AI-Enabled Intelligent System for Automatic Detection and Classification of Plant Diseases Towards Precision Agriculture
Abstract
1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset Details
3.2. Proposed Framework
3.3. Advanced CNN Model
3.4. Model 2
| Algorithm 1. Feature selection algorithm to improve performance of deep learning models. |
| Algorithm: Feature Selection Inputs: A = {A1, A2, …An}, threshold th, network N Output: Selected features F
End For Return F End |
3.5. Model 3
| Algorithm 2. ROI-Enabled Feature Map Generation (ROIE-FMG). |
| Algorithm: ROI-Enabled Feature Map Generation (ROIE-FMG) Input: I (leaf image), Training Dataset T (consists of ROI feature maps) Output: Generated feature map F
End For End For F←CreateFeatureMap(M, I) Return F |
3.6. Performance Evaluation
4. Results and Discussion
4.1. Results of Advanced CNN Model
4.2. Results of Model 2
4.3. Results of Model 3
5. Conclusions and Future Work
- Federated and privacy-preserving learning to collaboratively improve model performance across diverse farms without sharing sensitive data.
- Drone-based multi-modal sensing, integrating RGB, thermal, and hyperspectral imaging, for large-scale and continuous crop health monitoring.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Liu, L.; Xie, C.; Wang, R.; Wang, F.; Bu, Y.; Zhang, S. An effective automatic system deployed in agricultural Internet of Things using Multi-Context Fusion Network towards crop disease recognition in the wild. Appl. Soft Comput. 2020, 89, 106128. [Google Scholar] [CrossRef]
- Nagasubramanian, G.; Sakthivel, R.K.; Patan, R.; Sankayya, M.; Daneshmand, M.; Gandomi, A.H. Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System. IEEE Internet Things J. 2021, 8, 12847–12854. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet Things 2020, 18, 100187. [Google Scholar] [CrossRef]
- Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Wang, X. Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE/CAA J. Autom. Sin. 2021, 8, 718–752. [Google Scholar] [CrossRef]
- Sinha, B.B.; Dhanalakshmi, R. Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Gener. Comput. Syst. 2022, 126, 169–184. [Google Scholar] [CrossRef]
- Tao, W.; Zhao, L.; Wang, G.; Liang, R. Review of the internet of things communication technologies in smart agriculture and challenges. Comput. Electron. Agric. 2021, 189, 106352. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Devare, J.; Hajare, N. A Survey on IoT Based Agricultural Crop Growth Monitoring and Quality Control. In Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 17–19 July 2019; pp. 1–7. [Google Scholar]
- Pan, A.; Wang, N. Design and Implementation of Crop Automatic Diagnosis and Treatment System Based on Internet of Things. J. Phys. Conf. Ser. 2021, 1883, 012062. [Google Scholar] [CrossRef]
- Tegegne, T.; Balcha, H.B.; Beyene, M. Internet of Things Technology for Agriculture in Ethiopia: A Review, (Chapter 20). In Information and Communication Technology for Development for Africa, Proceedings of the Communications in Computer and Information Science; Second International Conference, ICT4DA 2019, Bahir Dar, Ethiopia, 28–30 May 2019, Revised Selected Papers; Mekuria, F., Nigussie, E., Tegegne, T., Eds.; Springer: Cham, Switzerland, 2019; Volume 1026, pp. 239–249. [Google Scholar]
- PlantVillege Dataset. Available online: https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color (accessed on 1 December 2024).
