The Link Between Newborn SNP Polymorphism rs266729, Adiponectin, and Newborn Macrosomia in a Cohort of Pregnant Women with Gestational Diabetes Mellitus: A Case–Control Pilot Study
Abstract
:1. Introduction
2. Material and Method
2.1. Study Design
2.2. Description of Study Area and Duration of Study
2.3. Inclusion and Exclusion Criteria
2.4. Diagnosis of Gestational Diabetes Mellitus
2.5. Anthropometric Measurements
2.6. Biochemical Analyses
2.7. Genotyping Analysis
2.8. Statistical Analysis
3. Results
3.1. Maternal and Neonatal Demographic, Anthropometric Parameters
3.2. Allele and Genotype Distribution Between Newborns from the GDM and the Control Mothers Group
3.3. Maternal Biochemical Parameters, Adiponectin Levels, and Newborn Anthropometric and Adiponectin Levels
Parameters | Macrosomic Newborn n = 15 | Normoponderal Newborn n = 56 | p Value |
---|---|---|---|
Maternal adiponectin level at 24–28 WG, ng/dL, mean, (SD) | 5976 ± 2830 | 5499 ± 2266 | 0.55 |
Maternal adiponectin level at birth, ng/dL, mean, (SD) | 8109 ± 4531 | 5724 ± 2142 | 0.005 |
Maternal T-cholesterol at 24–28 WG, mg/dL, mean, (SD) | 229 ± 35 | 241 ± 49 | 0.27 |
Maternal HDL cholesterol at 24–28 WG, mg/dL, mean, (SD) | 69 ± 10 | 66 ± 17 | 0.42 |
Maternal LDL cholesterol at 24–28 WG, mg/dL, mean, (SD) | 127 ± 23 | 148 ± 46 | 0.02 |
Maternal TG at 24–28 WG, mean, (SD) | 273 ± 114 | 221 ± 76 | 0.08 |
Maternal fasting glucose level, at 24–28 WG, mg/dL, mean, (SD) | 106 ± 17 | 93 ± 10 | <0.0001 |
Maternal 1 h glucose level, at 24–28 WG, mg/dL, mean, (SD) | 191 ± 53 | 172 ± 30 | 0.08 |
Maternal 2 h glucose level, at 24–28 WG, mg/dL, mean, (SD) | 140 ± 52 | 136 ± 34 | 0.73 |
Maternal T-cholesterol at birth, mg/dL, mean, (SD) | 245 ± 59 | 257 ± 58 | 0.47 |
Maternal HDL cholesterol at birth, mg/dL, mean, (SD) | 65 ± 14 | 68 ± 21 | 0.44 |
Maternal LDL cholesterol at birth, mg/dL, mean, (SD) | 136 ± 47 | 157 ± 52 | 0.15 |
Maternal TG level at birth, mg/dL, mean, (SD) | 312 ± 115 | 292 ± 129 | 0.18 |
Newborn weight, g, mean, (SD) | 4218 ± 240 | 3310 ± 399 | <0.0001 |
Cord blood adiponectin, ng/dL, mean, (SD) | 174637 ± 639 | 20506 ± 8054 | 0.19 |
Parameters | Macrosomic Newborn n = 5 | Control—Normoponderal, n = 137 | p Value |
---|---|---|---|
Maternal adiponectin level at 24–28 WG, ng/dL, mean, (SD) | 6750 ± 1260 | 6566 ± 2297 | 0.77 |
Maternal adiponectin level at birth, ng/dL, mean, (SD) | 7629 ± 479 | 7338 ± 3618 | 0.44 |
Maternal T-cholesterol at 24–28 WG, mg/dL, mean, (SD) | 241 ± 52 | 247 ± 37 | 0.8 |
Maternal HDL cholesterol at 24–28 WG, mg/dL, mean, (SD) | 74 ± 12 | 73 ± 14 | 0.94 |
Maternal LDL cholesterol at 24–28 WG, mg/dL, mean, (SD) | 139 ± 49 | 154 ± 36 | 0.38 |
Maternal TG at 24–28 WG, mg/dL, mean, (SD) | 218 ± 121 | 199 ± 68 | 0.91 |
Maternal fasting glucose level, at 24–28 WG, mg/dL, mean, (SD) | 77 ± 9 | 80 ± 5 | 0.25 |
Maternal 1 h glucose level, at 24–28 WG, mg/dL, mean, (SD) | 109 ± 12 | 125 ± 24 | 0.04 |
