Vasculitis: From Target Molecules to Novel Therapeutic Approaches
Abstract
1. Introduction
2. Systemic Vasculitis Classification
3. Drug Discovery and Potential Targets in Vasculitis
3.1. Th1 Cytokines and Relative Drug Discovery
3.1.1. IL-6
3.1.2. IL-12 and IL-23
3.1.3. Tumor Necrosis Factor (TNF) α Inhibitor
3.2. Th2 Cytokines and Relative Drug Discovery
IL-5
3.3. Targets and Drug Discovery of B Cells
3.3.1. CD20
3.3.2. BAFF
3.4. B-Cell and T-Cell Co-Stimulation and Depletion
3.4.1. CD28–CD80/CD86
3.4.2. CD52
3.5. Targeting Complement
C5a Receptors
3.6. Other Targets
Interferon-α
Target | Agent | Vasculitis | References | |
---|---|---|---|---|
Th1 cytokines | IL-6 | Tocilizumab (anti-IL-6R mAb) | GCA, TA PAN AAV | [23,24] [25,26] [27,28] [29,30] |
IL-12 and IL-23 | Ustekinumab (p40 subunit of IL-12/IL-23 mAb) | GCA TA | [35] [37,38] | |
TNF-α | Infliximab, Adalimumab (anti-TNF-α mAb) Etanercept (TNF-α receptor fusion protein) | TA PAN BD | [44,45,46,47] [48,49] [54,55,56,57,58,59] [60,61,62,63,64,65] | |
Th2 cytokines | IL-5 | Mepolizumab (anti-IL-5 mAb) | EGPA | [69,70,71,72] |
B cells | CD20 | Rituximab (anti-CD20 mAb) | AAV | [73,74] |
BAFF-R | Belimumab (BAFF-receptor mAb) | AAV | [80] | |
Co-stimulatory molecules | CD28–CD80/CD86 | Abatacept (CTLA4Ig fusion protein) | GCA AAV | [82] [84] |
CD52 | Alemtuzumab (anti-CD52 mAb) | AAV BD | [87,88] [86] | |
Complement | C5a | Avacopan (C5a receptor inhibitor) | AAV | [92,93] |
Other targets | IFN-α | IFN-α | BD | [97,98,99,100] [101,102,103,104] |
4. Conclusions
Funding
Conflicts of Interest
References
- Deshazo, R.D. The spectrum of systemic vasculitis: A classification to aid diagnosis. Postgrad. Med. 1975, 58, 78–82. [Google Scholar] [CrossRef]
- Fauci, A.S.; Haynes, B.F.; Katz, P. The spectrum of vasculitis: Clinical, pathologic, immunologic, and therapeutic considerations. Ann. Intern. Med. 1978, 89, 660–676. [Google Scholar] [CrossRef]
- Jennette, J.C.; Falk, R.; Bacon, P.; Basu, N.; Cid, M.; Ferrario, F.; Flores-Suarez, L.; Gross, W.; Guillevin, L.; Hagen, E.; et al. 2012 revised international chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum. 2013. [Google Scholar] [CrossRef] [PubMed]
- Berti, A.; Dejaco, C. Update on the epidemiology, risk factors, and outcomes of systemic vasculitides. Best Pract. Res. Clin. Rheumatol. 2018, 32, 271–294. [Google Scholar] [CrossRef]
- Weyand, C.M.; Goronzy, J.J. Medium-and large-vessel vasculitis. N. Engl. J. Med. 2003, 349, 160–169. [Google Scholar] [CrossRef]
- Chandran, A.K.; Udayakumar, P.D.; Crowson, C.S.; Warrington, K.J.; Matteson, E.L. The incidence of giant cell arteritis in Olmsted County, Minnesota, over a 60-year period 1950–2009. Scand. J. Rheumatol. 2015, 44, 215–218. [Google Scholar] [CrossRef]
- Gudbrandsson, B.; Molberg, Ø.; Garen, T.; Palm, Ø. Prevalence, incidence, and disease characteristics of Takayasu arteritis by ethnic background: Data from a large, population-based cohort resident in southern Norway. Arthritis Care Res. 2017, 69, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Buttgereit, F.; Matteson, E.L.; Dejaco, C.; Dasgupta, B. Prevention of glucocorticoid morbidity in giant cell arteritis. Rheumatology 2018, 57, ii11–ii21. [Google Scholar] [CrossRef] [PubMed]
- Watts, R.; Lane, S.; Scott, D.; Koldingsnes, W.; Nossent, H.; Gonzalez-Gay, M.; Garcia-Porrua, C.; Bentham, G. Epidemiology of vasculitis in Europe. Ann. Rheum. Dis. 2001, 60, 1156–1157. [Google Scholar] [CrossRef]
- Pagnoux, C.; Seror, R.; Henegar, C.; Mahr, A.; Cohen, P.; Le Guern, V.; Bienvenu, B.; Mouthon, L.; Guillevin, L. Clinical features and outcomes in 348 patients with polyarteritis nodosa: A systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French Vasculitis Study Group Database. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2010, 62, 616–626. [Google Scholar] [CrossRef]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Shirokova, E. Immune disorders and rheumatologic manifestations of viral hepatitis. World J. Gastroenterol. 2021, 27, 2073–2089. [Google Scholar] [CrossRef] [PubMed]
