Immediate Skin-to-Skin Contact at Very Preterm Birth and Neurodevelopment the First Two Years: Secondary Outcomes from a Randomised Clinical Trial
Abstract
Highlights
- In this randomised clinical trial, we found that skin-to-skin contact immediately at birth did not enhance cognition, motor, or social development during the first two years of life but may have been important for language skills.
- Infants having received iSSC showed superior language skills at two years corrected age when adjusted for parents’ education and infants’ sex as compared to controls.
- This study along with previous findings from IPISTOSS and other studies on iSSC, support the World Health Organisation guidelines to avoid parental–infant separation by implementing iSSC for low birth weight and preterm infants in all settings. Our findings may indicate a multifactorial effect of iSSC on language acquisition.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Intervention, Primary Outcome
2.3. Neurodevelopment Assessment, Secondary Outcomes
2.3.1. General Movement Assessment (GMA)
2.3.2. Alberta Motor Infant Scale (AIMS)
2.3.3. Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III)
2.3.4. Modified Checklist for Autism in Toddlers (M-CHAT)
2.4. Data Analysis
2.4.1. AIMS
2.4.2. BSID-III
2.4.3. M-CHAT
3. Results
3.1. Follow-Up at Three to Four Months Corrected Age
3.1.1. Background Characteristics
3.1.2. GMA
3.1.3. AIMS
3.2. Follow-Up at 12 Months Corrected Age
3.2.1. Background Characteristics
3.2.2. AIMS
3.3. Follow-Up at 24 Months Corrected Age
3.3.1. Background Characteristics
3.3.2. BSID-III
3.3.3. M-CHAT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IPISTOSS | Immediate Parent-Infant Skin-To-Skin Study |
NICU | neonatal intensive care unit |
ASD | autism spectrum disorders |
SSC | skin-to-skin contact |
IVH | intraventricular haemorrhage |
iSSC | immediate skin-to-skin contact |
RCT | randomised clinical trial |
GA | gestational age |
CC | conventional care |
GMA | General Movement Assessment |
AIMS | Alberta Motor Infant Scale |
BSID-III | Bayley Scales of Infant and Toddler Development, Third edition |
M-CHAT | Modified Checklist for Autism in Toddlers |
IQR | interquartile range |
WHO | World Health Organisation |
References
- Norman, M.; Padkaer Petersen, J.; Stensvold, H.J.; Thorkelsson, T.; Helenius, K.; Brix Andersson, C.; Ørum Cueto, H.; Domellöf, M.; Gissler, M.; Heino, A.; et al. Preterm birth in the Nordic countries-Capacity, management and outcome in neonatal care. Acta Paediatr. 2023, 112, 1422–1433. [Google Scholar] [CrossRef]
- Volpe, J.J. Dysmaturation of Premature Brain: Importance, Cellular Mechanisms, and Potential Interventions. Pediatr. Neurol. 2019, 95, 42–66. [Google Scholar] [CrossRef]
- Rand, K.; Lahav, A. Impact of the NICU environment on language deprivation in preterm infants. Acta Paediatr. 2014, 103, 243–248. [Google Scholar] [CrossRef]
