Study of Plasma Interaction with Liquid Lithium Multichannel Capillary Porous Systems in SCU-PSI
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Plasma Irradiation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, L.; Zhou, Z.B.; Yao, D.M. EAST Full Tungsten Divertor Design. J. Fusion Energy 2015, 34, 1451–1456. [Google Scholar] [CrossRef]
- Cao, L.; Yao, D.M.; Li, J.G. Efforts Made to Handling Steady-State High Heat Flux in EAST. J. Fusion Energy 2016, 35, 556–560. [Google Scholar] [CrossRef]
- Hirai, T.; Barabash, V.; Escourbiac, F.; Durocher, A.; Ferrand, L.; Komarov, V.; Merola, M. ITER divertor materials and manufacturing challenges. Fusion Eng. Des. 2017, 125, 250–255. [Google Scholar] [CrossRef]
- Nygren, R.E.; Cowgill, D.F.; Ulrickson, M.A.; Nelson, B.E.; Fogarty, P.J.; Rognlien, T.D.; Rensink, M.E.; Hassanein, A.; Smolentsev, S.S.; Kotschenreuther, M. Design integration of liquid surface divertors. Fusion Eng. Des. 2004, 72, 223–244. [Google Scholar] [CrossRef]
- Jaworski, M.A.; Abrams, T.; Allain, J.P.; Bell, M.G.; Bell, R.E.; Diallo, A.; Gray, T.K.; Gerhardt, S.P.; Kaita, R.; Kugel, H.W.; et al. Liquid lithium divertor characteristics and plasma-material interactions in NSTX high-performance plasmas. Nucl. Fusion 2013, 53, 083032. [Google Scholar] [CrossRef]
- Majeski, R.; Kaita, R.; Boaz, M.; Efthimion, P.; Gray, T.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; et al. Testing of liquid lithium limiters in CDX-U. Fusion Eng. Des. 2004, 72, 121–132. [Google Scholar] [CrossRef]
- Zuo, G.Z.; Ren, J.; Hu, J.S.; Sun, Z.; Yang, Q.X.; Li, J.G.; Zakharov, L.E.; Ruzic, D.N.; Team, H.T. Liquid lithium surface control and its effect on plasma performance in the HT-7 tokamak. Fusion Eng. Des. 2014, 89, 2845–2852. [Google Scholar] [CrossRef]
- Hu, J.S.; Zuo, G.Z.; Ren, J.; Yang, Q.X.; Chen, Z.X.; Xu, H.; Zakharov, L.E.; Maingi, R.; Gentile, C.; Meng, X.C.; et al. First results of the use of a continuously flowing lithium limiter in high performance discharges in the EAST device. Nucl. Fusion 2016, 56, 046011. [Google Scholar] [CrossRef]
- Zuo, G.Z.; Hu, J.S.; Maingi, R.; Sun, Z.; Yang, Q.X.; Huang, M.; Meng, X.C.; Xu, W.; Qian, Y.Z.; Li, C.L.; et al. Results from an improved flowing liquid lithium limiter with increased flow uniformity in high power plasmas in EAST. Nucl. Fusion 2019, 59, 016009. [Google Scholar] [CrossRef]
- Nagayama, Y. Liquid lithium divertor system for fusion reactor. Fusion Eng. Des. 2009, 84, 1380–1383. [Google Scholar] [CrossRef] [Green Version]
- Sizyuk, T.; Hassanein, A. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes. Nucl. Fusion 2014, 54, 023004. [Google Scholar] [CrossRef]
- Hu, J.S.; Sun, Z.; Guo, H.Y.; Li, J.G.; Wan, B.N.; Wang, H.Q.; Ding, S.Y.; Xu, G.S.; Liang, Y.F.; Mansfield, D.K.; et al. New Steady-State Quiescent High-Confinement Plasma in an Experimental Advanced Superconducting Tokamak. Phys. Rev. Lett. 2015, 114, 055001. [Google Scholar] [CrossRef]
