Comparison of Ensemble and Meta-Ensemble Models for Early Risk Prediction of Acute Myocardial Infarction
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. Data Source
3.2. Data Preprocessing
3.3. Selection of Learning Algorithm
3.3.1. AdaBoost Classifier
3.3.2. Gradient Boosting Classifier
3.3.3. Random Forest Classifier
3.3.4. Extra Trees Classifier
3.3.5. Bagging Classifier
3.4. Performance Metrics
- True positives (TP): These occur in cases where the model correctly predicts an observation belonging to the positive class.
- False negatives (FN): These occur in situations where the observation belongs to the positive class, but the model misclassifies it as negative.
- False positives (FP): These occur when an observation of the negative class is incorrectly classified as positive.
- True negatives (TN): These occur in cases where the model correctly predicts an observation as belonging to the negative class.
3.5. Evaluation of Model Stability
3.6. Receiver Operating Characteristic (ROC) Curve
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Qiao, Y.; Zhao, M.; Magnussen, C.G.; Xi, B. Global, Regional, and National Burden of Cardiovascular Diseases in Youths and Young Adults Aged 15–39 Years in 204 Countries/Territories, 1990–2019: A Systematic Analysis of Global Burden of Disease Study 2019. BMC Med. 2023, 21, 222. [Google Scholar] [CrossRef]
- Kaptoge, S.; Pennells, L.; De Bacquer, D.; Cooney, M.T.; Kavousi, M.; Stevens, G.; Riley, L.M.; Savin, S.; Khan, T.; Altay, S.; et al. World Health Organization Cardiovascular Disease Risk Charts: Revised Models to Estimate Risk in 21 Global Regions. Lancet Glob. Health 2019, 7, e1332–e1345. [Google Scholar] [CrossRef]
- Mc Namara, K.; Alzubaidi, H.; Jackson, J.K. Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved? Integr. Pharm. Res. Pract. 2019, 8, 1–11. [Google Scholar] [CrossRef]
- Kelly, B.B.; Narula, J.; Fuster, V. Recognizing Global Burden of Cardiovascular Disease and Related Chronic Diseases. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2012, 79, 632–640. [Google Scholar] [CrossRef]
- Nansseu, J.R.; Tankeu, A.T.; Kamtchum-Tatuene, J.; Noubiap, J.J. Fixed-Dose Combination Therapy to Reduce the Growing Burden of Cardiovascular Disease in Low- and Middle-Income Countries: Feasibility and Challenges. J. Clin. Hypertens. 2018, 20, 168–173. [Google Scholar] [CrossRef]
- Janez, A.; Muzurovic, E.; Bogdanski, P.; Czupryniak, L.; Fabryova, L.; Fras, Z.; Guja, C.; Haluzik, M.; Kempler, P.; Lalic, N.; et al. Modern Management of Cardiometabolic Continuum: From Overweight/Obesity to Prediabetes/Type 2 Diabetes Mellitus. Recommendations from the Eastern and Southern Europe Diabetes and Obesity Expert Group. Diabetes Ther. 2024, 15, 1865–1892. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, R.; Patel, S.A.; Ali, M.K.; Narayan, K.M.V. Global Updates on Cardiovascular Disease Mortality Trends and Attribution of Traditional Risk Factors. Curr. Diab. Rep. 2019, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, L.; Mesinovic, M.; Yang, K.-W.; Eid, M.A. Explainable Prediction of Acute Myocardial Infarction Using Machine Learning and Shapley Values. IEEE Access 2020, 8, 210410–210417. [Google Scholar] [CrossRef]