- La Rosa, V.L.; Geraci, A.; Iacono, A.; Commodari, E. Affective Touch in Preterm Infant Development: Neurobiological Mechanisms and Implications for Child–Caregiver Attachment and Neonatal Care. Children 2024, 11, 1407. [Google Scholar] [CrossRef]
- Carozza, S.; Leong, V. The Role of Affectionate Caregiver Touch in Early Neurodevelopment and Parent-Infant Interactional Synchrony. Front. Neurosci. 2020, 14, 613378. [Google Scholar] [CrossRef]
- Vollmer, B.; Stålnacke, J. Young Adult Motor, Sensory, and Cognitive Outcomes and Longitudinal Development after Very and Extremely Preterm Birth. Neuropediatrics 2019, 50, 219–227. [Google Scholar] [CrossRef]
- Twilhaar, E.S.; Wade, R.M.; de Kieviet, J.F.; van Goudoever, J.B.; van Elburg, R.M.; Oosterlaan, J. Cognitive Outcomes of Children Born Extremely or Very Preterm Since the 1990s and Associated Risk Factors: A Meta-analysis and Meta-regression. JAMA Pediatr. 2018, 172, 361–367. [Google Scholar] [CrossRef]
- Vandormael, C.; Schoenhals, L.; Hüppi, P.S.; Filippa, M.; Borradori Tolsa, C. Language in Preterm Born Children: Atypical Development and Effects of Early Interventions on Neuroplasticity. Neural Plast. 2019, 2019, 6873270. [Google Scholar] [CrossRef]
- Persson, M.; Opdahl, S.; Risnes, K.; Gross, R.; Kajantie, E.; Reichenberg, A.; Gissler, M.; Sandin, S. Gestational age and the risk of autism spectrum disorder in Sweden, Finland, and Norway: A cohort study. PLoS Med. 2020, 17, e1003207. [Google Scholar] [CrossRef]
- McMahon, E.; Wintermark, P.; Lahav, A. Auditory brain development in premature infants: The importance of early experience. Ann. N. Y. Acad. Sci. 2012, 1252, 17–24. [Google Scholar] [CrossRef]
- Sibrecht, G.; Wróblewska-Seniuk, K.; Bruschettini, M. Noise or sound management in the neonatal intensive care unit for preterm or very low birth weight infants. Cochrane Database Syst. Rev. 2024, 5, Cd010333. [Google Scholar] [CrossRef]
- Woolard, A.; Coleman, A.; Johnson, T.; Wakely, K.; Campbell, L.E.; Mallise, C.A.; Whalen, O.M.; Murphy, V.E.; Karayanidis, F.; Lane, A.E. Parent-infant interaction quality is related to preterm status and sensory processing. Infant. Behav. Dev. 2022, 68, 101746. [Google Scholar] [CrossRef]
- Shai, D.; Belsky, J. Parental embodied mentalizing: How the nonverbal dance between parents and infants predicts children’s socio-emotional functioning. Attach. Hum. Dev. 2017, 19, 191–219. [Google Scholar] [CrossRef]
- Hartzell, G.; Shaw, R.J.; Givrad, S. Preterm infant mental health in the neonatal intensive care unit: A review of research on NICU parent-infant interactions and maternal sensitivity. Infant. Ment. Health J. 2023, 44, 837–856. [Google Scholar] [CrossRef]
- Kostandy, R.R.; Ludington-Hoe, S.M. The evolution of the science of kangaroo (mother) care (skin-to-skin contact). Birth Defects Res. 2019, 111, 1032–1043. [Google Scholar] [CrossRef]
- Jones, C.; Barrera, I.; Brothers, S.; Ring, R.; Wahlestedt, C. Oxytocin and social functioning. Dialogues Clin. Neurosci. 2017, 19, 193–201. [Google Scholar] [CrossRef]