- Gao, D.; Sun, Q.; Hu, B.; Zhang, S. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles. Sensors 2020, 20, 1487. [Google Scholar] [CrossRef]
- Guo, T.; Zhong, W. Design and implementation of the span greenhouse agriculture Internet of Things system. In Proceedings of the 2015 International Conference on Fluid Power and Mechatronics (FPM), Harbin, China, 5–7 August 2015; pp. 1–4. [Google Scholar]
- Kitpo, N.; Kugai, Y.; Inoue, M.; Yokemura, T.; Satomura, S. Internet of Things for Greenhouse Monitoring System Using Deep Learning and Bot Notification Services. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–4. [Google Scholar]
- Pawara, S.; Nawale, D.; Patil, K.; Mahajan, R. Early Detection of Pomegranate Disease Using Machine Learning and Internet of Things. In Proceedings of the 2018 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; pp. 1–4. [Google Scholar]
- Villa-Henriksen, A.; Edwards, G.T.; Pesonen, L.A.; Green, O.; Sørensen, C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2020, 191, 60–84. [Google Scholar] [CrossRef]
- Wang, D.; Chen, D.; Song, B.; Guizani, N.; Yu, X.; Du, X. From IoT to 5G I-IoT: The Next Generation IoT-Based Intelligent Algorithms and 5G Technologies. IEEE Commun. Mag. 2018, 56, 114–120. [Google Scholar] [CrossRef]
- Phupattanasilp, P.; Tong, S.-R. Augmented Reality in the Integrative Internet of Things (AR-IoT): Application for Precision Farming. Sustainability 2019, 11, 2658. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, W.; Wang, H. Crop disease monitoring and recognizing system by soft computing and image processing models. Multimed. Tools Appl. 2020, 79, 30905–30916. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Q.; Wang, S.Z. Plant disease identification method based on lightweight CNN and its mobile application. J. Agric. Eng. 2019, 35, 194–204. [Google Scholar]
- Shinde, S.S.; Kulkarni, M. Review Paper on Prediction of Crop Disease Using IoT and Machine Learning. In Proceedings of the 2017 International Conference on Transforming Engineering Education (ICTEE), Pune, India, 13–16 December 2017; pp. 1–4. [Google Scholar]
- Patil, K.A.; Kale, N.R. A model for smart agriculture using IoT. In Proceedings of the 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, 26 June 2017; pp. 1–3. [Google Scholar]
- Marcu, I.M.; Suciu, G.; Balaceanu, C.M.; Banaru, A. IoT based System for Smart Agriculture. In Proceedings of the 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 27–29 June 2019; pp. 1–4. [Google Scholar]
- Gaspar, P.D.; Fernandez, C.M.; Soares, V.N.G.J.; Caldeira, J.M.L.P.; Silva, H. Development of Technological Capabilities Through the Internet of Things (IoT): Survey of Opportunities and Barriers for IoT Implementation in Portugal’s Agro-Industry. Appl. Sci. 2021, 11, 3454. [Google Scholar] [CrossRef]
- Raj, M.; Gupta, S.; Chamola, V.; Elhence, A.; Garg, T.; Atiquzzaman, M.; Niyato, D. A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0. J. Netw. Comput. Appl. 2021, 187, 103107. [Google Scholar] [CrossRef]
- Rong, B. Crop Disease and Insect Pest Automatic Monitoring and Reporting System Based on Internet of Things Technology. Int. J. Multimed. Comput. 2021, 1, 1–14. [Google Scholar]
- Kamilaris, A.; Gao, F.; Prenafeta-Boldu, F.X.; Ali, M.I. Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 1–6. [Google Scholar]
- Kothiya, R.H.; Patel, K.L.; Jayswal, H.S. Smart Farming Using Internet of Things. Int. J. Appl. Eng. Res. 2018, 13, 10164–10168. [Google Scholar]
- Farhan, L.; Kharel, R.; Kaiwartya, O.; Quiroz-Castellanos, M.; Alissa, A.; Abdulsalam, M. A concise review on Internet of Things (IoT)-problems, challenges and opportunities. In Proceedings of the 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; pp. 1–6. [Google Scholar]
