | 23.8 | 69.0 | 74.9 |
August | 16.3 | 19.0 | 57.0 | 76.9 |
Parameter | Non-Fortified Broccoli | Se-Fortified Broccoli |
---|---|---|
Floret weight, (g) | 74 ± 5 a | 83 ± 6 a |
Dry matter content (%) | 11.3 ± 0.1 a | 11.0 ± 0.1 a |
Protein (%) | 12.0 ± 0.1 a | 12.1 ± 0.1 a |
Fat (%) | 2.0 ± 0.1 a | 2.0 ± 0.1 a |
Carbohydrates (%) including: | 72.8 ± 7.3 a | 74.9 ± 7.5 a |
Monosaccharides | 13.5 ± 1.4 a | 13.5 ± 1.4 a |
Insoluble dietary fibers | 41.9 ± 4.2 a | 42.8 ± 4.3 a |
Soluble dietary fibers | 17.4 ± 1.7 a | 18.6 ± 1.9 a |
Vitamin C (mg 100 g−1) | 170 ± 1.7 b | 182 ± 1.8 a |
Polyphenols (mg-eq GA 100 g−1) | 126 ± 1.3 b | 240 ± 2.4 a |
Se (µg kg−1 d.w.) | 93 ± 9 b | 2100 ± 2 a |
Parameter | Control | Non-Fortified Broccoli | Se-Fortified Broccoli |
---|---|---|---|
Crumb moisture content (%) | 44.0 ± 0.4 a | 44.2 ± 0.6 a | 44.4 ± 0.5 a |
Crumb acidity (degree) | 2.80 ± 0.03 c | 3.20 ± 0.02 b | 3.40 ± 0.03 a |
Crumb porosity (%) | 68 ± 5 a | 74 ± 6 a | 75 ± 6 a |
Specific volume (cm3 100 g−1) | 262 ± 3 c | 281 ± 2 b | 293 ± 3 a |
Parameter | Control | Non-Se-Fortified Broccoli | Se-Fortified Broccoli |
---|---|---|---|
Dietary fiber (g 100 g−1 f.w.) | 2.2 ± 0.2 b | 4.6 ± 0.5 a | 4.7 ± 0.5 a |
Vitamin C (mg 100 g−1 f.w.) | 0.12 ± 0.01 b | 4.2 ± 0.1 a | 4.5 ± 0.1 a |
Polyphenols (mg GAE 100 g−1 f.w.) | 5.8 ± 0.1 c | 9.0 ± 0.1 b | 11.8 ± 0.2 a |
Se (µg 100 g−1 f.w.) | 5.04 ± 0.2 b | 5.4 ± 0.2 b | 13.1 ± 0.2 a |
Parameter | DRI, mg day−1 | Control | Non-Se-Fortified Broccoli | Se-Fortified Broccoli |
---|---|---|---|---|
Dietary fiber | 20 | 11 b | 23 a | 23.5 a |
Vitamin C (adults) | 100 | 0.12 b | 4.2 a | 4.5 a |
Vitamin C (children) | 50 | 0.24 c | 8.4 b | 9.0 a |
Se (females) | 0.055 | 9.2 b | 9.8 b | 23.8 a |
Se (males) | 0.070 | 7.2 b | 7.7 b | 18.7 a |
Se (children) | 0.050 | 10.1 b | 10.8 b | 26.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martirosyan, V.V.; Kostyuchenko, M.N.; Kryachko, T.I.; Malkina, V.D.; Zhirkova, E.V.; Golubkina, N.A. The Beneficial Effect of Selenium-Enriched Broccoli on the Quality Characteristics of Bread. Processes 2023, 11, 3037. https://doi.org/10.3390/pr11103037
Martirosyan VV, Kostyuchenko MN, Kryachko TI, Malkina VD, Zhirkova EV, Golubkina NA. The Beneficial Effect of Selenium-Enriched Broccoli on the Quality Characteristics of Bread. Processes. 2023; 11(10):3037. https://doi.org/10.3390/pr11103037
Chicago/Turabian StyleMartirosyan, Vladimir V., Marina N. Kostyuchenko, Tatyana I. Kryachko, Valentina D. Malkina, Elena V. Zhirkova, and Nadezhda A. Golubkina. 2023. "The Beneficial Effect of Selenium-Enriched Broccoli on the Quality Characteristics of Bread" Processes 11, no. 10: 3037. https://doi.org/10.3390/pr11103037
APA StyleMartirosyan, V. V., Kostyuchenko, M. N., Kryachko, T. I., Malkina, V. D., Zhirkova, E. V., & Golubkina, N. A. (2023). The Beneficial Effect of Selenium-Enriched Broccoli on the Quality Characteristics of Bread. Processes, 11(10), 3037. https://doi.org/10.3390/pr11103037