Maternal 2 h glucose level, at 24–28 WG, mg/dL, mean, (SD) | 96 ± 10 | 103 ± 18 | 0.23 |
Maternal T-cholesterol at birth mg/dL, mean, (SD) | 258 ± 48 | 270 ± 44 | 0.55 |
Maternal HDL cholesterol at birth, mg/dL, mean, (SD) | 73 ± 17 | 69 ± 16 | 0.59 |
Maternal LDL cholesterol at birth, mg/dL, mean, (SD) | 156 ± 46 | 172 ± 44 | 0.44 |
Maternal TG at birth, mg/dL, mean, (SD) | 283 ± 112 | 284 ± 89 | 0.89 |
Newborn weight, g, mean, (SD) | 4486 ± 394 | 3303 ± 348 | <0.0001 |
Cord blood adiponectin, ng/dL, mean, (SD) | 23845 ± 2575 | 33314 ± 32721 | 0.002 |
Cord Blood Adiponectin | Maternal Adiponectin at 24–28 WG | Maternal Adiponectin Level at Birth | Maternal Fasting Glucose at 24–28 WG | Maternal 1 h Glucose Level, at 24–28 WG | Maternal 2 h Glucose Level, at 24–28 WG | Maternal T-Cholesterol at 24–28 WG | Maternal HDL Cholesterol at 24–28 WG | Maternal LDL Cholesterol at 24–28 WG | Maternal TG at 24–28 WG | Maternal T-Cholesterol at Birth | Maternal HDL Cholesterol at Birth | Maternal LDL Cholesterol at Birth | Maternal TG at Birth | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Newborn weight from the GDM mothers group | r | 0.262 | −0.059 | 0.334 | 0.288 | −0.067 | −0.049 | −0.114 | 0.161 | −0.251 | 0.133 | −0.087 | −0.076 | −0.169 | 0.074 |
p | 0.027 | 0.632 | 0.040 | 0.017 | 0.588 | 0.694 | 0.355 | 0.193 | 0.041 | 0.28 | 0.477 | 0.536 | 0.166 | 0.546 | |
Newborn weight from the control mothers group | r | −0.054 | −0.005 | −0.181 | −0.099 | −0.127 | −0.068 | −0.031 | 0.005 | −0.076 | 0.051 | −0.050 | 0.045 | −0.065 | −0.002 |
p | 0.520 | 0.956 | 0.032 | 0.254 | 0.142 | 0.438 | 0.723 | 0.952 | 0.385 | 0.561 | 0.555 | 0.592 | 0.442 | 0.979 |
4. Discussion
4.1. Maternal and Neonatal Demographic, Anthropometric Parameters
4.2. Allele and Genotype Distribution Between Newborns from the GDM Mother Group and the Control Mother Group
4.3. Maternal Biochemical Parameters, Adiponectin Levels, and Newborn Anthropometric and Adiponectin Levels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunningham, S.A.; Hardy, S.T.; Jones, R.; Ng, C.; Kramer, M.R.; Narayan, K.V. Changes in the Incidence of Childhood Obesity. Pediatrics 2022, 150, e2021053708. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.S.; Armstrong, S.C.; Michalsky, M.P.; Fox, C.K. Obesity in Adolescents: A Review. JAMA 2024, 332, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Shankar, K. Obesity and Pregnancy: Mechanisms of Short Term and Long Term Adverse Consequences for Mother and Child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef]
- Zanardo, V.; Tortora, D.; Sandri, A.; Severino, L.; Mesirca, P.; Straface, G. COVID-19 Pandemic: Impact on Gestational Diabetes Mellitus Prevalence. Diabetes Res. Clin. Pract. 2022, 183, 109149. [Google Scholar] [CrossRef]
- La Verde, M.; Torella, M.; Riemma, G.; Narciso, G.; Iavarone, I.; Gliubizzi, L.; Palma, M.; Morlando, M.; Colacurci, N.; De Franciscis, P. Incidence of Gestational Diabetes Mellitus before and after the COVID-19 Lockdown: A Retrospective Cohort Study. J. Obstet. Gynaecol. Res. 2022, 48, 1126–1131. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef]