- Moberg, K.U.; Handlin, L.; Petersson, M. Neuroendocrine mechanisms involved in the physiological effects caused by skin-to-skin contact—With a particular focus on the oxytocinergic system. Infant. Behav. Dev. 2020, 61, 101482. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K. Oxytocin: The Biological Guide to Motherhood; Praeclarus Press: Amarillo, TX, USA, 2014. [Google Scholar]
- Akbari, E.; Binnoon-Erez, N.; Rodrigues, M.; Ricci, A.; Schneider, J.; Madigan, S.; Jenkins, J. Kangaroo mother care and infant biopsychosocial outcomes in the first year: A meta-analysis. Early Hum. Dev. 2018, 122, 22–31. [Google Scholar] [CrossRef]
- Bisanalli, S.; Balachander, B.; Shashidhar, A.; Raman, V.; Josit, P.; Rao, S.P. The beneficial effect of early and prolonged kangaroo mother care on long-term neuro-developmental outcomes in low birth neonates—A cohort study. Acta Paediatr. 2023, 112, 2400–2407. [Google Scholar] [CrossRef]
- Charpak, N.; Tessier, R.; Ruiz, J.G.; Uriza, F.; Hernandez, J.T.; Cortes, D.; Montealegre-Pomar, A. Kangaroo mother care had a protective effect on the volume of brain structures in young adults born preterm. Acta Paediatr. 2022, 111, 1004–1014. [Google Scholar] [CrossRef]
- Casavant, S.G.; Cong, X.; Moore, J.; Starkweather, A. Associations between preterm infant stress, epigenetic alteration, telomere length and neurodevelopmental outcomes: A systematic review. Early Hum. Dev. 2019, 131, 63–74. [Google Scholar] [CrossRef]
- Gonya, J.; Feldman, K.; Brown, K.; Stein, M.; Keim, S.; Boone, K.; Rumpf, W.; Ray, W.; Chawla, N.; Butter, E. Human interaction in the NICU and its association with outcomes on the Brief Infant-Toddler Social and Emotional Assessment (BITSEA). Early Hum. Dev. 2018, 127, 6–14. [Google Scholar] [CrossRef]
- Linnér, A.; Lilliesköld, S.; Jonas, W.; Skiöld, B. Initiation and duration of skin-to-skin contact for extremely and very preterm infants: A register study. Acta Paediatr. 2022, 111, 1715–1721. [Google Scholar] [CrossRef]
- Johansson, M.W.; Lilliesköld, S.; Jonas, W.; Thernström Blomqvist, Y.; Skiöld, B.; Linnér, A. Early skin-to-skin contact and the risk of intraventricular haemorrhage and sepsis in preterm infants. Acta Paediatr. 2024, 113, 1796–1802. [Google Scholar] [CrossRef]
- Romantsik, O.; Calevo, M.G.; Bruschettini, M. Head midline position for preventing the occurrence or extension of germinal matrix-intraventricular haemorrhage in preterm infants. Cochrane Database Syst. Rev. 2020, 7, Cd012362. [Google Scholar] [CrossRef]
- Linnér, A.; Westrup, B.; Lode-Kolz, K.; Klemming, S.; Lillieskold, S.; Markhus Pike, H.; Morgan, B.; Bergman, N.J.; Rettedal, S.; Jonas, W. Immediate parent-infant skin-to-skin study (IPISTOSS): Study protocol of a randomised controlled trial on very preterm infants cared for in skin-to-skin contact immediately after birth and potential physiological, epigenetic, psychological and neurodevelopmental consequences. BMJ Open 2020, 10, e038938. [Google Scholar] [CrossRef]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European consensus guidelines on the management of respiratory distress syndrome—2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef]