- Guillevin, L.; Mahr, A.; Callard, P.; Godmer, P.; Pagnoux, C.; Leray, E.; Cohen, P.; Group, F.V.S. Hepatitis B virus-associated polyarteritis nodosa: Clinical characteristics, outcome, and impact of treatment in 115 patients. Medicine 2005, 84, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Stanson, A.W.; Friese, J.L.; Johnson, C.M.; McKusick, M.A.; Breen, J.F.; Sabater, E.A.; Andrews, J.C. Polyarteritis nodosa: Spectrum of angiographic findings. Radiographics 2001, 21, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Mukhtyar, C.; Guillevin, L.; Cid, M.C.; Dasgupta, B.; de Groot, K.; Gross, W.; Hauser, T.; Hellmich, B.; Jayne, D.; Kallenberg, C.G. EULAR recommendations for the management of primary small and medium vessel vasculitis. Ann. Rheum. Dis. 2009, 68, 310–317. [Google Scholar] [CrossRef]
- Hilhorst, M.; van Paassen, P.; Tervaert, J.W.C. Proteinase 3-ANCA vasculitis versus myeloperoxidase-ANCA vasculitis. J. Am. Soc. Nephrol. 2015, 26, 2314–2327. [Google Scholar] [CrossRef]
- Carpenter, S.; Cohen Tervaert, J.W.; Yacyshyn, E. Advances in therapeutic treatment options for ANCA-associated vasculitis. Expert Opin. Orphan Drugs 2020, 8, 127–136. [Google Scholar] [CrossRef]
- Yates, M.; Watts, R.A.; Bajema, I.; Cid, M.; Crestani, B.; Hauser, T.; Hellmich, B.; Holle, J.; Laudien, M.; Little, M. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann. Rheum. Dis. 2016, 75, 1583–1594. [Google Scholar] [CrossRef]
- Hilhorst, M.; Wilde, B.; van Paassen, P.; Winkens, B.; van Breda Vriesman, P.; Cohen Tervaert, J.W. Improved outcome in anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis: A 30-year follow-up study. Nephrol. Dial. Transplant. 2013, 28, 373–379. [Google Scholar] [CrossRef]
- McGeoch, L.; Twilt, M.; Famorca, L.; Bakowsky, V.; Barra, L.; Benseler, S.M.; Cabral, D.A.; Carette, S.; Cox, G.P.; Dhindsa, N. CanVasc recommendations for the management of antineutrophil cytoplasm antibody-associated vasculitides. J. Rheumatol. 2016, 43, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Maldini, C.; Druce, K.; Basu, N.; LaValley, M.P.; Mahr, A. Exploring the variability in Behçet’s disease prevalence: A meta-analytical approach. Rheumatology 2018, 57, 185–195. [Google Scholar] [CrossRef]
- Saadoun, D.; Wechsler, B.; Desseaux, K.; Huong, D.L.T.; Amoura, Z.; Resche-Rigon, M.; Cacoub, P. Mortality in Behçet’s disease. Arthritis Rheum. 2010, 62, 2806–2812. [Google Scholar] [CrossRef]
- Hatemi, G.; Christensen, R.; Bang, D.; Bodaghi, B.; Celik, A.F.; Fortune, F.; Gaudric, J.; Gul, A.; Kötter, I.; Leccese, P. 2018 update of the EULAR recommendations for the management of Behçet’s syndrome. Ann. Rheum. Dis. 2018, 77, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Villiger, P.M.; Adler, S.; Kuchen, S.; Wermelinger, F.; Dan, D.; Fiege, V.; Bütikofer, L.; Seitz, M.; Reichenbach, S. Tocilizumab for induction and maintenance of remission in giant cell arteritis: A phase 2, randomised, double-blind, placebo-controlled trial. Lancet 2016, 387, 1921–1927. [Google Scholar] [CrossRef]
- Stone, J.H.; Tuckwell, K.; Dimonaco, S.; Klearman, M.; Aringer, M.; Blockmans, D.; Brouwer, E.; Cid, M.C.; Dasgupta, B.; Rech, J. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 2017, 377, 317–328. [Google Scholar] [CrossRef]