- Seneviratne, S.N.; Rajindrajith, S. Fetal Programming of Obesity and Type 2 Diabetes. World J. Diabetes 2022, 13, 482. [Google Scholar] [CrossRef]
- Macrosomia, A. ACOG Practice Bulletin, Number 216. Obstet. Gynecol. 2020, 135, e18–e35. [Google Scholar]
- Catalano, P.M.; Thomas, A.; Huston-Presley, L.; Amini, S.B. Increased Fetal Adiposity: A Very Sensitive Marker of Abnormal in Utero Development. Am. J. Obstet. Gynecol. 2003, 189, 1698–1704. [Google Scholar] [CrossRef]
- Beta, J.; Khan, N.; Khalil, A.; Fiolna, M.; Ramadan, G.; Akolekar, R. Maternal and Neonatal Complications of Fetal Macrosomia: Systematic Review and Meta-analysis. Ultrasound Obstet. Gynecol. 2019, 54, 308–318. [Google Scholar] [CrossRef]
- La Verde, M.; De Franciscis, P.; Torre, C.; Celardo, A.; Grassini, G.; Papa, R.; Cianci, S.; Capristo, C.; Morlando, M.; Riemma, G. Accuracy of Fetal Biacromial Diameter and Derived Ultrasonographic Parameters to Predict Shoulder Dystocia: A Prospective Observational Study. Int. J. Environ. Res. Public Health 2022, 19, 5747. [Google Scholar] [CrossRef] [PubMed]
- Young, B.C.; Ecker, J.L. Fetal Macrosomia and Shoulder Dystocia in Women with Gestational Diabetes: Risks Amenable to Treatment? Curr. Diab. Rep. 2013, 13, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. In Utero Programming of Chronic Disease. Clin. Sci. (Lond. Engl. 1979) 1998, 95, 115–128. [Google Scholar] [CrossRef]
- Fernandez-Twinn, D.S.; Hjort, L.; Novakovic, B.; Ozanne, S.E.; Saffery, R. Intrauterine Programming of Obesity and Type 2 Diabetes. Diabetologia 2019, 62, 1789–1801. [Google Scholar] [CrossRef]
- Baldelli, S.; Aiello, G.; Mansilla Di Martino, E.; Campaci, D.; Muthanna, F.M.; Lombardo, M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024, 16, 2436. [Google Scholar] [CrossRef]
- da Silva Rosa, S.C.; Liu, M.; Sweeney, G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology 2021, 36, 134–149. [Google Scholar] [CrossRef]
- Shang, M.; Dong, X.; Hou, L. Correlation of Adipokines and Markers of Oxidative Stress in Women with Gestational Diabetes Mellitus and Their Newborns. J. Obstet. Gynaecol. Res. 2018, 44, 637–646. [Google Scholar] [CrossRef]
- Atègbo, J.-M.; Grissa, O.; Yessoufou, A.; Hichami, A.; Dramane, K.; Moutairou, K.; Miled, A.; Grissa, A.; Jerbi, M.; Tabka, Z. Modulation of Adipokines and Cytokines in Gestational Diabetes and Macrosomia. J. Clin. Endocrinol. Metab. 2006, 91, 4137–4143. [Google Scholar] [CrossRef]
- Balachandiran, M.; Bobby, Z.; Dorairajan, G.; Gladwin, V.; Vinayagam, V.; Packirisamy, R.M. Decreased Maternal Serum Adiponectin and Increased Insulin-like Growth Factor-1 Levels along with Increased Placental Glucose Transporter-1 Expression in Gestational Diabetes Mellitus: Possible Role in Fetal Overgrowth. Placenta 2021, 104, 71–80. [Google Scholar] [CrossRef]
- Bai, Y.; Tang, L.; Li, L. The Roles of ADIPOQ Rs266729 and MTNR1B Rs10830963 Polymorphisms in Patients with Gestational Diabetes Mellitus: A Meta-Analysis. Gene 2020, 730, 144302. [Google Scholar] [CrossRef]
- Tangjittipokin, W.; Narkdontri, T.; Teerawattanapong, N.; Thanatummatis, B.; Wardati, F.; Sunsaneevithayakul, P.; Boriboonhirunsarn, D. The Variants in ADIPOQ Are Associated with Maternal Circulating Adipokine Profile in Gestational Diabetes Mellitus. J. Multidiscip. Healthc. 2023, 16, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Kamoda, T.; Nishimura, K.; Miyazono, Y.; Kanai, Y.; Kato, Y.; Iwabuchi, A.; Fukushima, H.; Hamada, H.; Arinami, T. Association of Adiponectin Polymorphism with Cord Blood Adiponectin Concentrations and Intrauterine Growth. J. Hum. Genet. 2012, 57, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Kong, K.A.; Suh, Y.J.; Cho, S.J.; Park, E.A.; Park, M.H.; Kim, Y.J. Association of Adiponectin Gene Polymorphism with Birth Weight in Korean Neonates. Twin Res. Hum. Genet. 2013, 16, 732–738. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Chen, L.; Shi, L.; Chao, M.S.; Tong, X.; Wang, F. Stressful Life Events, Hypertensive Disorders, and High Blood Sugar during Pregnancy. Stress Health 2020, 36, 160–165. [Google Scholar] [CrossRef]
- Metzger, B.E.; Gabbe, S.G.; Persson, B.; Lowe, L.P.; Dyer, A.R.; Oats, J.J.; Buchanan, T.A. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy: Response to Weinert. Diabetes Care 2010, 33, e98. [Google Scholar] [CrossRef]
- Mazaki-Tovi, S.; Romero, R.; Vaisbuch, E.; Erez, O.; Mittal, P.; Chaiworapongsa, T.; Kim, S.K.; Pacora, P.; Yeo, L.; Gotsch, F. Dysregulation of Maternal Serum Adiponectin in Preterm Labor. J. Matern. Fetal Neonatal Med. 2009, 22, 887–904. [Google Scholar] [CrossRef]
- Muntean, M.; Săsăran, V.; Luca, S.-T.; Suciu, L.M.; Nyulas, V.; Mărginean, C. Serum Levels of Adipolin and Adiponectin and Their Correlation with Perinatal Outcomes in Gestational Diabetes Mellitus. J. Clin. Med. 2024, 13, 4082. [Google Scholar] [CrossRef]
- Monod, C.; Kotzaeridi, G.; Linder, T.; Eppel, D.; Rosicky, I.; Filippi, V.; Tura, A.; Hösli, I.; Göbl, C.S. Prevalence of Gestational Diabetes Mellitus in Women with a Family History of Type 2 Diabetes in First-and Second-Degree Relatives. Acta Diabetol. 2023, 60, 345–351. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 548: Weight Gain during Pregnancy. Obstet. Gynecol. 2013, 121, 210–212. [Google Scholar] [CrossRef]
- Song, X.; Wang, C.; Wang, T.; Zhang, S.; Qin, J. Obesity and Risk of Gestational Diabetes Mellitus: A Two-Sample Mendelian Randomization Study. Diabetes Res. Clin. Pract. 2023, 197, 110561. [Google Scholar] [CrossRef] [PubMed]