- Axelin, A.; Raiskila, S.; Lehtonen, L. The Development of Data Collection Tools to Measure Parent-Infant Closeness and Family-Centered Care in NICUs. Worldviews Evid. Based Nurs. 2020, 17, 448–456. [Google Scholar] [CrossRef]
- Hadders-Algra, M. Early Diagnostics and Early Intervention in Neurodevelopmental Disorders-Age-Dependent Challenges and Opportunities. J. Clin. Med. 2021, 10, 861. [Google Scholar] [CrossRef]
- Robinson, H.; Hart, D.; Vollmer, B. Predictive validity of a qualitative and quantitative Prechtl’s General Movements Assessment at term age: Comparison between preterm infants and term infants with HIE. Early Hum Dev. 2021, 161, 105449. [Google Scholar] [CrossRef]
- Fuentefria, R.D.N.; Silveira, R.C.; Procianoy, R.S. Motor development of preterm infants assessed by the Alberta Infant Motor Scale: Systematic review article. J. Pediatr. (Rio J.) 2017, 93, 328–342. [Google Scholar] [CrossRef]
- Del Rosario, C.; Slevin, M.; Molloy, E.J.; Quigley, J.; Nixon, E. How to use the Bayley Scales of Infant and Toddler Development. Arch. Dis. Child. Educ. Pract. Ed. 2021, 106, 108–112. [Google Scholar] [CrossRef]
- Gray, P.H.; Edwards, D.M.; O’Callaghan, M.J.; Gibbons, K. Screening for autism spectrum disorder in very preterm infants during early childhood. Early Hum. Dev. 2015, 91, 271–276. [Google Scholar] [CrossRef]
- Chi Luong, K.; Long Nguyen, T.; Huynh Thi, D.H.; Carrara, H.P.; Bergman, N.J. Newly born low birthweight infants stabilise better in skin-to-skin contact than when separated from their mothers: A randomised controlled trial. Acta Paediatr. 2016, 105, 381–390. [Google Scholar] [CrossRef]
- Lilliesköld, S.; Lode-Kolz, K.; Rettedal, S.; Lindstedt, J.; Linnér, A.; Markhus Pike, H.; Ahlqvist-Björkroth, S.; Ådén, U.; Jonas, W. Skin-to-Skin Contact at Birth for Very Preterm Infants and Mother-Infant Interaction Quality at 4 Months: A Secondary Analysis of the IPISTOSS Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2344469. [Google Scholar] [CrossRef]
- Mehler, K.; Hucklenbruch-Rother, E.; Trautmann-Villalba, P.; Becker, I.; Roth, B.; Kribs, A. Delivery room skin-to-skin contact for preterm infants-A randomized clinical trial. Acta Paediatr. 2020, 109, 518–526. [Google Scholar] [CrossRef]
- Pineda, R.; Kellner, P.; Guth, R.; Gronemeyer, A.; Smith, J. NICU sensory experiences associated with positive outcomes: An integrative review of evidence from 2015–2020. J. Perinatol. 2023, 43, 837–848. [Google Scholar] [CrossRef]
- Webb, A.R.; Heller, H.T.; Benson, C.B.; Lahav, A. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc. Natl. Acad. Sci. USA. 2015, 112, 3152–3157. [Google Scholar] [CrossRef]
- Caskey, M.; Stephens, B.; Tucker, R.; Vohr, B. Adult talk in the NICU with preterm infants and developmental outcomes. Pediatrics 2014, 133, e578–e584. [Google Scholar] [CrossRef]