- Writing Committee; Smith, S.C.; Collins, A.; Ferrari, R.; Holmes, D.R.; Logstrup, S.; McGhie, D.V.; Ralston, J.; Sacco, R.L.; Stam, H.; et al. Our Time: A Call to Save Preventable Death from Cardiovascular Disease (Heart Disease and Stroke). Eur. Heart J. 2012, 33, 2910–2916. [Google Scholar] [CrossRef]
- Gheorghe, A.; Griffiths, U.; Murphy, A.; Legido-Quigley, H.; Lamptey, P.; Perel, P. The Economic Burden of Cardiovascular Disease and Hypertension in Low- and Middle-Income Countries: A Systematic Review. BMC Public Health 2018, 18, 975. [Google Scholar] [CrossRef]
- Parry, M.; Bjørnnes, A.K.; Nickerson, N.; Lie, I. Family Caregivers and Cardiovascular Disease: An Intersectional Approach to Good Health and Wellbeing. In International Perspectives on Family Caregiving; Stanley, S., Ed.; Emerald Publishing Limited: Leeds, UK, 2025; pp. 135–157. ISBN 978-1-83549-612-1. [Google Scholar]
- Laslett, L.J.; Alagona, P.; Clark, B.A.; Drozda, J.P.; Saldivar, F.; Wilson, S.R.; Poe, C.; Hart, M. The Worldwide Environment of Cardiovascular Disease: Prevalence, Diagnosis, Therapy, and Policy Issues. J. Am. Coll. Cardiol. 2012, 60, S1–S49. [Google Scholar] [CrossRef]
- Capotosto, L.; Massoni, F.; De Sio, S.; Ricci, S.; Vitarelli, A. Early Diagnosis of Cardiovascular Diseases in Workers: Role of Standard and Advanced Echocardiography. BioMed Res. Int. 2018, 2018, 7354691. [Google Scholar] [CrossRef]
- Forman, D.; Bulwer, B.E. Cardiovascular Disease: Optimal Approaches to Risk Factor Modification of Diet and Lifestyle. Curr. Treat. Options Cardio Med. 2006, 8, 47–57. [Google Scholar] [CrossRef]
- Hymowitz, N. Behavioral Approaches to Preventing Heart Disease: Risk Factor Modification. Int. J. Ment. Health 1980, 9, 27–69. [Google Scholar] [CrossRef]
- Ullah, M.; Hamayun, S.; Wahab, A.; Khan, S.U.; Rehman, M.U.; Haq, Z.U.; Rehman, K.U.; Ullah, A.; Mehreen, A.; Awan, U.A.; et al. Smart Technologies Used as Smart Tools in the Management of Cardiovascular Disease and Their Future Perspective. Curr. Probl. Cardiol. 2023, 48, 101922. [Google Scholar] [CrossRef]
- Thupakula, S.; Nimmala, S.S.R.; Ravula, H.; Chekuri, S.; Padiya, R. Emerging Biomarkers for the Detection of Cardiovascular Diseases. Egypt Heart J. 2022, 74, 77. [Google Scholar] [CrossRef] [PubMed]
- Fathil, M.F.M.; Md Arshad, M.K.; Gopinath, S.C.B.; Hashim, U.; Adzhri, R.; Ayub, R.M.; Ruslinda, A.R.; Nuzaihan, M.N.M.; Azman, A.H.; Zaki, M.; et al. Diagnostics on Acute Myocardial Infarction: Cardiac Troponin Biomarkers. Biosens. Bioelectron. 2015, 70, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.P.; Jain, A.; Khan, Z.; Kohli, V.; Bharmal, R.N.; Kartikeyan, S.; Bisen, P.S. Cardiac Troponins I and T: Molecular Markers for Early Diagnosis, Prognosis, and Accurate Triaging of Patients with Acute Myocardial Infarction. Mol. Diagn. Ther. 2012, 16, 371–381. [Google Scholar] [CrossRef]
- Garg, P.; Morris, P.; Fazlanie, A.L.; Vijayan, S.; Dancso, B.; Dastidar, A.G.; Plein, S.; Mueller, C.; Haaf, P. Cardiac Biomarkers of Acute Coronary Syndrome: From History to High-Sensitivity Cardiac Troponin. Intern. Emerg. Med. 2017, 12, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, H.; Chen, S.; Wang, J. Advances in Electrochemical Detection of B-Type Natriuretic Peptide as a Heart Failure Biomarker. Int. J. Electrochem. Sci. 2024, 19, 100748. [Google Scholar] [CrossRef]