- Gilligan, J.; Hahn, D.; Mohanti, R. Vapor shielding of surfaces subjected to high heat fluxes during a plasma disruption. J. Nucl. Mater. 1989, 162, 957–963. [Google Scholar] [CrossRef]
- Lyublinski, I.E.; Vertkov, A.V. Comparative assessment of application of low melting metals with capillary pore systems in a tokamak. Fusion Eng. Des. 2014, 89, 2953–2955. [Google Scholar] [CrossRef]
- Lielausis, O.; Klyukin, A.A.; Platacis, E.; Peinbergs, J. Mhd experiments on liquid metal jet-like flows guided by curved substrates. Magnetohydrodynamics 2015, 51, 685–693. [Google Scholar]
- Fisher, A.E.; Hvasta, M.G.; Kolemen, E. Study of liquid metal surface wave damping in the presence of magnetic fields and electrical currents. Nucl. Mater. Energy 2019, 19, 101–106. [Google Scholar] [CrossRef]
- Zuo, G.Z.; Hu, J.S.; Maingi, R.; Ren, J.; Sun, Z.; Yang, Q.X.; Chen, Z.X.; Xu, H.; Tritz, K.; Zakharov, L.E.; et al. Mitigation of plasma-material interactions via passive Li efflux from the surface of a flowing liquid lithium limiter in EAST. Nucl. Fusion 2017, 57, 046017. [Google Scholar] [CrossRef]
- Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.; Yezhov, N.I.; Khripunov, B.I.; Sotnikov, S.M.; Mirnov, S.V.; Petrov, V.B. Energy removal and MHD performance of lithium capillary-pore systems for divertor target application. Fusion Eng. Des. 2000, 49–50, 195–199. [Google Scholar] [CrossRef]
- Apicella, M.L.; Lazarev, V.; Lyublinski, I.; Mazzitelli, G.; Mirnov, S.; Vertkov, A. Lithium capillary porous system behavior as PFM in FTU tokamak experiments. J. Nucl. Mater. 2009, 386–388, 821–823. [Google Scholar] [CrossRef]
- Mirnov, S.V.; Azizov, E.A.; Alekseev, A.G.; Lazarev, V.B.; Khayrutdinov, R.R.; Lyublinski, I.E.; Vertkov, A.V.; Vershkov, V.A. Li experiments on T-11M and T-10 in support of a steady-state tokamak concept with Li closed loop circulation. Nucl. Fusion 2011, 51, 073044. [Google Scholar] [CrossRef]
- Budaev, V.P.; Lyublinsky, I.E.; Fedorovich, S.D.; Dedov, A.V.; Vertkov, A.V.; Komov, A.T.; Karpov, A.V.; Martynenko, Y.V.; Van Oost, G.; Gubkin, M.K.; et al. Impact of liquid metal surface on plasma-surface interaction in experiments with lithium and tin capillary porous systems. Nucl. Mater. Energy 2020, 25, 100834. [Google Scholar] [CrossRef]
- van Eden, G.G.; Kvon, V.; van de Sanden, M.C.M.; Morgan, T.W. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices. Nat. Commun. 2017, 8, 192. [Google Scholar] [CrossRef]
- Abrams, T.; Jaworski, M.A.; Kallman, J.; Kaita, R.; Foley, E.L.; Gray, T.K.; Kugel, H.; Levinton, F.; McLean, A.G.; Skinner, C.H. Response of NSTX liquid lithium divertor to high heat loads. J. Nucl. Mater. 2013, 438, S313–S316. [Google Scholar] [CrossRef]
- Lin, T.F.; Palmer, T.A.; Meinert, K.C.; Murray, N.R.; Majeski, R. Capillary wicking of liquid lithium on laser textured surfaces for plasma facing components. J. Nucl. Mater. 2013, 433, 55–65. [Google Scholar] [CrossRef]