- Bridges, R.S. Long-term alterations in neural and endocrine processes induced by motherhood in mammals. Horm. Behav. 2016, 77, 193–203. [Google Scholar] [CrossRef]
- Kim, P.; Strathearn, L.; Swain, J.E. The maternal brain and its plasticity in humans. Horm. Behav. 2016, 77, 113–123. [Google Scholar] [CrossRef]
- Kohl, J.; Dulac, C. Neural control of parental behaviors. Curr. Opin. Neurobiol. 2018, 49, 116–122. [Google Scholar] [CrossRef]
- Kim, S.; Soeken, T.A.; Cromer, S.J.; Martinez, S.R.; Hardy, L.R.; Strathearn, L. Oxytocin and postpartum depression: Delivering on what’s known and what’s not. Brain Res. 2014, 1580, 219–232. [Google Scholar] [CrossRef]
- Lilliesköld, S.; Lode-Kolz, K.; Westrup, B.; Bergman, N.; Sorjonen, K.; Ådén, U.; Mörelius, E.; Rettedal, S.; Jonas, W. Skin-to-skin contact at birth for very preterm infants and symptoms of depression and anxiety in parents during the first year—A secondary outcome of a randomized clinical trial. J. Affect. Disord. 2025, 383, 323–332. [Google Scholar] [CrossRef]
- Asztalos, E.V.; Church, P.T.; Riley, P.; Fajardo, C.; Shah, P.S. Association between Primary Caregiver Education and Cognitive and Language Development of Preterm Neonates. Am. J. Perinatol. 2017, 34, 364–371. [Google Scholar]
- Teufl, L.; Deichmann, F.; Supper, B.; Ahnert, L. How fathers’ attachment security and education contribute to early child language skills above and beyond mothers: Parent-child conversation under scrutiny. Attach. Hum. Dev. 2020, 22, 71–84. [Google Scholar] [CrossRef]
- Vanderauwera, J.; van Setten, E.R.H.; Maurits, N.M.; Maassen, B.A.M. The interplay of socio-economic status represented by paternal educational level, white matter structure and reading. PLoS ONE 2019, 14, e0215560. [Google Scholar] [CrossRef]
- Gayraud, F.; Lanoë, J.L.; De Agostini, M. Factors influencing language performance in boys and girls at age 2 in the French ELFE birth cohort. Brain Res. 2025, 1847, 149305. [Google Scholar] [CrossRef]
- Peyre, H.; Hoertel, N.; Bernard, J.Y.; Rouffignac, C.; Forhan, A.; Taine, M.; Heude, B.; Ramus, F. Sex differences in psychomotor development during the preschool period: A longitudinal study of the effects of environmental factors and of emotional, behavioral, and social functioning. J. Exp. Child. Psychol. 2019, 178, 369–384. [Google Scholar] [CrossRef]
- Hintz, S.R.; Kendrick, D.E.; Vohr, B.R.; Kenneth Poole, W.; Higgins, R.D. Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatr. 2006, 95, 1239–1248. [Google Scholar] [CrossRef]
- Minot, K.L.; Kramer, K.P.; Butler, C.; Foster, M.; Gregory, C.; Haynes, K.; Lagon, C.; Mason, A.; Wynn, S.; Rogers, E.E.; et al. Increasing Early Skin-to-Skin in Extremely Low Birth Weight Infants. Neonatal Netw. 2021, 40, 242–250. [Google Scholar] [CrossRef]