- Nakaoka, Y.; Isobe, M.; Takei, S.; Tanaka, Y.; Ishii, T.; Yokota, S.; Nomura, A.; Yoshida, S.; Nishimoto, N. Efficacy and safety of tocilizumab in patients with refractory Takayasu arteritis: Results from a randomised, double-blind, placebo-controlled, phase 3 trial in Japan (the TAKT study). Ann. Rheum. Dis. 2018, 77, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Nakaoka, Y.; Isobe, M.; Tanaka, Y.; Ishii, T.; Ooka, S.; Niiro, H.; Tamura, N.; Banno, S.; Yoshifuji, H.; Sakata, Y. Long-term efficacy and safety of tocilizumab in refractory Takayasu arteritis: Final results of the randomized controlled phase 3 TAKT study. Rheumatology 2020, 59, 2427–2434. [Google Scholar] [CrossRef]
- Carrión-Barberà, I.; Pros, A.; Salman-Monte, T.; Vílchez-Oya, F.; Sánchez-Schmidt, J.; Pérez-García, C.; Monfort, J. Safe and successful treatment of refractory polyarteritis nodosa with tocilizumab in a patient with past hepatitis B virus infection: A case-based review. Clin. Rheumatol. 2020, 40, 1–6. [Google Scholar] [CrossRef]
- Akiyama, M.; Kaneko, Y.; Takeuchi, T. Tocilizumab for the treatment of polyarteritis nodosa: A systematic literature review. Ann. Rheum. Dis. 2020. [Google Scholar] [CrossRef]
- Berti, A.; Cavalli, G.; Campochiaro, C.; Guglielmi, B.; Baldissera, E.; Cappio, S.; Sabbadini, M.G.; Doglioni, C.; Dagna, L. Interleukin-6 in ANCA-associated vasculitis: Rationale for successful treatment with tocilizumab. Semin. Arthritis Rheum. 2015, 45, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Sakai, R.; Kondo, T.; Kurasawa, T.; Nishi, E.; Okuyama, A.; Chino, K.; Shibata, A.; Okada, Y.; Takei, H.; Nagasawa, H. Current clinical evidence of tocilizumab for the treatment of ANCA-associated vasculitis: A prospective case series for microscopic polyangiitis in a combination with corticosteroids and literature review. Clin. Rheumatol. 2017, 36, 2383–2392. [Google Scholar] [CrossRef]
- Tang, C.; Chen, S.; Qian, H.; Huang, W. Interleukin-23: As a drug target for autoimmune inflammatory diseases. Immunology 2012, 135, 112–124. [Google Scholar] [CrossRef]
- Kleinschek, M.A.; Muller, U.; Brodie, S.J.; Stenzel, W.; Kohler, G.; Blumenschein, W.M.; Straubinger, R.K.; McClanahan, T.; Kastelein, R.A.; Alber, G. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J. Immunol. 2006, 176, 1098–1106. [Google Scholar] [CrossRef]
- Oppmann, B.; Lesley, R.; Blom, B.; Timans, J.C.; Xu, Y.; Hunte, B.; Vega, F.; Yu, N.; Wang, J.; Singh, K.; et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000, 13, 715–725. [Google Scholar] [CrossRef]
- Weyand, C.M.; Goronzy, J.J. Immune mechanisms in medium and large-vessel vasculitis. Nat. Rev. Rheumatol. 2013, 9, 731–740. [Google Scholar] [CrossRef]
- Conway, R.; O’Neill, L.; Gallagher, P.; McCarthy, G.M.; Murphy, C.C.; Veale, D.J.; Fearon, U.; Molloy, E.S. Ustekinumab for refractory giant cell arteritis: A prospective 52-week trial. Semin. Arthritis Rheum. 2018, 48, 523–528. [Google Scholar] [CrossRef]
- Matza, M.A.; Fernandes, A.D.; Stone, J.H.; Unizony, S.H. Ustekinumab for the treatment of giant cell arteritis. Arthritis Care Res. 2020. [Google Scholar] [CrossRef]
- Terao, C.; Yoshifuji, H.; Nakajima, T.; Yukawa, N.; Matsuda, F.; Mimori, T. Ustekinumab as a therapeutic option for Takayasu arteritis: From genetic findings to clinical application. Scand. J. Rheumatol. 2016, 45, 80–82. [Google Scholar] [CrossRef]
- Gon, Y.; Yoshifuji, H.; Nakajima, T.; Murakami, K.; Nakashima, R.; Ohmura, K.; Mimori, T.; Terao, C. Long-term outcomes of refractory Takayasu arteritis patients treated with biologics including ustekinumab. Mod. Rheumatol. 2021, 31, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Arend, W.P.; Michel, B.A.; Bloch, D.A.; Hunder, G.G.; Calabrese, L.H.; Edworthy, S.M.; Fauci, A.S.; Leavitt, R.Y.; Lie, J.T.; Lightfoot, R.W., Jr.; et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 1990, 33, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Wallis, R.S.; Ehlers, S. Tumor necrosis factor and granuloma biology: Explaining the differential infection risk of etanercept and infliximab. Semin. Arthritis Rheum. 2005, 34, 34–38. [Google Scholar] [CrossRef]
- