Effects of Paediatric Post-COVID-19 Condition on Physical Function and Daily Functioning: A Cross-Sectional Study
Abstract
Highlights
- Paediatric post-COVID-19 condition patients showed reduced exercise capacity and muscle strength compared with healthy peers.
- Quadriceps echo-intensity and fatigue were increased, and school/sport limitations were frequent.
- Objective tests can assess and monitor paediatric post-COVID-19 conditions.
- Early detection supports targeted rehabilitation and interventions.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Legal and Ethical Considerations
2.3. Participants and Setting
2.4. Study Procedures and Data Collection
2.4.1. Physical Function Assessments
2.4.2. Physical Activity and Fatigue Assessments
2.4.3. School and Activity Participation
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Sample
3.2. Clinical Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PPCC Group N = 115 | School Control Group N = 176 | Sports Club Control Group N = 51 | |
---|---|---|---|
Respiratory system disorders | |||
Asthma | 12 (10.43) | 8 (4.55) | 3 (5.88) |
Bronchitis | 11 (9.57) | 10 (5.68) | 1 (1.96) |
Alpha-1 antitrypsin deficiency | 1 (0.57) | ||
Recurrent pneumonia in childhood | 2 (1.74) | 5 (2.84) | |
Bronchiolitis in childhood | 3 (2.61) | ||
Cardiovascular disorders | |||
Wolff Parkinson white syndrome b | 1 (0.87) | ||
Interatrial communication | 1 (0.87) | ||
Neurological-development disorders | |||
Cognitive developmental delay | 1 (0.57) | ||
Migraine | 9 (7.83) | ||
Postinfectious cerebellitis b | 1 (0.87) | ||
Duane syndrome | 1 (0.87) | ||
Recurrent nonspecific headache | 8 (6.96) | ||
Dyslexia | 4 (3.48) | ||
Autism spectrum disorder (level 1) | 3 (2.61) | ||
Psychiatric disorders | |||
Depression | 5 (4.35) | ||
Attention deficit hyperactivity disorder | 9 (7.83) | 1 (0.57) | |
Anxiety | 5 (4.35) | 1 (1.96) | |
Adjustment disorder | 1 (0.87) | ||
Autoimmune system disorders | |||
Lupus erythematosus | 1 (0.87) | ||
Autoimmune hypothyroidism | 2 (1.74) | ||
Celiac disease | 3 (2.61) | ||
Traumatological disorders | |||
Femoral osteochondroma | 1 (0.57) | ||
Osgood Schlatter disease | 1 (0.87) | ||
Scoliosis | 3 (2.61) | ||
Sever’s disease b | 1 (0.87) | ||
Otovestibular disorders | |||
Peripheral vertigo | 2 (1.74) | ||
Labyrinthitis | 1 (0.87) | ||
Conductive hearing loss | 2 (1.74) | ||
Endocrine–metabolic disorders | |||
Obesity | 2 (1.74) | ||
Diabetes mellitus 1 | 1 (0.57) | ||
Subclinical hypothyroidism | 1 (0.87) | ||
Short stature b | 2 (1.74) | ||
Gastrointestinal disorders | |||
Helicobacter pylori infection b | 2 (1.74) | ||
Mesenteric adenitis | 1 (0.87) | ||
Oncology disorders | |||
Leukaemia b | 1 (0.57) | ||
Allergic disorders | |||
Atopic dermatitis | 22 (19.13) | 8 (4.55) | 4 (7.84) |
Rhinoconjunctivitis | 10 (8.70) | ||
Chronic urticaria | 2 (1.74) | ||
Other Disorders | |||
Chronic fatigue | 1 (0.87) | ||
Heterozygous mutation of factor V Leiden | 1 (0.87) | ||
Haemochromatosis | 1 (0.87) | ||
Chromosome 3q29 microdeletion | 1 (0.87) | ||
Polydactyly | 1 (0.87) | ||
Vitíligo | 1 (0.87) | ||
Dengue b | 1 (0.87) | ||
Hereditary angioedema | 1 (0.87) |
Variables | PPCC Group N = 115 | School Control Group N = 176 | Difference | 95% CI | p Value | Sports Club Control Group N = 51 | Difference | 95%CI | p Value |
---|---|---|---|---|---|---|---|---|---|
6MWT, m | 509.00 ± 86.12 | 677.60 ± 86.36 | −1.95 | −2.24, −1.67 | <0.001 | 628.06 ± 52.58 | −1.54 | −1.91, −1.17 | <0.001 |
Dyspnoea (Borg 0–10), pre-6MWT | 1.19 ± 1.69 | 0.00 ± 0.00 | 1.14 | 0.88, 1.39 | <0.001 | 0.00 ± 0.00 | 0.85 | 0.51, 1.2 | <0.001 |
Dyspnoea (Borg 0–10), post-6MWT | 4.35 ± 2.56 | 1.78 ± 1.13 | 1.41 | 1.15, 1.68 | <0.001 | 1.16 ± 1.53 | 1.4 | 1.03, 1.76 | <0.001 |
Fatigue (Borg 0–10), pre-6MWT | 2.39 ± 2.46 | 0.00 ± 0.00 | 1.57 | 1.29, 1.84 | <0.001 | 0.16 ± 0.58 | 1.08 | 0.73, 1.43 | <0.001 |
Fatigue (Borg 0–10), post-6MWT | 5.20 ± 2.88 | 3.25 ± 1.96 | 0.82 | 0.58, 1.07 | <0.001 | 1.65 ± 1.71 | 1.38 | 1.01, 1.74 | <0.001 |
APALQ (score 5–22) | 7.94 ± 3.14 | 12.46 ± 2.99 | −1.48 | −1.75, −1.22 | <0.001 | 14.51 ± 1.17 | −2.44 | −2.86, −2.01 | <0.001 |
APALQ categories | |||||||||
Sedentary (5–10) | 89 (77.39) | 30 (17.05) | 0 (0) | ||||||
Moderately active (11–16) | 24 (20.87) | 140 (79.55) | 45 (88.24) | ||||||
Very active (>17) | 2 (1.74) | 6 (3.41) | 6 (11.76) |
Variables | ICC PPCC Group | ICC Control Group |
---|---|---|
QF MT mid-thigh (D), mm | 0.961 [0.944;0.973] | 0.936 [0.918;0.951] |
RF MT mid-thigh (D), mm | 0.878 [0.828;0.914] | 0.88 [0.847;0.907] |
QF MT distal thigh (D), mm | 0.938 [0.912;0.957] | 0.865 [0.828;0.894] |
RF MT distal thigh (D), mm | 0.867 [0.813;0.906] | 0.831 [0.786;0.868] |
RF CSA (D), cm2 | 0.929 [0.899;0.951] | 0.928 [0.908;0.944] |
QF MT mid-thigh (ND), mm | 0.811 [0.738;0.866] | 0.864 [0.827;0.894] |
RF MT mid-thigh (ND), mm | 0.897 [0.854;0.928] | 0.906 [0.879;0.927] |
QF MT distal thigh (ND), mm | 0.821 [0.752;0.873] | 0.841 [0.798;0.875] |
RF MT distal thigh (ND), mm | 0.983 [0.975;0.988] | 0.985 [0.981;0.989] |
RF CSA (ND), cm2 | 0.982 [0.974;0.987] | 0.977 [0.97;0.982] |
References
- World Health Organization. Long COVID; WHO: Geneva, Switzerland, 2022.
- Zheng, Y.-B.; Zeng, N.; Yuan, K.; Tian, S.-S.; Yang, Y.-B.; Gao, N.; Chen, X.; Zhang, A.-Y.; Kondratiuk, A.L.; Shi, P.-P.; et al. Prevalence and risk factor for long COVID in children and adolescents: A meta-analysis and systematic review. J. Infect. Public Health 2023, 16, 660–672. [Google Scholar] [CrossRef]
- Luo, D.; Mei, B.; Wang, P.; Li, X.; Chen, X.; Wei, G.; Kuang, F.; Li, B.; Su, S. Prevalence and risk factors for persistent symptoms after COVID-19: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2024, 30, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Markus, K.; Andersen, K.M.; Rudolph, A.E.; McGrath, L.J.; Nguyen, J.L.; Kyaw, M.H.; Whittle, I.; Blazos, V.; Heron, L.; et al. Definition and measurement of post-COVID-19 conditions in real-world practice: A global systematic literature review. BMJ Open 2024, 14, e077886. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Gross, R.S.; Mohandas, S.; Stein, C.R.; Case, A.; Dreyer, B.; Pajor, N.M.; Bunnell, H.T.; Warburton, D.; Berg, E.; et al. Postacute Sequelae of SARS-CoV-2 in Children. Pediatrics 2024, 153, e2023062570. [Google Scholar] [CrossRef] [PubMed]
- Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Borg, G.; Linderholm, H. Perceived exertion and pulse rate during graded exercise in various age groups. Acta Med. Scand. 1967, 181, 194–206. [Google Scholar] [CrossRef]
- MacDermid, J.; Solomon, G.; Valdes, K. Clinical Assessment Recommendations, 3rd ed.; American Society of Hand Therapists: Mount Laurel, NJ, USA, 2015. [Google Scholar]
- Serrano, M.D.M.; Collazos, J.F.R.; Romero, S.M.; Santurino, M.S.M.; Armesilla, M.D.C.; del Cerro, J.L.P.; de Espinosa, M.G.-M. Dinamometría en niños y jóvenes de entre 6 y 18 años: Valores de referencia, asociación con tamaño y composición corporal. An. Pediatr. 2009, 70, 340–348. [Google Scholar] [CrossRef]
- Gąsior, J.; Pawłowski, M.; Jeleń, P.; Rameckers, E.; Williams, C.; Makuch, R.; Werner, B. Test–retest reliability of handgrip strength measurement in children and preadolescents. Int. J. Environ. Res. Public Health 2020, 17, 8026. [Google Scholar] [CrossRef]
- American Thoracic Society/European Respiratory Society. ATS/ERS statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [Google Scholar] [CrossRef]
- Szeinberg, A.; Marcotte, J.E.; Roizin, H.; Mindorff, C.; England, S.; Tabachnik, E.; Levison, H. Normal values of maximal inspiratory and expiratory pressures with a portable apparatus in children, adolescents, and young adults. Pediatr. Pulmonol. 1987, 3, 255–258. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Narici, M.; Cooper, C.; Stokes, M. Anterior thigh composition measured using ultrasound imaging to quantify relative thickness of muscle and non-contractile tissue: A potential biomarker for musculoskeletal health. Physiol. Meas. 2014, 35, 2165–2176. [Google Scholar] [CrossRef]
- Heckmatt, J.Z.; Leeman, S.; Dubowitz, V. Ultrasound imaging in the diagnosis of muscle disease. J. Pediatr. Hematol. Oncol. 1982, 101, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lemos, I.; Pérez, C.A.; Lastra, A.S.; Carral, J.M.C.; Sánchez, R.V. Physical activity questionnaires for Spanish children and adolescents: A systematic review. An. Sist. Sanit. Navar. 2016, 39, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza Casterad, J.; Generelo, E.; Aznar, S.; Abarca-Sos, A.; Julian, J.A.; Mota, J. Validation of a short physical activity recall questionnaire completed by Spanish adolescents. Eur. J. Sport Sci. 2012, 12, 283–291. [Google Scholar] [CrossRef]
- Rodríguez-Muguruza, S.; Ariza-Ariza, R.; Díaz del Campo, P.; Seoane-Mato, D.; Carmona, L.; García-Magariño, M. Validation of FACIT-fatigue in Spanish-speaking patients with rheumatoid arthritis. Reumatol. Clínica 2024, 20, 283–290. [Google Scholar] [CrossRef]
- Pérez-Ardanaz, B.; Morales-Asencio, J.M.; Peláez-Cantero, M.J.; García-Mayor, S.; Canca-Sánchez, J.C.; Martí-García, C. Fatigue, quality of life, and use of healthcare resources in children with complex chronic diseases. An. Sist. Sanit. Navar. 2022, 45, e1008. [Google Scholar] [CrossRef]
- Lai, J.-S.; Cella, D.; Kupst, M.J.; Holm, S.; Kelly, M.E.; Bode, R.K.; Goldman, S. Measuring fatigue for children with cancer: Development and validation of the pediatric functional assessment of chronic illness therapy-fatigue (pedsFACIT-F). J. Pediatr. Hematol. Oncol. 2007, 29, 471–479. [Google Scholar] [CrossRef]
- Fainardi, V.; Meoli, A.; Chiopris, G.; Motta, M.; Skenderaj, K.; Grandinetti, R.; Bergomi, A.; Antodaro, F.; Zona, S.; Esposito, S. Long COVID in children and adolescents. Life 2022, 12, 285. [Google Scholar] [CrossRef]
- Gonzalez-Aumatell, A.; Bovo, M.V.; Carreras-Abad, C.; Cuso-Perez, S.; Marsal, È.D.; Coll-Fernández, R.; Calvo, A.G.; Giralt-López, M.; Cantallops, A.E.; Moron-Lopez, S.; et al. Social, academic and health status impact of long COVID on children and young people: An observational, descriptive, and longitudinal cohort study. Children 2022, 9, 1677. [Google Scholar] [CrossRef]
- Morello, R.; Martino, L.; Buonsenso, D. Diagnosis and management of post-COVID (Long COVID) in children: A moving target. Curr. Opin. Pediatr. 2023, 35, 184–192. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; del Valle, N.C.A.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. Long-COVID in children and adolescents: A systematic review and meta-analyses. Sci. Rep. 2022, 12, 9950. [Google Scholar] [CrossRef]
- Brackel, C.L.H.; Lap, C.R.; Buddingh, E.P.; van Houten, M.A.; van der Sande, L.J.T.M.; Langereis, E.J.; Bannier, M.A.G.E.; Pijnenburg, M.W.H.; Hashimoto, S.; Terheggen-Lagro, S.W.J. Pediatric long-COVID: An overlooked phenomenon? Pediatr. Pulmonol. 2021, 56, 2495–2502. [Google Scholar] [CrossRef]
- Buonsenso, D.; Pujol, F.E.; Munblit, D.; Pata, D.; McFarland, S.; Simpson, F.K. Clinical characteristics, activity levels and mental health problems in children with long coronavirus disease: A survey of 510 children. Future Microbiol. 2022, 17, 577–588. [Google Scholar] [CrossRef]
- Berg, S.K.; Nielsen, S.D.; Nygaard, U.; Bundgaard, H.; Palm, P.; Rotvig, C.; Christensen, A.V. Long COVID symptoms in SARS-CoV-2-positive adolescents and matched controls (LongCOVIDKidsDK): A national, cross-sectional study. Lancet Child Adolesc. Health 2022, 6, 240–248. [Google Scholar] [CrossRef]
- Garai, R.; Krivácsy, P.; Herczeg, V.; Kovács, F.; Tél, B.; Kelemen, J.; Máthé, A.; Zsáry, E.; Takács, J.; Veres, D.S.; et al. Clinical assessment of children with long COVID syndrome. Pediatr. Res. 2022, 93, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, S.C.L.; Collaco, J.M.; McGrath-Morrow, S.A. Protracted respiratory findings in children post-SARS-CoV-2 infection. Pediatr. Pulmonol. 2021, 56, 3682–3687. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, E.; Moazzen, N. Pulmonary function in children post -SARS-CoV-2 infection: A systematic review and meta-analysis. BMC Pediatr. 2024, 24, 87. [Google Scholar] [CrossRef] [PubMed]
- Lladós, G.; Massanella, M.; Coll-Fernández, R.; Rodríguez, R.; Hernández, E.; Lucente, G.; López, C.; Loste, C.; Santos, J.R.; España-Cueto, S.; et al. Vagus nerve dysfunction in the post-COVID-19 condition: A pilot cross-sectional study. Clin. Microbiol. Infect. 2024, 30, 515–521. [Google Scholar] [CrossRef]
- Stock, M.S.; Thompson, B.J. Echo intensity as an indicator of skeletal muscle quality: Applications, methodology, and future directions. Eur. J. Appl. Physiol. 2021, 121, 369–380. [Google Scholar] [CrossRef]
Variables | PPCC Group N = 115 | School Control Group N = 176 | Sports Club Control Group N = 51 |
---|---|---|---|
Sex | |||
Female | 76 (66.09) | 84 (47.73) | 27 (52.94) |
Male | 39 (33.91) | 92 (52.27) | 24 (47.06) |