- Mihai, M.; Vladut, S.; Sonia-Teodora, L.; Mihaela, S.L.; Victoria, N.; Elena, M.I.; Claudiu, M. Correlation between Overweight, Obesity, Gestational Diabetes Mellitus, Adipokines (Adipolin and Adiponectin), and Adverse Pregnancy Outcomes: A Pilot Study. Medicina 2024, 60, 1544. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Shen, Z.; Zhan, Y.; Wang, Y.; Ma, S.; Zhang, S.; Liu, J.; Wu, S.; Feng, Y.; Chen, Y. Effects of Pre-Pregnancy Body Mass Index and Gestational Weight Gain on Maternal and Infant Complications. BMC Pregnancy Childbirth 2020, 20, 390. [Google Scholar] [CrossRef]
- Sharma, A.K.; Singh, S.; Singh, H.; Mahajan, D.; Kolli, P.; Mandadapu, G.; Kumar, B.; Kumar, D.; Kumar, S.; Jena, M.K. Deep Insight of the Pathophysiology of Gestational Diabetes Mellitus. Cells 2022, 11, 2672. [Google Scholar] [CrossRef]
- Kyriakou, T.; Collins, L.J.; Spencer-Jones, N.J.; Malcolm, C.; Wang, X.; Snieder, H.; Swaminathan, R.; Burling, K.A.; Hart, D.J.; Spector, T.D. Adiponectin Gene ADIPOQ SNP Associations with Serum Adiponectin in Two Female Populations and Effects of SNPs on Promoter Activity. J. Hum. Genet. 2008, 53, 718–727. [Google Scholar] [CrossRef]
- Wei, Y.; Peng, J.; Li, H.; Wei, M.; Peng, H.; Wang, K.; Yu, Y.; He, Q. Association between Maternal Fasting Plasma Glucose Value and Fetal Weight among Singletons of Mothers with Gestational Diabetes Mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 3799–3807. [Google Scholar] [CrossRef]
- Sesmilo, G.; Prats, P.; Garcia, S.; Rodríguez, I.; Rodríguez-Melcón, A.; Berges, I.; Serra, B. First-Trimester Fasting Glycemia as a Predictor of Gestational Diabetes (GDM) and Adverse Pregnancy Outcomes. Acta Diabetol. 2020, 57, 697–703. [Google Scholar] [CrossRef]
- Silva, J.C.; Bertini, A.M.; Ribeiro, T.E.; de Carvalho, L.S.; Melo, M.M.; Barreto Neto, L. Factors Related to the Presence of Large for Gestational Age Newborns in Pregnant Women with Gestational Diabetes Mellitus. Rev. Bras. Ginecol. Obstet. 2009, 31, 5–9. [Google Scholar] [CrossRef]
- Catalano, P.M.; Hauguel-De Mouzon, S. Is It Time to Revisit the Pedersen Hypothesis in the Face of the Obesity Epidemic? Am. J. Obstet. Gynecol. 2011, 204, 479–487. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Jiang, F.; Chen, W.; Li, J.; Chen, X. Serum Lipid Levels in Relation to Clinical Outcomes in Pregnant Women with Gestational Diabetes Mellitus: An Observational Cohort Study. Lipids Health Dis. 2021, 20, 125. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Luo, H.; Zhong, W.; Zheng, X.; Xu, R. Association of Lipid Levels at Different Stages of Pregnancy with Gestational Diabetes Mellitus and the Incidence of Neonatal Macrosomia: A Retrospective Study. J. Obstet. Gynaecol. Res. 2024, 50, 2066–2075. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, K.; Spracklen, C.; Smith, C.; Robinson, J.; Saftlas, A. Maternal Lipid Levels during Pregnancy and Gestational Diabetes: A Systematic Review and Meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2015, 122, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Sesmilo, G.; Meler, E.; Perea, V.; Rodríguez, I.; Rodríguez-Melcón, A.; Guerrero, M.; Serra, B. Maternal Fasting Glycemia and Adverse Pregnancy Outcomes in a Mediterranean Population. Acta Diabetol. 2017, 54, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.K.; Diderholm, B.; Salzano, G.; Wingate, D.; Hughes, I.A.; MacDougall, J.; Acerini, C.L.; Dunger, D.B. Pregnancy Insulin, Glucose, and BMI Contribute to Birth Outcomes in Nondiabetic Mothers. Diabetes Care 2008, 31, 2193–2197. [Google Scholar] [CrossRef]
- Kanmaz, A.G.; Alan, Y.; Alan, M.; Töz, E. Unveiling Macrosomia Risks of Non-Diabetic Women: Insights from Second Trimester Maternal Lipid Profiles. Arch. Iran. Med. 2024, 27, 624. [Google Scholar] [CrossRef]
- Retnakaran, R.; Ye, C.; Hanley, A.J.; Connelly, P.W.; Sermer, M.; Zinman, B.; Hamilton, J.K. Effect of Maternal Weight, Adipokines, Glucose Intolerance and Lipids on Infant Birth Weight among Women without Gestational Diabetes Mellitus. Can. Med. Assoc. J. 2012, 184, 1353–1360. [Google Scholar] [CrossRef]
- Horosz, E.; Bomba-Opon, D.A.; Szymanska, M.; Wielgos, M. Third Trimester Plasma Adiponectin and Leptin in Gestational Diabetes and Normal Pregnancies. Diabetes Res. Clin. Pract. 2011, 93, 350–356. [Google Scholar] [CrossRef]
- Cortelazzi, D.; Corbetta, S.; Ronzoni, S.; Pelle, F.; Marconi, A.; Cozzi, V.; Cetin, I.; Cortelazzi, R.; Beck-Peccoz, P.; Spada, A. Maternal and Foetal Resistin and Adiponectin Concentrations in Normal and Complicated Pregnancies. Clin. Endocrinol. 2007, 66, 447–453. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Wang, J.; Liu, C.; Chen, Y. Association between Levels of Aquaporin 3 in the Placenta and Adiponectin in the Umbilical Cord Blood with Gestational Diabetes Mellitus and Pregnancy Outcome. Mol. Med. Rep. 2020, 22, 1498–1506. [Google Scholar] [CrossRef]
- Desoye, G.; Herrera, E. Adipose Tissue Development and Lipid Metabolism in the Human Fetus: The 2020 Perspective Focusing on Maternal Diabetes and Obesity. Prog. Lipid Res. 2021, 81, 101082. [Google Scholar] [CrossRef]
- Ballesteros, M.; Simón, I.; Vendrell, J.; Ceperuelo-Mallafré, V.; Miralles, R.M.; Albaiges, G.; Tinahones, F.; Megia, A. Maternal and Cord Blood Adiponectin Multimeric Forms in Gestational Diabetes Mellitus: A Prospective Analysis. Diabetes Care 2011, 34, 2418–2423. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, B.; Bobby, Z.; Dorairajan, G.; Vinayagam, V.; Packirisamy, R.M. Adipokine Levels and Their Association with Insulin Resistance and Fetal Outcomes among the Newborns of Indian Gestational Diabetic Mothers. Saudi Med. J. 2019, 40, 353. [Google Scholar] [CrossRef] [PubMed]
- Cekmez, F.; Canpolat, F.E.; Pirgon, O.; Çetinkaya, M.; Aydinoz, S.; Suleymanoglu, S.; Ipcioglu, O.M.; Sarici, S.U. Apelin, Vaspin, Visfatin and Adiponectin in Large for Gestational Age Infants with Insulin Resistance. Cytokine 2011, 56, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Aramesh, M.R.; Dehdashtian, M.; Malekian, A.; ShahAli, S.; Shojaei, K. Relation between Fetal Anthropometric Parameters and Cord Blood Adiponectin and High-Sensitivity C-Reactive Protein in Gestational Diabetes Mellitus. Arch. Endocrinol. Metab. 2017, 61, 228–232. [Google Scholar] [CrossRef]
- Chen, H.; Xu, L.; Zhu, W.; Wu, Y.; Xu, M.; Wang, Z. Impact of Cord Blood Adiponectin and Leptin Levels and Maternal Obesity on Birth Weight of Infants Born to Women with Gestational Diabetes Mellitus. J. Reprod. Med. 2017, 62, 179–183. [Google Scholar]
- Xing, X.; Duan, Y.; Wang, J.; Yang, Z.; Man, Q.; Lai, J. The Association between Macrosomia and Glucose, Lipids and Hormones Levels in Maternal and Cord Serum: A Case-Control Study. BMC Pregnancy Childbirth 2024, 24, 599. [Google Scholar] [CrossRef]
- Mazaki-Tovi, S.; Kanety, H.; Pariente, C.; Hemi, R.; Schiff, E.; Sivan, E. Cord Blood Adiponectin in Large-for-Gestational Age Newborns. Am. J. Obstet. Gynecol. 2005, 193, 1238–1242. [Google Scholar] [CrossRef]
- Hedderson, M.M.; Darbinian, J.; Havel, P.J.; Quesenberry, C.P.; Sridhar, S.; Ehrlich, S.; Ferrara, A. Low Prepregnancy Adiponectin Concentrations Are Associated with a Marked Increase in Risk for Development of Gestational Diabetes Mellitus. Diabetes Care 2013, 36, 3930–3937. [Google Scholar] [CrossRef]
- Sir-Petermann, T.; Echiburú, B.; Maliqueo, M.M.; Crisosto, N.; Sánchez, F.; Hitschfeld, C.; Cárcamo, M.; Amigo, P.; Pérez-Bravo, F. Serum Adiponectin and Lipid Concentrations in Pregnant Women with Polycystic Ovary Syndrome. Hum. Reprod. 2007, 22, 1830–1836. [Google Scholar] [CrossRef]
- Sabaratnam, R.; Skov, V.; Paulsen, S.K.; Juhl, S.; Kruse, R.; Hansen, T.; Halkier, C.; Kristensen, J.M.; Vind, B.F.; Richelsen, B. A Signature of Exaggerated Adipose Tissue Dysfunction in Type 2 Diabetes Is Linked to Low Plasma Adiponectin and Increased Transcriptional Activation of Proteasomal Degradation in Muscle. Cells 2022, 11, 2005. [Google Scholar] [CrossRef]
Parameters | GDM Group (n = 71) | Control Group (n = 142) | p-Value |
---|---|---|---|
Maternal age at delivery, median (IQR) | 33.0 (31.0–34.0) | 31.0 (30.0–32.0) | 0.051 |
Heredo-collateral history of T2DM, % | 25 (35.2%) | 15 (10.6%) | <0.0001 |
Gestation, median (IQR) | 2.0 (1.0–3.0) | 2.0 (1.0–3.0) | 0.2 |
Parity, median (IQR) | 2.0 (1.0–4.0) | 1.0 (1.0–4.0) | 0.2 |
Gestational age at delivery, weeks, median (IQR) | 38.6 (38.2–39.3) | 39.2 (38.5–39.5) | 0.001 |
Pre-pregnancy BMI, Kg/m2, mean (SD) | 28.1 ± 5.6 | 22.3 ± 3.8 | <0.0001 |
BMI at 24–28 WG, Kg/m2, mean (SD) | 30.9 ± 5.4 | 26.2 ± 3.7 | <0.0001 |
GWG, mean (SD) | 12.7 ± 7.1 | 15.3 ± 5.4 | 0.004 |
BMI at birth, Kg/m2, mean (SD) | 33.1 ± 5.5 | 28.5 ± 3.8 | <0.0001 |
Newborn weight, g, median (IQR) | 3470 (3170–3850) | 3350 (3108–3603) | 0.01 |
Parameters | GDM Group (n = 71) % | Control Group (n = 142) % | p-Value | ||
---|---|---|---|---|---|
rs266729 | |||||
Allele | |||||
C | 101 | 71.1% | 212 | 74.6% | 0.4 |
G | 41 | 28.8% | 72 | 25.3% | |
Genotype | |||||
CC | 32 | 45.1% | 81 | 45.1% | 0.04 |
CG | 37 | 52.1% | 50 | 35.2% | |
GG | 2 | 2.8% | 11 | 35.2% |
Macrosomic Newborn from GDM Mothers n = 15 | Normoponderal Newborn from GDM Mothers n = 56 | p Value | Macrosomic Newborn from Control Mothers n = 5 | Normoponderal Newborn from Control Mothers n = 137 | p Value | |
---|---|---|---|---|---|---|
rs266729_alele | ||||||
C | 22(73.3%) | 79 (70.5%) | 0.82 | 8(80%) | 204(74.4%) | >0.99 |
G | 8 (26.6%) | 33 (29.4%) | 2 (20%) | 70 (25.5%) | ||
rs266729 | ||||||
CC | 7 (46.7%) | 25 (44.6%) | 0.46 | 3 (60%) | 78 (56.9%) | >0.99 |
CG | 8 (53.3%) | 29 (51.8%) | 2 (40.0%) | 48 (35.0%) | ||
GG | 0 (0.0%) | 2 (3.6%) | 0 (0.0%) | 11 (8.0%) |
Parameter | p-Value | OR (95%CI) |
---|---|---|
Cord blood adiponectin | 0.048 | 6.754 (0.93–44.9) |
Maternal adiponectin level at 24–28 WG | 0.883 | 1.131 (0.22–5.82) |
Maternal fasting glucose level at 24–28 WG | 0.011 | 8.911 (1.64–48.16) |
Maternal 1 h glucose level, at 24–28 WG | 0.717 | 0.755 (0.16–3.43) |
Maternal 2 h glucose level, at 24–28 WG | 0.880 | 1.140 (0.2–6.22) |
Maternal adiponectin level at birth | 0.038 | 0.187 (0.03–0.91) |
Parameter | p-Value | OR (95%CI) |
---|---|---|
Cord blood adiponectin | 0.016 | 30.31 (1.81–488.39) |
Maternal adiponectin level at 24–28 WG | 0.443 | 0.405 (0.04–4.07) |
Maternal fasting glucose level at 24–28 WG | 0.018 | 11.59 (1.51–88.59) |
Maternal 1 h glucose level, at 24–28 WG | 0.791 | 0.790 (0.13–4.52) |
Maternal 2 h glucose level, at 24–28 WG | 0.561 | 1.754 (0.26–11.67) |
Maternal adiponectin level at birth | 0.019 | 0.08 (0.01–0.67) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muntean, M.; Mărginean, C.; Bernad, E.S.; Bănescu, C.; Nyulas, V.; Muntean, I.E.; Săsăran, V. The Link Between Newborn SNP Polymorphism rs266729, Adiponectin, and Newborn Macrosomia in a Cohort of Pregnant Women with Gestational Diabetes Mellitus: A Case–Control Pilot Study. Children 2025, 12, 155. https://doi.org/10.3390/children12020155
Muntean M, Mărginean C, Bernad ES, Bănescu C, Nyulas V, Muntean IE, Săsăran V. The Link Between Newborn SNP Polymorphism rs266729, Adiponectin, and Newborn Macrosomia in a Cohort of Pregnant Women with Gestational Diabetes Mellitus: A Case–Control Pilot Study. Children. 2025; 12(2):155. https://doi.org/10.3390/children12020155
Chicago/Turabian StyleMuntean, Mihai, Claudiu Mărginean, Elena Silvia Bernad, Claudia Bănescu, Victoria Nyulas, Irina Elena Muntean, and Vladut Săsăran. 2025. "The Link Between Newborn SNP Polymorphism rs266729, Adiponectin, and Newborn Macrosomia in a Cohort of Pregnant Women with Gestational Diabetes Mellitus: A Case–Control Pilot Study" Children 12, no. 2: 155. https://doi.org/10.3390/children12020155
APA StyleMuntean, M., Mărginean, C., Bernad, E. S., Bănescu, C., Nyulas, V., Muntean, I. E., & Săsăran, V. (2025). The Link Between Newborn SNP Polymorphism rs266729, Adiponectin, and Newborn Macrosomia in a Cohort of Pregnant Women with Gestational Diabetes Mellitus: A Case–Control Pilot Study. Children, 12(2), 155. https://doi.org/10.3390/children12020155