- Kristoffersen, L.; Støen, R.; Bergseng, H.; Flottorp, S.T.; Magerøy, G.; Grunewaldt, K.H.; Aker, K. Immediate Skin-to-Skin Contact in Very Preterm Neonates and Early Childhood Neurodevelopment: A Randomized Clinical Trial. JAMA Netw. Open 2025, 8, e255467. [Google Scholar] [CrossRef]
- Arya, S.; Naburi, H.; Kawaza, K.; Newton, S.; Anyabolu, C.H.; Bergman, N.; Rao, S.; Mittal, P.; Assenga, E.; Gadama, L.; et al. Immediate “Kangaroo Mother Care” and Survival of Infants with Low Birth Weight. N. Engl. J. Med. 2021, 384, 2028–2038. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommendations for Care of the Preterm or Low-Birth-Weight Infant; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Health Organization. Early Essential Newborn Care: Clinical Practice Pocket Guide, 2nd ed.; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
iSSCN = 46 | CCN = 45 | |
---|---|---|
(a). Background characteristic | ||
Gestational Age, days, median (IQR) | 220.50 (2013.25–226.00) | 222.00 (207.00–226.00) |
Birth Weight, grams, mean (range) | 1572 (702–2352) | 1495 (555–2440) |
Sex, female, n (%) | 13 (28) | 27 (60) |
Apgar score, 1 min, median (mean) | 8 (7.4) | 8 (7.4) |
Apgar score, 5 min, median (mean) | 9 (8.2) | 9 (8.6) |
Apgar score, 10 min, median (mean) | 10 (9.3) | 9 (9.0) |
Singleton, n (%) | 30 (65) | 26 (58) |
Antenatal corticosteroids, n (%) | 46 (100) | 43 (96) |
Primiparous, n (%) | 27 (71) | 16 (46) |
Maternal age, mean (SD, range) | 31 (5, 21–40) | 32 (5, 22–45) |
(b). Time spent in skin-to-skin contact | median (IQR) | median (IQR) |
Total hours mother–infant SSC h0–h6, n = 91 | 0.63 (0.00–2.81) |
0.00 (0.00–0.00) |
Total hours father–infant SSC h0–h6, n = 91 | 3.38 (2.25–4.78) | 0.00 (0.00–0.00) |
Accumulated hours in SSC for infants h0–h6, n = 91 |
5.00
(4.44–5.50) |
0.00 (0.00–0.00) |
Total hours mother–infant SSC h7–h72, n = 89 |
9.00 (6.33–14.63) |
5.75 (3.63–9.75) |
Total hours father–infant SSC h7–h72, n = 89 |
8.63 (2.75–11.99) |
3.0 (0.00–4.87) |
Accumulated hours in SSC for infants h7–h72, n = 89 |
17.13 (10.56–25.44) |
10.55 (5.75–13.75) |
Total hours mother–infant SSC h7–day7, n = 85 |
28.50 (20.75–41.25) |
19.58 (16.04–28.38) |
Total hours father–infant SSC h7–day7, n = 85 |
23.85 (11.56–31.45) |
12.25 (6.04–18.13) |
Accumulated hours in SSC for infants h7–day7, n = 85 |
53.13 (37.75–70.29) |
36.45 (25.98–43.24) |
(a). 4 Months AIMS | (b). 12 Months AIMS | (c). 24 Months BSID-III/ M-CHAT a | ||||
---|---|---|---|---|---|---|
iSSC N = 35 | CC N = 34 | iSSC N = 29 | CC N = 33 | iSSC N = 31/28 a | CC N = 31/29 a | |
GA at birth, days, median (IQR) | 222.00 (214.00–226.00) | 220.00 (205.00–224.25) | 216.00 (212.00–223.50) | 218.00 (205.00–222.50) | 220.00 (212.50–225.50) | 220.00 (205.00–225.25) |
CA, months, at follow-up, median (IQR, range) | 4.00 (3.25–4.00, 2.75–4.50) | 4.00 (3.50–4.50, 2.75–4.75) | 12.00 (11.81–12.00, 11.50–13.00) | 12.13 (12.00–12.50, 11.75–14.25) | 24.00 (24.00–25.00, 23.00–28.00) | 24.00 (24.00–25.25, 23.00–28.00) |
Sex, boy, n (%) | 25 (71) | 16 (47) | 21 (72) | 16 (49) | 21 (64) | 16 (47) |