Age, n (years) | 13.31 ± 2.25 | 11.01 ± 2.21 | 12.33 ± 2.50 |
Positive diagnostic test for SARS-CoV-2 | |||
No b | 2 (1.74) | 63 (35.8) | 26 (50.98) |
Yes | 113 (98.26) | 113 (64.2) | 25 (49.02) |
Background medical conditions | |||
No | 38 (33.04) | 143 (81.25) | 43 (84.31) |
Yes | 77 (66.96) | 33 (18.75) | 8 (15.69) |
BMI, kg/m2 | 21.33 ± 4.50 | 18.62 ± 3.33 | 20.94 ± 3.78 |
Weight percentile | 51.70 ± 31.46 | 40.99 ± 25.25 | 54.69 ± 28.49 |
Healthy weight by percentile | 94 (81.74) | 165 (93.75) | 43 (84.31) |
Overweight by percentile (>90) | 8 (6.96) | 2 (1.14) | 4 (7.84) |
Obesity by percentile (>97) | 13 (11.30) | 9 (5.11) | 4 (7.84) |
Regular sport/physical activity | |||
No | 22 (19.13) | 30 (17.05) | 0 (0) |
Yes | 93 (80.87) | 146 (82.95) | 51 (100) |
If you practice regularly, could you practice the same sport/physical activity right now? | |||
No | 58 (62.37) | 0 (0) | 0 (0) |
Yes | 35 (37.63) | 146 (100) | 51 (100) |
Regular weekly hours of sport/physical activity | 4.00 ± 3.92 | 3.64 ± 2.9 | 6.08 ± 2.13 |
0 h | 21 (18.26) | 30 (17.05) | 0 (0) |
0–2 h | 24 (20.87) | 47 (26.7) | 0 (0) |
2–4 h | 30 (26.09) | 20 (11.36) | 0 (0) |
4–6 h | 16 (13.91) | 52 (29.55) | 40 (78.43) |
>6 h | 24 (20.87) | 27 (15.34) | 11 (21.57) |
Current weekly hours of sport/physical activity | 0.92 ± 1.6 | ||
After-school activities: full attendance | 42 (36.52) | 131 (74.43) | 39 (76.47) |
After-school activities: unable to attend | 33 (28.7) | 0 (0) | 0 (0) |
After-school activities: not applicable/none | 40 (34.78) | 45 (25.57) | 12 (23.53) |
School attendance: full | 65 (56.52) | 176 (0) | 51 (0) |
School attendance: partial | 36 (31.3) | 0 (0) | 0 (0) |
School attendance: unable to attend | 14 (12.17) | 0 (0) | 0 (0) |
Variables | PPCC N = 115 | Controls N = 227 | Difference | 95% CI | p Value |
---|---|---|---|---|---|
6MWT, m | 509.00 ± 86.12 | 666.47 ± 82.56 | −1.88 | −2.15, −1.61 | <0.001 |
Dyspnoea (Borg 0–10), pre-6MWT | 1.19 ± 1.69 | 0.00 ± 0.00 | 1.24 | 0.99, 1.48 | <0.001 |
Dyspnoea (Borg 0–10), post-6MWT | 4.35 ± 2.56 | 1.64 ± 1.25 | 1.51 | 1.26, 1.77 | <0.001 |
Fatigue (Borg 0–10), pre-6MWT | 2.39 ± 2.46 | 0.04 ± 0.28 | 1.65 | 1.39, 1.91 | <0.001 |
Fatigue (Borg 0–10), post-6MWT | 5.20 ± 2.88 | 2.89 ± 2.02 | 0.99 | 0.75, 1.23 | <0.001 |
Handgrip (D), kg | 20.08 ± 8.63 | 21.49 ± 9.34 | −0.16 | −0.38, 0.07 | 0.168 |
Handgrip, % predicted (D) | 82.84 ± 29.09 | 107.79 ± 26.50 | −0.91 | −1.15, −0.67 | <0.001 |
Handgrip (ND), kg | 18.83 ± 8.47 | 20.03 ± 9.32 | −0.13 | −0.36, 0.09 | 0.236 |
Handgrip, % predicted (ND) | 82.10 ± 30.46 | 106.15 ± 28.2 | −0.83 | −1.06, −0.6 | <0.001 |
PImax, cmH2O | 68.71 ± 26.23 | 94.18 ± 25.91 | −0.98 | −1.27, −0.69 | <0.001 |
Reference LLN PImax (Szeinberg), cmH2O | 95.09 ± 11.37 | 95.51 ± 11.78 | −0.04 | −0.31, 0.24 | 0.796 |
Bellow LLN by Szeinberg | 50 (73.53) | 2 (0.89) | |||
Within normal range by Szeinberg | 8 (11.76) | 129 (57.33) | |||
Not evaluable by Szeinberg | 10 (14.71) | 94 (41.78) | |||
QF MT mid-thigh (D), mm | 33.21 ± 7.99 | 30.91 ± 6.69 | 0.32 | 0.09, 0.55 | 0.011 |
RF MT mid-thigh (D), mm | 17.96 ± 3.71 | 17.44 ± 3.79 | 0.14 | −0.09, 0.37 | 0.243 |
QF MT distal thigh (D), mm | 24.89 ± 6.64 | 23.86 ± 5.36 | 0.18 | −0.05, 0.41 | 0.165 |