- Tabares, F.L. Present status of liquid metal research for a fusion reactor. Plasma Phys. Control. Fusion 2016, 58, 014014. [Google Scholar] [CrossRef]
- Rindt, P.; Morgan, T.W.; van Eden, G.; Jaworski, M.A.; Cardozo, N.J.L. Power handling and vapor shielding of pre-filled lithium divertor targets in Magnum-PSI. Nucl. Fusion 2019, 59, 056003. [Google Scholar] [CrossRef]
- Morgan, T.W.; Rindt, P.; van Eden, G.G.; Kvon, V.; Jaworksi, M.A.; Cardozo, N.J.L. Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices. Plasma Phys. Control. Fusion 2018, 60, 014025. [Google Scholar] [CrossRef]
- Rindt, P.; Gonzalez, J.M.; Hoogerhuis, P.; van den Bosch, P.; van Maris, M.; Terentyev, D.; Yin, C.; Wirtz, M.; Cardozo, N.J.L.; van Dommelen, J.A.W.; et al. Using 3D-printed tungsten to optimize liquid metal divertor targets for flow and thermal stresses. Nucl. Fusion 2019, 59, 054001. [Google Scholar] [CrossRef]
- Cao, X.G.; Xia, Y.X.; Chen, B.Z.; Tian, S.P.; Wang, C.L.; Yang, D.X.; Xue, X.Y.; Zhang, W.W.; Wang, J.Q.; Gou, F.J.; et al. Langmuir Probe Measurements of an Expanding Argon Plasma. Plasma Sci. Technol. 2015, 17, 20–24. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, D.H.; Zhao, Y.J.; Xiao, K.G.; Wei, J.J.; Chen, S.L.; Ma, X.C.; Gou, F. Formulized average surface binding energy elevation and lithium vaporization and redeposition investigations in capillary pore systems. Nucl. Fusion 2019, 59, 056015. [Google Scholar] [CrossRef]
- He, P.N.; Wang, Z.J.; Ye, Z.B.; Yang, L.; Gou, F.; Zhang, K. Evolution of liquid lithium corrosion behavior for CLF-1 steels induced by high-flux helium irradiation. J. Nucl. Mater. 2020, 539, 152269. [Google Scholar] [CrossRef]
- Coenen, J.W.; De Temmerman, G.; Federici, G.; Philipps, V.; Sergienko, G.; Strohmayer, G.; Terra, A.; Unterberg, B.; Wegener, T.; Van den Bekerom, D.C.M. Liquid metals as alternative solution for the power exhaust of future fusion devices: Status and perspective. Phys. Scr. 2014, 2014, 014037. [Google Scholar] [CrossRef]
- Han, L.; Gou, F.J.; Cao, X.G.; Ma, X.C.; He, P.N.; Cao, Z.; Xia, W.X.; Shu, L.; Wei, J.J. Enhanced erosion of lithium surface with capillary porous system. Fusion Eng. Des. 2017, 121, 308–312. [Google Scholar] [CrossRef]
- van Eden, G.G.; Morgan, T.W.; Aussems, D.U.B.; van den Berg, M.A.; Bystrov, K.; van de Sanden, M.C.M. Self-Regulated Plasma Heat Flux Mitigation Due to Liquid Sn Vapor Shielding. Phys. Rev. Lett. 2016, 116, 135002. [Google Scholar] [CrossRef]
- Marenkov, E.; Pshenov, A. Vapor shielding of liquid lithium divertor target during steady state and transient events. Nucl. Fusion 2020, 60, 026011. [Google Scholar] [CrossRef]
- Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.; Mirnov, S.V.; Lazarev, V.B.; Petrova, N.P.; Sotnikov, S.M.; Chernobai, A.P.; Khripunov, B.I.; Petrov, V.B.; et al. Lithium divertor concept and results of supporting experiments. Plasma Phys. Control. Fusion 2002, 44, 955–977. [Google Scholar] [CrossRef]
- Tabares, F.L.; Oyarzabal, E.; Martin-Rojo, A.B.; Tafalla, D.; de Castro, A.; Soleto, A. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems. Nucl. Fusion 2017, 57, 016029. [Google Scholar] [CrossRef]
- Gao, Y.W.; Ye, Z.B.; Liu, J.X.; Guo, H.X.; Chen, S.W.; Chen, B.; Chen, J.J.; Wang, H.B.; Gou, F.J. Interaction of an unwetted liquid Li-based capillary porous system with high-density plasma. Plasma Sci. Technol. 2022, 24, 115601. [Google Scholar] [CrossRef]
- Lyublinski, I.E.; Vertkov, A.V.; Evtikhin, V.A. Application of lithium in systems of fusion reactors. 2. The issues of practical use of lithium in experimental facilities and fusion devices. Plasma Devices Oper. 2009, 17, 265–285. [Google Scholar] [CrossRef]
- Zhang, D.H.; Meng, X.C.; Zuo, G.Z.; Huang, M.; Li, L.; Xu, W.; Li, C.L.; Tang, Z.L.; Yuan, J.S.; Liu, Y.B.; et al. Study of the corrosion characteristics of 304 and 316L stainless steel in the static liquid lithium. J. Nucl. Mater. 2021, 553, 153032. [Google Scholar] [CrossRef]
- Meng, X.C.; Zuo, G.Z.; Xu, W.; Sun, Z.; Huang, M.; Yuan, X.L.; Xu, C.; Hu, W.Y.; Andruczyk, D.; Hu, J.S.; et al. Effect of temperature on the corrosion behaviors of 304 stainless steel in static liquid lithium. Fusion Eng. Des. 2018, 128, 75–81. [Google Scholar] [CrossRef]
- Behrisch, R.; Eckstein, W. Sputtering by Particle Bombardment; Springer: Berlin/Heidelberg, Germany, 2007; p. 58. [Google Scholar]
- Ye, Z.B.; Ma, X.C.; He, P.N.; Wang, Z.J.; Liu, Q.C.; Yan, Q.; Wei, J.J.; Zhang, K.; Gou, F.J. The investigation of plasma-induced wettability of liquid tin-capillary porous system. Nucl. Mater. Energy 2019, 20, 100694. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Jing, W.; Guo, H.; Gao, Y.; Wang, S.; Chen, B.; Chen, J.; Wang, H.; Wei, J.; Ye, Z.; et al. Study of Plasma Interaction with Liquid Lithium Multichannel Capillary Porous Systems in SCU-PSI. Processes 2022, 10, 1852. https://doi.org/10.3390/pr10091852
Liu J, Jing W, Guo H, Gao Y, Wang S, Chen B, Chen J, Wang H, Wei J, Ye Z, et al. Study of Plasma Interaction with Liquid Lithium Multichannel Capillary Porous Systems in SCU-PSI. Processes. 2022; 10(9):1852. https://doi.org/10.3390/pr10091852
Chicago/Turabian StyleLiu, Jianxing, Wenna Jing, Hengxin Guo, Yingwei Gao, Sishu Wang, Bo Chen, Jianjun Chen, Hongbin Wang, Jianjun Wei, Zongbiao Ye, and et al. 2022. "Study of Plasma Interaction with Liquid Lithium Multichannel Capillary Porous Systems in SCU-PSI" Processes 10, no. 9: 1852. https://doi.org/10.3390/pr10091852
APA StyleLiu, J., Jing, W., Guo, H., Gao, Y., Wang, S., Chen, B., Chen, J., Wang, H., Wei, J., Ye, Z., & Gou, F. (2022). Study of Plasma Interaction with Liquid Lithium Multichannel Capillary Porous Systems in SCU-PSI. Processes, 10(9), 1852. https://doi.org/10.3390/pr10091852