Twin, n (%) | 9 (25) | 17 (50) | 9 (31) | 15 (45) | 11 (33) | 18 (53) |
Caesarean, n (%) | 22 (62) | 26 (76) | 20 (69) | 26 (79) | 21 (63) | 26 (76) |
Birthweight, grams, mean (SD) | 1560.89 (399.90) | 1458.56 (417.15) | 1486.79 (339.98) | 1420.55 (382.51) | 1517.52 (393.33) | 1490.14 (349.85) |
Apgar 5 min, median (IQR) | 9.00 (8.00–10.00) | 9.00 (8.00–9.25) | 9.00 (8.00–9.00) | 9.00 (8.00–9.00) | 9.00 (8.00, 10.00) | 9.00 (8.50–10.00) |
Antenatal corticosteroid, n (%) | 35 (100) | 34 (100) | 29 (100) | 33 (100) | 33 (100) | 34 (100) |
Preeclampsia, n (%) | 10 (29) | 12 (35) | 8 (28) | 14 (42) | 9 (27) | 11 (32) |
Primiparity, n (%) | 26 (74) | 17 (50) | 21 (72) | 15 (46) | 24 (73)/ 20 (74) a | 17 (50)/ 11 (46) a |
Maternal age, years, mean (SD) | 31.46 (4.39) | 32.21 (5.17) | 31.28 (3.66) | 31.58 (3.86) | 31.34 (3.79) | 32.6 (4.87) |
Paternal age, years, mean (SD) | 32.80 (4.49) | 34.68 (4.97) | 32.80 (4.49) | 34.68 (4.97) | 32.91 (3.78) | 34.06 (5.07) |
Cohabiting parents, n (%) | 32 (94) | 31 (93) | 29 (100) | 33 (100) | 32 (97) | 32 (94) |
University education of mother, n (%) | 22 (69) | 26 (76) | 20 (69) | 25 (75) | 20 (61) | 27 (79) |
University education of father, n (%) | 17 (49) | 26 (77) | 15 (51) | 24 (72) | 13 (39)/ 13 (45) a | 28 (82)/ 22 (79) a |
Mental health diagnosis mother, n (%) | 5 (15) | 2 (5) | 2 (7) | 2 (6) | 5 (15) | 3 (9) |
Mother tongue other b, n (%) | 3 (9) | 5 (15) | 4 (14) | 5 (15) | 5 (15) | 7 (21) |
Father tongue other c, n (%) | 4 (11) | 7 (21) | 5 (17) | 5 (15) | 3 (9) | 5 (15) |
(a). AIMS | 4 Months N = 69 (iSSC = 35, CC = 34) | 12 Months N = 62 (SSC = 29, CC = 33) | ||||
---|---|---|---|---|---|---|
Beta | 95 CI | p | Beta | 95% CI | p | |
Randomisation to iSSC | 0.23 | −1.66–2.11 | 0.81 | 0.84 | −4.04–5.71 | 0.73 |
72 h | −0.07 | −2.04–1.89 | 0.94 | 1.46 | −3.90–6.81 | 0.59 |
8 days | 0.06 | −2.08–2.20 | 0.96 | 0.61 | −5.05–6.27 | 0.83 |
adjusted for sex | 0.04 | −1.84–1.92 | 0.96 | 1.07 | −4.10–6.24 | 0.68 |
72 h | −0.21 | −2.22–1.81 | 0.84 | 1.58 | −3.95–7.12 | 0.57 |
8 days | −0.19 | −0.69–3.17 | 0.86 | 0.79 | −5.10–6.68 | 0.79 |
adjusted for education father | 0.07 | −1.95–2.10 | 0.95 | 0.52 | −4.57–5.61 | 0.84 |
72 h | −0.17 | −2.20–1.86 | 0.87 | 0.94 | −4.54–6.42 | 0.73 |
8 days | 0.06 | −2.11–2.23 | 0.95 | 0.15 | −5.55–5.84 | 0.96 |
adjusted for education mother | 0.29 | −1.60–2.18 | 0.79 | 0.90 | −4.07–5.87 | 0.72 |
72 h | −0.06 | −2.06–1.94 | 0.95 | 1.54 | −3.90–6.99 | 0.57 |
8 days | 0.01 | −2.11–2.14 | 0.99 | 0.58 | −5.10–6.26 | 0.84 |
adjusted for primiparity | 0.83 | −0.92–2.58 | 0.35 | 0.93 | −3.72–5.57 | 0.69 |
72 h | −2.32 | −1.39–2.51 | 0.57 | 1.63 | −3.18–6.43 | 0.50 |
8 days | 0.66 | −1.41–2.74 | 0.53 | 0.85 | −4.44–6.14 | 0.75 |
adjusted for corrected age | NA | NA | NA | 5.20 | −0.85–11.24 | 0.09 |
72 h | NA | NA | NA | 5.70 | −0.94–12.34 | 0.09 |
8 days | NA | NA | NA | 5.42 | −1.28–12.12 | 0.11 |