RF MT distal thigh (D), mm | 12.67 ± 3.66 | 12.38 ± 3.01 | 0.09 | −0.14, 0.32 | 0.480 |
RF CSA (D), cm2 | 3.61 ± 1.35 | 3.36 ± 1.26 | 0.2 | −0.04, 0.43 | 0.107 |
QF MT mid-thigh (ND), mm | 32.54 ± 7.38 | 30.37 ± 6.56 | 0.32 | 0.08, 0.55 | 0.011 |
RF MT mid-thigh (ND), mm | 17.61 ± 3.52 | 17.04 ± 3.52 | 0.16 | −0.07, 0.39 | 0.165 |
QF MT distal thigh (ND), mm | 24.10 ± 6.28 | 23.63 ± 5.32 | 0.08 | −0.15, 0.31 | 0.512 |
RF MT distal thigh (ND), mm | 12.12 ± 3.42 | 12.15 ± 2.86 | −0.01 | −0.24, 0.22 | 0.948 |
RF CSA (ND), cm2 | 3.42 ± 1.28 | 3.28 ± 1.16 | 0.12 | −0.11, 0.35 | 0.327 |
RF EI | <0.001 | ||||
RF EI I | 86 (81.13) | 224 (98.68) | |||
RF EI II | 19 (17.92) | 2 (0.88) | |||
RF EI III | 1 (0.94) | 1 (0.44) | |||
RF EI IV | 0 (0) | 0 (0) | |||
pedsFACIT-F | 24.51 ± 11.01 | 50.08 ± 1.78 | −3.91 | −4.28, −3.54 | <0.001 |
pedsFACIT-F categories | |||||
Fatigue-free (45–52 score) | 5 (4.35) | 226 (99.56) | |||
Low (31–44 score) | 34 (29.57) | 1 (0.44) | |||
Moderate (21–30 score) | 31 (26.96) | 0 (0) | |||
High (11–20 score) | 34 (29.57) | 0 (0) | |||
Very high (0–10 score) | 11 (9.57) | 0 (0) | |||
Weight percentile | 51.70 ± 31.46 | 44.07 ± 26.57 | 0.27 | 0.04, 0.49 | 0.027 |
BMI, kg/m2 | 21.33 ± 4.5 | 19.13 ± 3.56 | 0.56 | 0.34, 0.79 | <0.001 |
APALQ | 7.94 ± 3.14 | 12.92 ± 2.82 | −1.7 | −1.96, −1.44 | <0.001 |
APALQ categories | |||||
Sedentary (5–10) | 89 (77.39) | 30 (13.22) | |||
Moderately active (11–16) | 24 (20.87) | 185 (81.5) | |||
Very active (>17) | 2 (1.74) | 12 (5.29) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goicoechea-Calvo, A.; Coll-Fernández, R.; Navarro Expósito, N.; Colomer Giralt, M.; González-Aumatell, A.; Méndez-Hernández, M.; Carreras-Abad, C.; Pallarès Fontanet, N.; Tebe Cordomi, C.; Durà Mata, M.J.; et al. Effects of Paediatric Post-COVID-19 Condition on Physical Function and Daily Functioning: A Cross-Sectional Study. Children 2025, 12, 1216. https://doi.org/10.3390/children12091216
Goicoechea-Calvo A, Coll-Fernández R, Navarro Expósito N, Colomer Giralt M, González-Aumatell A, Méndez-Hernández M, Carreras-Abad C, Pallarès Fontanet N, Tebe Cordomi C, Durà Mata MJ, et al. Effects of Paediatric Post-COVID-19 Condition on Physical Function and Daily Functioning: A Cross-Sectional Study. Children. 2025; 12(9):1216. https://doi.org/10.3390/children12091216
Chicago/Turabian StyleGoicoechea-Calvo, Aroia, Roser Coll-Fernández, Natalia Navarro Expósito, Marc Colomer Giralt, Alba González-Aumatell, María Méndez-Hernández, Clara Carreras-Abad, Natàlia Pallarès Fontanet, Cristian Tebe Cordomi, M. J. Durà Mata, and et al. 2025. "Effects of Paediatric Post-COVID-19 Condition on Physical Function and Daily Functioning: A Cross-Sectional Study" Children 12, no. 9: 1216. https://doi.org/10.3390/children12091216
APA StyleGoicoechea-Calvo, A., Coll-Fernández, R., Navarro Expósito, N., Colomer Giralt, M., González-Aumatell, A., Méndez-Hernández, M., Carreras-Abad, C., Pallarès Fontanet, N., Tebe Cordomi, C., Durà Mata, M. J., & Rodrigo, C. (2025). Effects of Paediatric Post-COVID-19 Condition on Physical Function and Daily Functioning: A Cross-Sectional Study. Children, 12(9), 1216. https://doi.org/10.3390/children12091216