- Babu, T.G.; Anjan Babu, P.G. IoT (Internet of Things) & Big Data Solutions to Boost Yield and Reduce Waste in Farming. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Cadavid, H.; Garzón, W.; Pérez, A.; López, G.; Mendivelso, C.; Ramírez, C. Towards a Smart Farming Platform: From IoT-Based Crop Sensing to Data Analytics. Adv. Comput. 2018, 885, 237–251. [Google Scholar] [CrossRef]
- Devi, R.K.; Muthukannan, M. An Internet of Things-based Economical Agricultural Integrated System for Farmers: A Review. In Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020; pp. 1–8. [Google Scholar]
- Potamitis, I.; Eliopoulos, P.; Rigakis, I. Automated Remote Insect Surveillance at a Global Scale and the Internet of Things. Robotics 2017, 6, 19. [Google Scholar] [CrossRef]
- Rajkumar, M.N.; Abinaya, S.; Kumar, V.V. Intelligent irrigation system—An IOT based approach. In Proceedings of the 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), Coimbatore, India, 16–18 March 2017; pp. 1–5. [Google Scholar]
- Balasubramaniyan, M.; Navaneethan, C. Applications of Internet of Things for smart farming—A survey. Mater. Today Proc. 2021, 47, 18–24. [Google Scholar] [CrossRef]
- Iorliam, A.; Iveren, B.I.; Sylvester, B. Internet of Things for Smart Agriculture in Nigeria and Africa: A Review. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2021, 10, 7–13. [Google Scholar]
- Thorat, A.; Kumari, S.; Valakunde, N.D. An IoT based smart solution for leaf disease detection. In Proceedings of the 2017 International Conference on Big Data, IoT and Data Science (BID), Pune, India, 20–22 December 2017; pp. 193–198. [Google Scholar]
- Debnath, O.; Himadri, N.S. An IoT-based intelligent farming using CNN for early disease detection in rice paddy. Microprocess. Microsyst. 2022, 94, 104631. [Google Scholar] [CrossRef]
- Hu, Y.-C.; Tiwari, S.; Mishra, K.K.; Trivedi, M.C. Automatic Cotton Leaf Disease Diagnosis and Controlling Using Raspberry Pi and IoT. In Intelligent Communication and Computational Technologies; Lecture Notes in Networks and Systems; Springer: Singapore, 2018; Volume 19, pp. 157–167. [Google Scholar] [CrossRef]
- Sujatha, R.; Chatterjee, J.M.; Jhanjhi, N.; Brohi, S.N. Performance of deep learning vs machine learning in plant leaf disease detection. Microprocess. Microsyst. 2021, 80, 103615. [Google Scholar] [CrossRef]
- Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Kavita; Ijaz, M.F.; Woźniak, M. A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases. Sensors 2021, 21, 4749. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.; Shin, C. IoT-Based Strawberry Disease Prediction System for Smart Farming. Sensors 2018, 18, 4051. [Google Scholar] [CrossRef] [PubMed]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef]
- Kale, A.P.; Sonavane, S.P. IoT based Smart Farming: Feature subset selection for optimized high-dimensional data using improved GA based approach for ELM. Comput. Electron. Agric. 2018, 161, 225–232. [Google Scholar] [CrossRef]
- Al-Wesabi, F.N.; Albraikan, A.A.; Hilal, A.M.; Eltahir, M.M.; Hamza, M.A.; Zamani, A.S. Artificial Intelligence Enabled Apple Leaf Disease Classification for Precision Agriculture. Comput. Mater. Contin. 2022, 70, 6223–6238. [Google Scholar] [CrossRef]
- Singh, A.; Singh, K.; Kaur, J.; Singh, M.L. Smart Agriculture Framework for Automated Detection of Leaf Blast Disease in Paddy Crop Using Colour Slicing and GLCM Features based Random Forest Approach. Wirel. Pers. Commun. 2023, 131, 2445–2462. [Google Scholar] [CrossRef]
- Akhter, R.; Sofi, S.A. Precision agriculture using IoT data analytics and machine learning. J. King Saud Univ. Comput. Inf. Sci. 2021, 34, 5602–5618. [Google Scholar] [CrossRef]
- Coulibaly, S.; Kamsu-Foguem, B.; Kamissoko, D.; Traore, D. Deep learning for precision agriculture: A bibliometric analysis. Intell. Syst. Appl. 2022, 16, 200102. [Google Scholar] [CrossRef]
- Karanisa, T.; Achour, Y.; Ouammi, A.; Sayadi, S. Smart greenhouses as the path towards precision agriculture in the food energy and water nexus: Case study of Qatar. Environ. Syst. Decis. 2022, 42, 521–546. [Google Scholar] [CrossRef]
- Albattah, W.; Nawaz, M.; Javed, A.; Masood, M.; Albahli, S. A novel deep learning method for detection and classification of plant diseases. Complex Intell. Syst. 2022, 8, 507–524. [Google Scholar] [CrossRef]
- Cheema, S.M.; Ali, M.; Pires, I.M.; Gonçalves, N.J.; Naqvi, M.H.; Hassan, M. IoAT Enabled Smart Farming: Urdu Language-Based Solution for Low-Literate Farmers. Agriculture 2022, 12, 1277. [Google Scholar] [CrossRef]
- Adli, H.K.; Remli, M.A.; Sali, K.N.S.W. Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review. Sensors 2023, 23, 3752. [Google Scholar] [CrossRef] [PubMed]
- Quy, V.K.; Hau, N.V.; Anh, D.V.; Quy, N.M. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Bhat, S.A.; Huang, N.-F. Big Data and AI Revolution in Precision Agriculture: Survey and Challenges. IEEE Access 2021, 9, 110209–110222. [Google Scholar] [CrossRef]
- Chouhan, S.S.; Singh, U.P.; Jain, S. Automated Plant Leaf Disease Detection and Classification Using Fuzzy Based Function Network. Wirel. Pers. Commun. 2021, 121, 1757–1779. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Ullah, S.; Melagraki, G.; Afantitis, A.; Lynch, I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 2021, 7, 864–876. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Somov, A.; Bornemann, G.; Hauslage, J.; Fedorov, M. Enabling Precision Agriculture Through Embedded Sensing With Artificial Intelligence. IEEE Trans. Instrum. Meas. 2019, 69, 4103–4113. [Google Scholar] [CrossRef]
- Linaza, M.T.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; Olaizola, I.G.; Barriguinha, A.; Moysiadis, T.; et al. Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture. Agronomy 2021, 11, 1227. [Google Scholar] [CrossRef]
- Alam, M.; Alam, M.S.; Roman, M.; Tufail, M.; Khan, M.U.; Khan, M.T. Real-Time Machine-Learning Based Crop/Weed Detection and Classification for Variable-Rate Spraying in Precision Agriculture. In Proceedings of the 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 14–16 April 2020; pp. 273–280. [Google Scholar]
- Suhag, S.; Singh, N.; Jadaun, S.; Johri, P.; Shukla, A.; Parashar, N. IoT based Soil Nutrition and Plant Disease Detection System for Smart Agriculture. In Proceedings of the 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 18–19 June 2021. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Partel, V.; Costa, L. Agroview: Cloud-based application to process, analyze and visualize UAV-collected data for precision agriculture applications utilizing artificial intelligence. Comput. Electron. Agric. 2020, 174, 105457. [Google Scholar] [CrossRef]
- Lu, Y.; Young, S. A survey of public datasets for computer vision tasks in precision agriculture. Comput. Electron. Agric. 2020, 178, 105760. [Google Scholar] [CrossRef]
- Saranya, T.; Deisy, C.; Sridevi, S. Kalaiarasi Sonai Muthu Anbananthen. A comparative study of deep learning and Internet of Things for precision agriculture. Eng. Appl. Artif. Intell. 2023, 122, 106034. [Google Scholar] [CrossRef]

























| Reference | Approach | Technique | Algorithm | Dataset | Limitations |
|---|---|---|---|---|---|
| [44] | AI | AIE-ALDC technique | WWO algorithm | GLDD | It is yet to be deployed and tested in real environment |
| [45] | AI and IoT | IoT-enabled method | ANN-GA | NUOnet | Method needs improvement with hybrid DL approaches. |
| [47] | DL | Deep reinforcement learning | DL-based algorithm | ImageNet, MS COCO, Pascal VOC | Authors intend to improve it considering climate change and economic collapse |
| [48] | DL | DL-based techniques | SGD | PlantVillage | Needs to be evaluated with more complex datasets |
| [51] | DL and AIoT | AI techniques | DLEFN | Custom dataset | AIoT security and privacy challenges are not focused. |
| [53] | AI | ML techniques | ML-based algorithms | PlantVillage | Lacks empirical study |
| [54] | DL | IoT | FFA | Custom dataset | Needs improvement with cloud and UAV integration |
| [56] | AI and ML | ML techniques | ML-based algorithms | Nano-agriculture datasets | Needs further investigation on the usage of nanotechnology in agriculture |
| [57] | DL | DCNN | DL-based algorithms | PlantVillage | Multi-class classification of fruits and robotic forming are to be explored. |
| [59] | AI | DL techniques | AI algorithms | Rosario | AI algorithms for smart farming are to be explored further. |
| Layer Type | Patch Size/Stride | Output Dimensions |
|---|---|---|
| Convolution | 9 × 9/49 × 9/4 | 96 × 55 × 5596 × 55 × 55 |
| Max-pooling | 3 × 3/23 × 3/2 | 96 × 27 × 2796 × 27 × 27 |
| Convolution | 5 × 5/15 × 5/1 | 256 × 27 × 27,256 × 27 × 27 |
| Max-pooling | 3 × 3/23 × 3/2 | 256 × 13 × 13,256 × 13 × 13 |
| Convolution | 3 × 3/13 × 3/1 | 384 × 13 × 13,384 × 13 × 13 |
| Convolution | 3 × 3/13 × 3/1 | 384 × 13 × 13,384 × 13 × 13 |
| Convolution | 2 × 2/12 × 2/1 | 256 × 14 × 14,256 × 14 × 14 |
| Max-pooling | 3 × 3/23 × 3/2 | 256 × 7 × 7256 × 7 × 7 |
| Max-pooling | 3 × 3/23 × 3/2 | 256 × 3 × 3256 × 3 × 3 |
| Inception Module | −− | 256 × 3 × 3256 × 3 × 3 |
| Inception Module | −− | 736 × 3 × 3736 × 3 × 3 |
| Max-pooling | 3 × 3/23 × 3/2 | 736 × 1 × 1736 × 1 × 1 |
| Convolution | 1 × 1/11 × 1/1 | 4096 × 1 × 14,096 × 1 × 1 |
| Fully Connected | −− | 4 (Classes) |
| Softmax | −− | 4 (Classes) |
| Model | Accuracy | F1-Score | Precision | Recall |
|---|---|---|---|---|
| Model 1 | 97.62% | 0.96 | 0.97 | 0.95 |
| Model 2 | 97.73% | 0.97 | 0.96 | 0.98 |
| Model 3 | 99.49% | 0.99 | 0.98 | 1.00 |
| Model | Key Innovation | Technical Differentiation |
|---|---|---|
| Model 1 | AlexNet-inspired architecture with cascade inception | Customized CNN layers for discriminative feature extraction |
| Model 2 | Feature engineering via ablation | Dynamic threshold adaptation |
| Model 3 | ROI-aware attention | Learnable spatial weighting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishna, G.S.; Gulzar, Z.; Baronia, A.; Srinivas, J.; Paramanandam, P.; Balakrishna, K. AI-Enabled Intelligent System for Automatic Detection and Classification of Plant Diseases Towards Precision Agriculture. Informatics 2025, 12, 138. https://doi.org/10.3390/informatics12040138
Krishna GS, Gulzar Z, Baronia A, Srinivas J, Paramanandam P, Balakrishna K. AI-Enabled Intelligent System for Automatic Detection and Classification of Plant Diseases Towards Precision Agriculture. Informatics. 2025; 12(4):138. https://doi.org/10.3390/informatics12040138
Chicago/Turabian StyleKrishna, Gujju Siva, Zameer Gulzar, Arpita Baronia, Jagirdar Srinivas, Padmavathy Paramanandam, and Kasharaju Balakrishna. 2025. "AI-Enabled Intelligent System for Automatic Detection and Classification of Plant Diseases Towards Precision Agriculture" Informatics 12, no. 4: 138. https://doi.org/10.3390/informatics12040138
APA StyleKrishna, G. S., Gulzar, Z., Baronia, A., Srinivas, J., Paramanandam, P., & Balakrishna, K. (2025). AI-Enabled Intelligent System for Automatic Detection and Classification of Plant Diseases Towards Precision Agriculture. Informatics, 12(4), 138. https://doi.org/10.3390/informatics12040138