(b). BSID-III | Language 24 months N = 60 (iSSC = 31, CC = 29) | Cognition 24 months N = 62 (iSSC = 31, CC = 31) | ||||
Beta | 95% CI | p | Beta | 95% CI | p | |
Randomisation to iSSC | 24.00 | −3.09–51.09 | 0.08 | −2.32 | −14.18–9.54 | 0.70 |
72 h | 22.22 | −7.60–52.04 | 0.14 | −9.23 | −23.01–4.54 | 0.19 |
8 days | 24.00 | −6.91–54.91 | 0.13 | −8.25 | −21.87–5.36 | 0.23 |
adjusted for father’s education | 32.00 | 7.57–56.43 | 0.01 | −2.05 | −15.40–11.31 | 0.76 |
72 h | 30.21 | 6.25–54.17 | 0.01 | −9.31 | −24.51–5.89 | 0.23 |
8 days | 31.12 | 9.47–52.78 | 0.01 | −6.64 | −20.61–7.33 | 0.35 |
adjusted for mother’s education | 11.51 | 8.94–55.06 | 0.01 | 0.05 | −11.68–11.78 | 0.99 |
72 h | 29.32 | 9.00–49.65 | 0.01 | −6.97 | −19.67–5.73 | 0.28 |
8 days | 23.89 | −0.71–48.49 | 0.06 | −5.90 | −18.38–6.58 | 0.35 |
adjusted for education father and mother | 30.82 | 8.95–52.69 | 0.01 | NA | NA | NA |
adjusted for infants’ sex | 32.00 | 7.85–56.15 | 0.01 | −2.46 | −14.00–9.09 | 0.67 |
72 h | 30.07 | 4.77–55.37 | 0.02 | −9.23 | −23.12–4.66 | 0.19 |
8 days | 31.50 | 6.21–56.79 | 0.02 | −8.21 | −21.86–5.43 | 0.23 |
N = 57 (iSSC = 29, CC = 28) | |||
---|---|---|---|
RM | 95% CI | p | |
Randomisation to iSSC | 1.81 | 0.56–5.86 | 0.325 |
adjusted for infants’ sex | 1.66 | 0.53–5.20 | 0.388 |
adjusted for father’s education | 1.65 | 0.57–4.79 | 0.360 |
adjusted for mother’s education | 1.73 | 0.57–5.23 | 0.334 |
adjusted for primiparity | 1.07 | 0.23–7.22 | 0.929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lode-Kolz, K.; Jonas, W.; Hetland, H.B.; Hovland Instebø, K.H.; Tokvam, H.; Pike, H.; Lilliesköld, S.; Klemming, S.; Linnér, A.; Ådén, U.; et al. Immediate Skin-to-Skin Contact at Very Preterm Birth and Neurodevelopment the First Two Years: Secondary Outcomes from a Randomised Clinical Trial. Children 2025, 12, 986. https://doi.org/10.3390/children12080986
Lode-Kolz K, Jonas W, Hetland HB, Hovland Instebø KH, Tokvam H, Pike H, Lilliesköld S, Klemming S, Linnér A, Ådén U, et al. Immediate Skin-to-Skin Contact at Very Preterm Birth and Neurodevelopment the First Two Years: Secondary Outcomes from a Randomised Clinical Trial. Children. 2025; 12(8):986. https://doi.org/10.3390/children12080986
Chicago/Turabian StyleLode-Kolz, Karoline, Wibke Jonas, Hanne Brit Hetland, Karen Helene Hovland Instebø, Henriette Tokvam, Hanne Pike, Siri Lilliesköld, Stina Klemming, Agnes Linnér, Ulrika Ådén, and et al. 2025. "Immediate Skin-to-Skin Contact at Very Preterm Birth and Neurodevelopment the First Two Years: Secondary Outcomes from a Randomised Clinical Trial" Children 12, no. 8: 986. https://doi.org/10.3390/children12080986
APA StyleLode-Kolz, K., Jonas, W., Hetland, H. B., Hovland Instebø, K. H., Tokvam, H., Pike, H., Lilliesköld, S., Klemming, S., Linnér, A., Ådén, U., & Rettedal, S. (2025). Immediate Skin-to-Skin Contact at Very Preterm Birth and Neurodevelopment the First Two Years: Secondary Outcomes from a Randomised Clinical Trial. Children, 12(8), 986. https://doi.org/10.3390/children12080986