- Onitilo, A.A.; Engel, J.M.; Stankowski, R.V.; Liang, H.; Berg, R.L.; Doi, S.A.R. High-Sensitivity C-Reactive Protein (Hs-CRP) as a Biomarker for Trastuzumab-Induced Cardiotoxicity in HER2-Positive Early-Stage Breast Cancer: A Pilot Study. Breast Cancer Res. Treat. 2012, 134, 291–298. [Google Scholar] [CrossRef]
- Upadhyay, R.K. Emerging Risk Biomarkers in Cardiovascular Diseases and Disorders. J. Lipids 2015, 2015, 971453. [Google Scholar] [CrossRef]
- Georgoulis, M.; Chrysohoou, C.; Georgousopoulou, E.; Damigou, E.; Skoumas, I.; Pitsavos, C.; Panagiotakos, D. Long-Term Prognostic Value of LDL-C, HDL-C, Lp(a) and TG Levels on Cardiovascular Disease Incidence, by Body Weight Status, Dietary Habits and Lipid-Lowering Treatment: The ATTICA Epidemiological Cohort Study (2002–2012). Lipids Health Dis. 2022, 21, 141. [Google Scholar] [CrossRef]
- Sonmez, A.; Yilmaz, M.I.; Saglam, M.; Unal, H.U.; Gok, M.; Cetinkaya, H.; Karaman, M.; Haymana, C.; Eyileten, T.; Oguz, Y.; et al. The Role of Plasma Triglyceride/High-Density Lipoprotein Cholesterol Ratio to Predict Cardiovascular Outcomes in Chronic Kidney Disease. Lipids Health Dis. 2015, 14, 29. [Google Scholar] [CrossRef]
- Djaberi, R.; Beishuizen, E.D.; Pereira, A.M.; Rabelink, T.J.; Smit, J.W.; Tamsma, J.T.; Huisman, M.V.; Jukema, J.W. Non-Invasive Cardiac Imaging Techniques and Vascular Tools for the Assessment of Cardiovascular Disease in Type 2 Diabetes Mellitus. Diabetologia 2008, 51, 1581–1593. [Google Scholar] [CrossRef]
- Ansari, S.; Farzaneh, N.; Duda, M.; Horan, K.; Andersson, H.B.; Goldberger, Z.D.; Nallamothu, B.K.; Najarian, K. A Review of Automated Methods for Detection of Myocardial Ischemia and Infarction Using Electrocardiogram and Electronic Health Records. IEEE Rev. Biomed. Eng. 2017, 10, 264–298. [Google Scholar] [CrossRef] [PubMed]
- Klaeboe, L.G.; Edvardsen, T. Echocardiographic Assessment of Left Ventricular Systolic Function. J. Echocardiogr. 2019, 17, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Lin, A.; Yuvaraj, J.; Nicholls, S.J.; Wong, D.T.L. Cardiac Computed Tomography Radiomics for the Non-Invasive Assessment of Coronary Inflammation. Cells 2021, 10, 879. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, S.; Conte, E.; Pontone, G.; Baggiano, A.; Annoni, A.; Formenti, A.; Mancini, M.E.; Guglielmo, M.; Muscogiuri, G.; Tanzilli, A.; et al. State-of-the-Art-Myocardial Perfusion Stress Testing: Static CT Perfusion. J. Cardiovasc. Comput. Tomogr. 2020, 14, 294–302. [Google Scholar] [CrossRef]
- Beller, G.A.; Heede, R.C. SPECT Imaging for Detecting Coronary Artery Disease and Determining Prognosis by Noninvasive Assessment of Myocardial Perfusion and Myocardial Viability. J. Cardiovasc. Trans. Res. 2011, 4, 416–424. [Google Scholar] [CrossRef]
- Baghdadi, N.A.; Farghaly Abdelaliem, S.M.; Malki, A.; Gad, I.; Ewis, A.; Atlam, E. Advanced Machine Learning Techniques for Cardiovascular Disease Early Detection and Diagnosis. J. Big Data 2023, 10, 144. [Google Scholar] [CrossRef]
- Boudali, I.; Chebaane, S.; Zitouni, Y. A Predictive Approach for Myocardial Infarction Risk Assessment Using Machine Learning and Big Clinical Data. Healthc. Anal. 2024, 5, 100319. [Google Scholar] [CrossRef]
- Dimopoulos, A.C.; Nikolaidou, M.; Caballero, F.F.; Engchuan, W.; Sanchez-Niubo, A.; Arndt, H.; Ayuso-Mateos, J.L.; Haro, J.M.; Chatterji, S.; Georgousopoulou, E.N.; et al. Machine Learning Methodologies versus Cardiovascular Risk Scores, in Predicting Disease Risk. BMC Med. Res. Methodol. 2018, 18, 179. [Google Scholar] [CrossRef] [PubMed]
- Saikumar, K.; Rajesh, V. A Machine Intelligence Technique for Predicting Cardiovascular Disease (CVD) Using Radiology Dataset. Int. J. Syst. Assur. Eng. Manag. 2024, 15, 135–151. [Google Scholar] [CrossRef]
- Hakim, M.A.; Jahan, N.; Zerin, Z.A.; Farha, A.B. Performance Evaluation and Comparison of Ensemble Based Bagging and Boosting Machine Learning Methods for Automated Early Prediction of Myocardial Infarction. In Proceedings of the 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021; pp. 1–6. [Google Scholar]
- Rai, H.M.; Chatterjee, K. Hybrid CNN-LSTM Deep Learning Model and Ensemble Technique for Automatic Detection of Myocardial Infarction Using Big ECG Data. Appl. Intell. 2022, 52, 5366–5384. [Google Scholar] [CrossRef]
- Bian, K.; Priyadarshi, R. Machine Learning Optimization Techniques: A Survey, Classification, Challenges, and Future Research Issues. Arch. Comput. Methods Eng. 2024, 31, 4209–4233. [Google Scholar] [CrossRef]
- Aliferis, C.; Simon, G. Overfitting, Underfitting and General Model Overconfidence and Under-Performance Pitfalls and Best Practices in Machine Learning and AI. In Artificial Intelligence and Machine Learning in Health Care and Medical Sciences: Best Practices and Pitfalls; Simon, G.J., Aliferis, C., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 477–524. ISBN 978-3-031-39355-6. [Google Scholar]
- Cai, Y.-Q.; Gong, D.-X.; Tang, L.-Y.; Cai, Y.; Li, H.-J.; Jing, T.-C.; Gong, M.; Hu, W.; Zhang, Z.-W.; Zhang, X.; et al. Pitfalls in Developing Machine Learning Models for Predicting Cardiovascular Diseases: Challenge and Solutions. J. Med. Internet Res. 2024, 26, e47645. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; dos Santos Coelho, L. Ensemble Approach Based on Bagging, Boosting and Stacking for Short-Term Prediction in Agribusiness Time Series. Appl. Soft. Comput. 2020, 86, 105837. [Google Scholar] [CrossRef]
- Krittanawong, C.; Virk, H.U.H.; Bangalore, S.; Wang, Z.; Johnson, K.W.; Pinotti, R.; Zhang, H.; Kaplin, S.; Narasimhan, B.; Kitai, T.; et al. Machine Learning Prediction in Cardiovascular Diseases: A Meta-Analysis. Sci. Rep. 2020, 10, 16057. [Google Scholar] [CrossRef]
- Liu, R.; Wang, M.; Zheng, T.; Zhang, R.; Li, N.; Chen, Z.; Yan, H.; Shi, Q. An Artificial Intelligence-Based Risk Prediction Model of Myocardial Infarction. BMC Bioinform. 2022, 23, 217. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Sun, L.; Cai, J.; Wang, S.; Zeng, L.; Sun, S. Application of Machine Learning to Predict the Occurrence of Arrhythmia after Acute Myocardial Infarction. BMC Med. Inf. Decis. Mak. 2021, 21, 301. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.D.; Sunkaria, R.K. Inferior Myocardial Infarction Detection Using Stationary Wavelet Transform and Machine Learning Approach. Signal Image Video Process. 2018, 12, 199–206. [Google Scholar] [CrossRef]
- Oliveira, M.; Seringa, J.; Pinto, F.J.; Henriques, R.; Magalhães, T. Machine Learning Prediction of Mortality in Acute Myocardial Infarction. BMC Med. Inf. Decis. Mak. 2023, 23, 70. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shang, C.; Xu, C.; Wang, Y.; Xu, J.; Zhou, Q. Development and Comparison of Machine Learning-Based Models for Predicting Heart Failure after Acute Myocardial Infarction. BMC Med. Inf. Decis. Mak. 2023, 23, 165. [Google Scholar] [CrossRef]
- Cho, S.M.; Austin, P.C.; Ross, H.J.; Abdel-Qadir, H.; Chicco, D.; Tomlinson, G.; Taheri, C.; Foroutan, F.; Lawler, P.R.; Billia, F.; et al. Machine Learning Compared with Conventional Statistical Models for Predicting Myocardial Infarction Readmission and Mortality: A Systematic Review. Can. J. Cardiol. 2021, 37, 1207–1214. [Google Scholar] [CrossRef]
- Barker, J.; Li, X.; Khavandi, S.; Koeckerling, D.; Mavilakandy, A.; Pepper, C.; Bountziouka, V.; Chen, L.; Kotb, A.; Antoun, I.; et al. Machine Learning in Sudden Cardiac Death Risk Prediction: A Systematic Review. EP Eur. 2022, 24, 1777–1787. [Google Scholar] [CrossRef]
- Chellappan, D.; Rajaguru, H. Generalizability of Machine Learning Models for Diabetes Detection a Study with Nordic Islet Transplant and PIMA Datasets. Sci. Rep. 2025, 15, 4479. [Google Scholar] [CrossRef]
- Sun, Y.; Pang, S.; Zhao, Z.; Zhang, Y. Interpretable SHAP Model Combining Meta-Learning and Vision Transformer for Lithology Classification Using Limited and Unbalanced Drilling Data in Well Logging. Nat. Resour. Res. 2024, 33, 2545–2565. [Google Scholar] [CrossRef]
- Rana, N.; Sharma, K.; Sharma, A. Diagnostic Strategies Using AI and ML in Cardiovascular Diseases: Challenges and Future Perspectives. In Deep Learning and Computer Vision: Models and Biomedical Applications; Dulhare, U.N., Houssein, E.H., Eds.; Springer Nature: Singapore, 2025; Volume 1, pp. 135–165. ISBN 978-981-96-1285-7. [Google Scholar]
- Taherkhani, A.; Cosma, G.; McGinnity, T.M. AdaBoost-CNN: An Adaptive Boosting Algorithm for Convolutional Neural Networks to Classify Multi-Class Imbalanced Datasets Using Transfer Learning. Neurocomputing 2020, 404, 351–366. [Google Scholar] [CrossRef]
- Cao, Y.; Miao, Q.-G.; Liu, J.-C.; Gao, L. Advance and Prospects of AdaBoost Algorithm. Acta Autom. Sin. 2013, 39, 745–758. [Google Scholar] [CrossRef]
- Shahraki, A.; Abbasi, M.; Haugen, Ø. Boosting Algorithms for Network Intrusion Detection: A Comparative Evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost. Eng. Appl. Artif. Intell. 2020, 94, 103770. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A Comparative Analysis of Gradient Boosting Algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Bahad, P.; Saxena, P. Study of AdaBoost and Gradient Boosting Algorithms for Predictive Analytics. In Proceedings of the International Conference on Intelligent Computing and Smart Communication, Tehri, India, 20–21 April 2019; Singh Tomar, G., Chaudhari, N.S., Barbosa, J.L.V., Aghwariya, M.K., Eds.; Springer: Singapore, 2020; pp. 235–244. [Google Scholar]
- Sun, R.; Wang, G.; Zhang, W.; Hsu, L.-T.; Ochieng, W.Y. A Gradient Boosting Decision Tree Based GPS Signal Reception Classification Algorithm. Appl. Soft Comput. 2020, 86, 105942. [Google Scholar] [CrossRef]
- Aziz, N.; Akhir, E.A.P.; Aziz, I.A.; Jaafar, J.; Hasan, M.H.; Abas, A.N.C. A Study on Gradient Boosting Algorithms for Development of AI Monitoring and Prediction Systems. In Proceedings of the 2020 International Conference on Computational Intelligence (ICCI), Virtual, 8–9 October 2020; pp. 11–16. [Google Scholar]
- Chowdhury, A.R.; Chatterjee, T.; Banerjee, S. A Random Forest Classifier-Based Approach in the Detection of Abnormalities in the Retina. Med. Biol. Eng. Comput. 2019, 57, 193–203. [Google Scholar] [CrossRef]
- Dhananjay, B.; Venkatesh, N.P.; Bhardwaj, A.; Sivaraman, J. Cardiac Signals Classification Based on Extra Trees Model. In Proceedings of the 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 26–27 August 2021; pp. 402–406. [Google Scholar]
- Aria, M.; Cuccurullo, C.; Gnasso, A. A Comparison among Interpretative Proposals for Random Forests. Mach. Learn. Appl. 2021, 6, 100094. [Google Scholar] [CrossRef]
- Fumera, G.; Roli, F.; Serrau, A. A Theoretical Analysis of Bagging as a Linear Combination of Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Plaia, A.; Buscemi, S.; Fürnkranz, J.; Mencía, E.L. Comparing Boosting and Bagging for Decision Trees of Rankings. J. Classif. 2022, 39, 78–99. [Google Scholar] [CrossRef]
- Heydarian, M.; Doyle, T.E.; Samavi, R. MLCM: Multi-Label Confusion Matrix. IEEE Access 2022, 10, 19083–19095. [Google Scholar] [CrossRef]
- Markoulidakis, I.; Markoulidakis, G. Probabilistic Confusion Matrix: A Novel Method for Machine Learning Algorithm Generalized Performance Analysis. Technologies 2024, 12, 113. [Google Scholar] [CrossRef]
- Kolesnyk, A.S.; Khairova, N.F. Justification for the Use of Cohen’s Kappa Statistic in Experimental Studies of NLP and Text Mining. Cybern. Syst. Anal. 2022, 58, 280–288. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Xia, B. A Simplified Cohen’s Kappa for Use in Binary Classification Data Annotation Tasks. IEEE Access 2019, 7, 164386–164397. [Google Scholar] [CrossRef]
- Mokeddem, S.A. A Fuzzy Classification Model for Myocardial Infarction Risk Assessment. Appl. Intell. 2018, 48, 1233–1250. [Google Scholar] [CrossRef]
- Yates, L.A.; Aandahl, Z.; Richards, S.A.; Brook, B.W. Cross Validation for Model Selection: A Review with Examples from Ecology. Ecol. Monogr. 2023, 93, e1557. [Google Scholar] [CrossRef]
- Lim, C.; Yu, B. Estimation Stability with Cross-Validation (ESCV). J. Comput. Graph. Stat. 2016, 25, 464–492. [Google Scholar] [CrossRef]
- Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv 2020, arXiv:1811.12808. [Google Scholar] [CrossRef]
- Mohd Faizal, A.S.; Hon, W.Y.; Thevarajah, T.M.; Khor, S.M.; Chang, S.-W. A Biomarker Discovery of Acute Myocardial Infarction Using Feature Selection and Machine Learning. Med. Biol. Eng. Comput. 2023, 61, 2527–2541. [Google Scholar] [CrossRef] [PubMed]
- Obuchowski, N.A.; Bullen, J.A. Receiver Operating Characteristic (ROC) Curves: Review of Methods with Applications in Diagnostic Medicine. Phys. Med. Biol. 2018, 63, 07TR01. [Google Scholar] [CrossRef]
- Rojas, J.C.; Lyons, P.G.; Chhikara, K.; Chaudhari, V.; Bhavani, S.V.; Nour, M.; Buell, K.G.; Smith, K.D.; Gao, C.A.; Amagai, S.; et al. A Common Longitudinal Intensive Care Unit Data Format (CLIF) for Critical Illness Research. Intensive Care Med. 2025, 51, 556–569. [Google Scholar] [CrossRef] [PubMed]
- Elreedy, D.; Atiya, A.F. A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for Handling Class Imbalance. Inf. Sci. 2019, 505, 32–64. [Google Scholar] [CrossRef]
- Özdemir, A.; Polat, K.; Alhudhaif, A. Classification of Imbalanced Hyperspectral Images Using SMOTE-Based Deep Learning Methods. Expert Syst. Appl. 2021, 178, 114986. [Google Scholar] [CrossRef]
- Carreira-Perpiñán, M.Á.; Zharmagambetov, A. Ensembles of Bagged TAO Trees Consistently Improve over Random Forests, AdaBoost and Gradient Boosting. In Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, Virtual, 18–20 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 35–46. [Google Scholar]
- Shao, G.; Tang, L.; Liao, J. Overselling Overall Map Accuracy Misinforms about Research Reliability. Landsc. Ecol. 2019, 34, 2487–2492. [Google Scholar] [CrossRef]
- Li, M.; Yu, T. Methodological Issues on Evaluating Agreement between Two Detection Methods by Cohen’s Kappa Analysis. Parasit. Vectors 2022, 15, 270. [Google Scholar] [CrossRef]
- Demirhan, H.; Yilmaz, A.E. Detection of Grey Zones in Inter-Rater Agreement Studies. BMC Med. Res. Methodol. 2023, 23, 3. [Google Scholar] [CrossRef]
- Brzezinski, D.; Stefanowski, J. Prequential AUC: Properties of the Area under the ROC Curve for Data Streams with Concept Drift. Knowl. Inf. Syst. 2017, 52, 531–562. [Google Scholar] [CrossRef]
- Newaz, A.; Mohosheu, M.S.; Al Noman, M.A. Predicting Complications of Myocardial Infarction within Several Hours of Hospitalization Using Data Mining Techniques. Inform. Med. Unlocked 2023, 42, 101361. [Google Scholar] [CrossRef]
- Abbas, S.; Ojo, S.; Krichen, M.; Alamro, M.A.; Mihoub, A.; Vilcekova, L. A Novel Deep Learning Approach for Myocardial Infarction Detection and Multi-Label Classification. IEEE Access 2024, 12, 76003–76021. [Google Scholar] [CrossRef]
- Alsirhani, A.; Tariq, N.; Humayun, M.; Naif Alwakid, G.; Sanaullah, H. Intrusion Detection in Smart Grids Using Artificial Intelligence-Based Ensemble Modelling. Clust. Comput. 2025, 28, 238. [Google Scholar] [CrossRef]
- Van den Bruel, A.; Cleemput, I.; Aertgeerts, B.; Ramaekers, D.; Buntinx, F. The Evaluation of Diagnostic Tests: Evidence on Technical and Diagnostic Accuracy, Impact on Patient Outcome and Cost-Effectiveness Is Needed. J. Clin. Epidemiol. 2007, 60, 1116–1122. [Google Scholar] [CrossRef]
- Miao, J.; Zhu, W. Precision–Recall Curve (PRC) Classification Trees. Evol. Intel. 2022, 15, 1545–1569. [Google Scholar] [CrossRef]
- Chakraborty, D.; Elzarka, H. Advanced Machine Learning Techniques for Building Performance Simulation: A Comparative Analysis. J. Build. Perform. Simul. 2019, 12, 193–207. [Google Scholar] [CrossRef]
- Li, A.H.; Bradic, J. Boosting in the Presence of Outliers: Adaptive Classification with Nonconvex Loss Functions. J. Am. Stat. Assoc. 2018, 113, 660–674. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews Correlation Coefficient (MCC) Is More Informative Than Cohen’s Kappa and Brier Score in Binary Classification Assessment. IEEE Access 2021, 9, 78368–78381. [Google Scholar] [CrossRef]
