Effect of Transcranial Direct Current Stimulation versus Virtual Reality on Gait for Children with Bilateral Spastic Cerebral Palsy: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Gait Assessments
2.4. Intervention Procedures
2.4.1. tDCS Group
2.4.2. VR Group
2.4.3. PT Program
2.5. Adverse Events
2.6. Data Analysis
3. Results
3.1. Effects of Time and Intervention Group
3.2. Temporal Parameters
3.3. Kinetic Parameters
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child. Neurol. Suppl. 2007, 109, 8–14. [Google Scholar] [PubMed]
- Jonsson, U.; Eek, M.N.; Sunnerhagen, K.S.; Himmelmann, K. Cerebral palsy prevalence, subtypes, and associated impairments: A population-based comparison study of adults and children. Dev. Med. Child. Neurol. 2019, 61, 1162–1167. [Google Scholar] [CrossRef]
- Christensen, D.; Van Naarden Braun, K.; Doernberg, N.S.; Maenner, M.J.; Arneson, C.L.; Durkin, M.S.; Benedict, R.E.; Kirby, R.S.; Wingate, M.S.; Fitzgerald, R. Prevalence of cerebral palsy, co--occurring autism spectrum disorders, and motor functioning–Autism and Developmental Disabilities Monitoring Network, USA, 2008. Dev. Med. Child Neurol. 2014, 56, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte Nde, A.; Grecco, L.A.; Galli, M.; Fregni, F.; Oliveira, C.S. Effect of transcranial direct-current stimulation combined with treadmill training on balance and functional performance in children with cerebral palsy: A double-blind randomized controlled trial. PLoS ONE 2014, 9, e105777. [Google Scholar] [CrossRef] [PubMed]
- El-Refaey, B.H.; Maksoud, A.-E.; Mosaad, G.; Ali, O.I. Efficacy of feedback respiratory training on respiratory muscle strength and quality of life in children with spastic cerebral palsy: Randomized controlled trial. Bull. Fac. Phys. Ther. 2017, 22, 46–52. [Google Scholar]
- Novak, I.; Morgan, C.; Fahey, M.; Finch-Edmondson, M.; Galea, C.; Hines, A.; Langdon, K.; Namara, M.M.; Paton, M.C.; Popat, H. State of the evidence traffic lights 2019: Systematic review of interventions for preventing and treating children with cerebral palsy. Curr. Neurol. Neurosci. Rep. 2020, 20, 2. [Google Scholar] [CrossRef] [Green Version]
- Novak, I. Evidence-based diagnosis, health care, and rehabilitation for children with cerebral palsy. J. Child Neurol. 2014, 29, 1141–1156. [Google Scholar] [CrossRef]
- Kurz, M.J.; Wilson, T.W.; Arpin, D.J. An fNIRS exploratory investigation of the cortical activity during gait in children with spastic diplegic cerebral palsy. Brain Dev. 2014, 36, 870–877. [Google Scholar] [CrossRef] [Green Version]
- Ghai, S.; Ghai, I. Virtual reality enhances gait in cerebral palsy: A training dose-response meta-analysis. Front. Neurol. 2019, 10, 236. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability and Health: ICF. World Health Organization. 2001. Available online: https://apps.who.int/iris/handle/10665/42407 (accessed on 17 November 2022).
- Rosenbaum, P.; Stewart, D. The World Health Organization International Classification of Functioning, Disability, and Health: A model to guide clinical thinking, practice and research in the field of cerebral palsy. In Seminars in Pediatric Neurology; WB Saunders: Philadelphia, PA, USA, 2004; pp. 5–10. [Google Scholar]
- Kim, C.J.; Son, S.M. Comparison of spatiotemporal gait parameters between children with normal development and children with diplegic cerebral palsy. J. Phys. Ther. Sci. 2014, 26, 1317–1319. [Google Scholar] [CrossRef] [Green Version]
- Corsi, C.; Santos, M.M.; Moreira, R.F.; Dos Santos, A.N.; de Campos, A.C.; Galli, M.; Rocha, N.A. Effect of physical therapy interventions on spatiotemporal gait parameters in children with cerebral palsy: A systematic review. Disabil. Rehabil. 2021, 43, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, R.D.; Politti, F.; Belina, S.F.; Collange Grecco, L.A.; Santos, C.A.; Dumont, A.J.L.; Lopes, J.B.P.; Cimolin, V.; Galli, M.; Santos Oliveira, C. Effect of transcranial direct current stimulation combined with virtual reality training on balance in children with cerebral palsy: A randomized, controlled, double-blind, clinical trial. J. Mot. Behav. 2017, 49, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravi, D.K.; Kumar, N.; Singhi, P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: An updated evidence-based systematic review. Physiotherapy 2017, 103, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Epure, P.; Holte, M.B. Analysis of motivation in virtual reality stroke rehabilitation. In Interactivity, Game Creation, Design, Learning, and Innovation; Springer: Berlin/Heidelber, Germany, 2017; pp. 282–293. [Google Scholar]
- Chen, Y.; Fanchiang, H.D.; Howard, A. Effectiveness of virtual reality in children with cerebral palsy: A systematic review and meta-analysis of randomized controlled trials. Phys. Ther. 2018, 98, 63–77. [Google Scholar] [CrossRef]
- Warnier, N.; Lambregts, S.; Port, I.V.D. Effect of virtual reality therapy on balance and walking in children with cerebral palsy: A systematic review. Dev. Neurorehabilit. 2020, 23, 502–518. [Google Scholar] [CrossRef]
- Gatica-Rojas, V.; Cartes-Velásquez, R.; Guzmán-Munoz, E.; Méndez-Rebolledo, G.; Soto-Poblete, A.; Pacheco-Espinoza, A.C.; Amigo-Mendoza, C.; Albornoz-Verdugo, M.E.; Elgueta-Cancino, E. Effectiveness of a Nintendo Wii balance board exercise programme on standing balance of children with cerebral palsy: A randomised clinical trial protocol. Contemp. Clin. Trials Commun. 2017, 6, 17–21. [Google Scholar] [CrossRef]
- Arnoni, J.L.B.; Pavao, S.L.; dos Santos Silva, F.P.; Rocha, N.A.C.F. Effects of virtual reality in body oscillation and motor performance of children with cerebral palsy: A preliminary randomized controlled clinical trial. Complement. Ther. Clin. Pract. 2019, 35, 189–194. [Google Scholar] [CrossRef]
- Hamilton, A.; Wakely, L.; Marquez, J. Transcranial direct-current stimulation on motor function in pediatric cerebral palsy: A systematic review. Pediatr. Phys. Ther. 2018, 30, 291–301. [Google Scholar] [CrossRef]
- Saleem, G.T.; Crasta, J.E.; Slomine, B.S.; Cantarero, G.L.; Suskauer, S.J. Transcranial direct current stimulation in pediatric motor disorders: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2019, 100, 724–738. [Google Scholar] [CrossRef]
- Froehle, A.W.; Nahhas, R.W.; Sherwood, R.J.; Duren, D.L. Age-related changes in spatiotemporal characteristics of gait accompany ongoing lower limb linear growth in late childhood and early adolescence. Gait Posture 2013, 38, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Grecco, L.A.C.; Duarte, N.d.A.C.; de Mendonça, M.E.; Pasini, H.; Lima, V.L.C.d.C.; Franco, R.C.; de Oliveira, L.V.F.; de Carvalho, P.d.T.C.; Corrêa, J.C.F.; Collange, N.Z. Effect of transcranial direct current stimulation combined with gait and mobility training on functionality in children with cerebral palsy: Study protocol for a double-blind randomized controlled clinical trial. BMC Pediatr. 2013, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Grecco, L.A.; Duarte, N.A.; Zanon, N.; Galli, M.; Fregni, F.; Oliveira, C.S. Effect of a single session of transcranial direct-current stimulation on balance and spatiotemporal gait variables in children with cerebral palsy: A randomized sham-controlled study. Braz. J. Phys. Ther. 2014, 18, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Grecco, L.A.; de Almeida Carvalho Duarte, N.; Mendonca, M.E.; Cimolin, V.; Galli, M.; Fregni, F.; Santos Oliveira, C. Transcranial direct current stimulation during treadmill training in children with cerebral palsy: A randomized controlled double-blind clinical trial. Res. Dev. Disabil. 2014, 35, 2840–2848. [Google Scholar] [CrossRef] [PubMed]
- Collange Grecco, L.A.; de Almeida Carvalho Duarte, N.; Mendonça, M.E.; Galli, M.; Fregni, F.; Oliveira, C.S. Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: A pilot, randomized, controlled, double-blind, clinical trial. Clin. Rehabil. 2015, 29, 1212–1223. [Google Scholar] [CrossRef] [PubMed]
- Kaski, D.; Quadir, S.; Patel, M.; Yousif, N.; Bronstein, A.M. Enhanced locomotor adaptation aftereffect in the “broken escalator” phenomenon using anodal tDCS. J. Neurophysiol. 2012, 107, 2493–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biffi, E.; Beretta, E.; Storm, F.A.; Corbetta, C.; Strazzer, S.; Pedrocchi, A.; Ambrosini, E. The effectiveness of robot-vs. Virtual reality-based gait rehabilitation: A propensity score matched cohort. Life 2021, 11, 548. [Google Scholar] [CrossRef]
- Valenzuela, E.; Rosa, R.; Monteiro, C.; Keniston, L.; Ayupe, K.; Frônio, J.; Chagas, P. Intensive Training with Virtual Reality on Mobility in Adolescents with Cerebral Palsy—Single Subject Design. Int. J. Environ. Res. Public Health 2021, 18, 10455. [Google Scholar] [CrossRef]
- Jha, K.K.; Karunanithi, G.B.; Sahana, A.; Karthikbabu, S. Randomised trial of virtual reality gaming and physiotherapy on balance, gross motor performance and daily functions among children with bilateral spastic cerebral palsy. Somatosens. Mot. Res. 2021, 38, 117–126. [Google Scholar] [CrossRef]
- Pithon, M.M. Importance of the control group in scientific research. Dent. Press J. Orthod. 2013, 18, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.D.d.; Fontes, A.M.G.G.; Oliveira-Furlan, B.S.d.; Roque, T.T.; Lima, A.I.I.; Souza, B.M.M.d.; Alberissi, C.A.d.O.; Silveira, A.C. Effect of combined therapy of virtual reality and transcranial direct current stimulation in children and adolescents with cerebral palsy: A study protocol for a triple-blinded randomized controlled crossover trial. Front. Neurol. 2020, 11, 953. [Google Scholar] [CrossRef]
- Chen, X.-L.; Yu, L.-P.; Zhu, Y.; Wang, T.-Y.; Han, J.; Chen, X.-Y.; Zhang, J.-H.; Huang, J.-L.; Qian, X.-L.; Wang, B. Combined effect of hydrotherapy and transcranial direct-current stimulation on children with cerebral palsy: A protocol for a randomized controlled trial. Medicine 2021, 100, e27962. [Google Scholar] [CrossRef] [PubMed]
- Salazar Fajardo, J.C.; Kim, R.; Gao, C.; Hong, J.; Yang, J.; Wang, D.; Yoon, B. The Effects of tDCS with NDT on the Improvement of Motor Development in Cerebral Palsy. J. Mot. Behav. 2022, 54, 480–489. [Google Scholar] [CrossRef] [PubMed]
tDCS | VR | MD | t-Value | p-Value | Sig | ||
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||||
Age (years) | 8.6 ± 1.56 | 8.45 ± 1.53 | 0.15 | 0.31 | 0.76 | NS | |
Weight (kg) | 25.61 ± 8.44 | 25.84 ± 7.94 | −0.23 | −0.09 | 0.92 | NS | |
Height (cm) | 126.95 ± 11.58 | 124.25 ± 9.62 | 2.7 | 0.8 | 0.42 | NS | |
BMI (kg/m2) | 15.95 ± 4.82 | 16.39 ± 2.81 | −0.44 | −0.35 | 0.72 | NS | |
Spasticity | Grade I | 16 (80%) | 14 (70%) | χ2 0.53 | 0.46 | NS | |
Grade I+ | 4 (20%) | 6 (30%) | |||||
GMFCS | Level I | 14 (70%) | 12 (60%) | χ2 0.44 | 0.37 | NS | |
Level II | 6 (30%) | 8 (40%) |
Parameter | Time | Group | Time × Group | |||
---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | |
Velocity | 157.04 | <0.001 * | 4.35 | 0.044 * | 25.95 | <0.001 * |
Cadence | 52.88 | <0.001 * | 0.0014 | 0.97 | 1.20 | 0.31 |
Stance Time | 39.30 | <0.001 * | 0.16 | 0.70 | 0.40 | 0.67 |
Swing Time | 1.15 | 0.32 | 1.00 | 0.32 | 0.25 | 0.78 |
Step Length | 150.21 | <0.001 * | 3.76 | 0.060 | 14.67 | <0.001 * |
Stride Length | 139.04 | <0.001 * | 3.71 | 0.061 | 8.74 | <0.001 * |
Maximum Force | 19.05 | <0.001 * | 0.26 | 0.61 | 8.15 | <0.001 * |
Maximum Peak pressure | 16.25 | <0.001 * | 0.39 | 0.53 | 4.09 | 0.021 * |
Between Group | Within Group | |||||
---|---|---|---|---|---|---|
Spatiotemporal Parameters | Pre | Post 1 | Post 2 | p-Value | ||
Mean ± SD | Mean ± SD | Mean ± SD | Pre vs. Post 1 | Pre vs. Post 2 | Post 1 vs. Post 2 | |
Velocity (m/s) | ||||||
tDCS | 0.48 ± 0.22 | 0.70 ± 0.21 | 0.78 ± 0.23 | <0.001 * | <0.001 * | <0.001 * |
VR | 0.45 ± 0.17 | 0.56 ± 0.19 | 0.57 ± 0.19 | <0.001 * | <0.001 * | 0.54 |
p = 0.61 | p = 0.03 * | p = 0.02 * | ||||
Cadence (steps/min) | ||||||
tDCS | 95.67 ± 23.97 | 109.04 ± 20.81 | 120.95 ± 18.85 | 0.001 * | <0.001 * | <0.001 * |
VR | 97.50 ± 28.16 | 110.58 ± 25.84 | 116.78 ± 25.67 | <0.001 * | <0.001 * | 0.12 |
p = 0.81 | p = 0.84 | p = 0.59 | ||||
Stance time (s) | ||||||
tDCS | 0.84 ± 0.20 | 0.73 ± 0.16 | 0.64 ± 0.15 | 0.01 * | <0.001 * | 0.01 * |
VR | 0.87 ± 0.22 | 0.73 ± 0.24 | 0.67 ± 0.22 | <0.001 * | <0.001 * | 0.14 |
p = 0.57 | p = 0.99 | p = 0.61 | ||||
Swing time (s) | ||||||
tDCS | 0.42 ± 0.07 | 0.40 ± 0.10 | 0.39 ± 0.07 | 0.78 | 0.46 | 0.86 |
VR | 0.43 ±0.11 | 0.46 ± 0.17 | 0.40 ± 0.09 | 0.94 | 0.70 | 0.50 |
p = 0.78 | p = 0.25 | p = 0.54 | ||||
Step length (cm) | ||||||
tDCS | 30.18 ± 8.68 | 39.43 ± 8.29 | 42.50 ± 9.53 | <0.001 * | <0.001 * | <0.001 * |
VR | 29.13 ± 6.03 | 33.65 ± 6.13 | 35.73 ± 6.70 | <0.001 * | <0.001 * | 0.03 * |
p = 0.67 | p = 0.02 * | p = 0.01 * | ||||
Stride length (cm) | ||||||
tDCS | 57.76 ± 16.03 | 80.04 ± 12.15 | 88.15 ± 13.67 | <0.001 * | <0.001 * | <0.001 * |
VR | 56.52 ± 13.47 | 69.53 ± 15.02 | 74.86 ± 17.60 | <0.001 * | <0.001 * | 0.04 * |
p = 0.79 | p = 0.03 * | p = 0.01 * |
Between Group | Within Group | |||||
---|---|---|---|---|---|---|
Kinetic Parameters | Pre | Post 1 | Post 2 | p-Value | ||
Mean ± SD | Mean ± SD | Mean ± SD | Pre vs. Post 1 | Pre vs. Post 2 | Post 1 vs. Post 2 | |
Maximum force (kg) | ||||||
tDCS | 80.56 ± 15.64 | 93.14 ± 13.10 | 95.48 ± 13.09 | <0.001 * | <0.001 * | 0.54 |
VR | 84.26 ± 14.86 | 88.23 ± 8.58 | 89.73 ± 6.13 | 0.64 | 0.27 | 0.78 |
p = 0.14 | p = 0.19 | p = 0.13 | ||||
Maximum peak pressure (N/cm2) | ||||||
tDCS | 47.20 ± 15.67 | 57.55 ± 10.70 | 59.25 ± 12.02 | <0.001 * | 0.001 * | 0.71 |
VR | 49.95 ± 14.41 | 53.05 ± 11.80 | 54.18 ± 11.18 | 0.33 | 0.13 | 0.86 |
p = 0.50 | p = 0.27 | p = 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radwan, A.; Eltalawy, H.A.; Abdelziem, F.H.; Macaluso, R.; O’Brien, M.K.; Jayaraman, A. Effect of Transcranial Direct Current Stimulation versus Virtual Reality on Gait for Children with Bilateral Spastic Cerebral Palsy: A Randomized Clinical Trial. Children 2023, 10, 222. https://doi.org/10.3390/children10020222
Radwan A, Eltalawy HA, Abdelziem FH, Macaluso R, O’Brien MK, Jayaraman A. Effect of Transcranial Direct Current Stimulation versus Virtual Reality on Gait for Children with Bilateral Spastic Cerebral Palsy: A Randomized Clinical Trial. Children. 2023; 10(2):222. https://doi.org/10.3390/children10020222
Chicago/Turabian StyleRadwan, Asmaa, Hoda A. Eltalawy, Faten Hassan Abdelziem, Rebecca Macaluso, Megan K. O’Brien, and Arun Jayaraman. 2023. "Effect of Transcranial Direct Current Stimulation versus Virtual Reality on Gait for Children with Bilateral Spastic Cerebral Palsy: A Randomized Clinical Trial" Children 10, no. 2: 222. https://doi.org/10.3390/children10020222
APA StyleRadwan, A., Eltalawy, H. A., Abdelziem, F. H., Macaluso, R., O’Brien, M. K., & Jayaraman, A. (2023). Effect of Transcranial Direct Current Stimulation versus Virtual Reality on Gait for Children with Bilateral Spastic Cerebral Palsy: A Randomized Clinical Trial. Children, 10(2), 222. https://doi.org/10.3390/children10020222