- Wallace, M.L.; Mentch, L.; Wheeler, B.J.; Tapia, A.L.; Richards, M.; Zhou, S.; Yi, L.; Redline, S.; Buysse, D.J. Use and Misuse of Random Forest Variable Importance Metrics in Medicine: Demonstrations through Incident Stroke Prediction. BMC Med. Res. Methodol. 2023, 23, 144. [Google Scholar] [CrossRef]
- Liu, L.; Lewandrowski, K. Establishing Optimal Cutoff Values for High-Sensitivity Cardiac Troponin Algorithms in Risk Stratification of Acute Myocardial Infarction. Crit. Rev. Clin. Lab. Sci. 2024, 61, 1–22. [Google Scholar] [CrossRef]
- Zheng, H.; Sherazi, S.W.A.; Lee, J.Y. A Stacking Ensemble Prediction Model for the Occurrences of Major Adverse Cardiovascular Events in Patients with Acute Coronary Syndrome on Imbalanced Data. IEEE Access 2021, 9, 113692–113704. [Google Scholar] [CrossRef]
- Kasim, S.; Amir Rudin, P.N.F.; Malek, S.; Ibrahim, K.S.; Wan Ahmad, W.A.; Fong, A.Y.Y.; Lin, W.Y.; Aziz, F.; Ibrahim, N. Ensemble Machine Learning for Predicting In-Hospital Mortality in Asian Women with ST-Elevation Myocardial Infarction (STEMI). Sci. Rep. 2024, 14, 12378. [Google Scholar] [CrossRef] [PubMed]
Model | Accuracy | F1 Score | Precision | Recall | AUC |
---|---|---|---|---|---|
AdaBoost | 0.646122 | 0.645918 | 0.646548 | 0.646179 | 0.702120 |
Gradient Boosting | 0.708342 | 0.708330 | 0.708406 | 0.708360 | 0.786005 |
Random Forest | 0.912938 | 0.912910 | 0.913365 | 0.912903 | 0.968798 |
Extra Trees | 0.916395 | 0.916330 | 0.917540 | 0.916337 | 0.968897 |
Bagging | 0.936273 | 0.936083 | 0.941200 | 0.936156 | 0.968604 |
Model | Accuracy ± SD | Average Rank | Statistical Group | Cohen’s Kappa |
---|---|---|---|---|
Bagging | 93.36% ± 0.22 | 1.0 | A | 0.87 |
Extra Trees | 90.76% ± 0.18 | 2.0 | A | 0.83 |
Random Forest | 90.41% ± 0.18 | 3.0 | B | 0.83 |
Gradient Boosting | 70.72% ± 0.30 | 4.0 | B | 0.42 |
AdaBoost | 65.15% ± 0.29 | 5.0 | C | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Girón, D.C.; Sandivar-Rosas, J.; Marin-Rodriguez, W.J.; Zúñiga-Rojas, M.G.; Neri-Ayala, A.C.; Díaz-Ronceros, E. Comparison of Ensemble and Meta-Ensemble Models for Early Risk Prediction of Acute Myocardial Infarction. Informatics 2025, 12, 109. https://doi.org/10.3390/informatics12040109
Andrade-Girón DC, Sandivar-Rosas J, Marin-Rodriguez WJ, Zúñiga-Rojas MG, Neri-Ayala AC, Díaz-Ronceros E. Comparison of Ensemble and Meta-Ensemble Models for Early Risk Prediction of Acute Myocardial Infarction. Informatics. 2025; 12(4):109. https://doi.org/10.3390/informatics12040109
Chicago/Turabian StyleAndrade-Girón, Daniel Cristóbal, Juana Sandivar-Rosas, William Joel Marin-Rodriguez, Marcelo Gumercindo Zúñiga-Rojas, Abrahán Cesar Neri-Ayala, and Ernesto Díaz-Ronceros. 2025. "Comparison of Ensemble and Meta-Ensemble Models for Early Risk Prediction of Acute Myocardial Infarction" Informatics 12, no. 4: 109. https://doi.org/10.3390/informatics12040109
APA StyleAndrade-Girón, D. C., Sandivar-Rosas, J., Marin-Rodriguez, W. J., Zúñiga-Rojas, M. G., Neri-Ayala, A. C., & Díaz-Ronceros, E. (2025). Comparison of Ensemble and Meta-Ensemble Models for Early Risk Prediction of Acute Myocardial Infarction. Informatics, 12(4), 109. https://doi.org/10.3390/informatics12040109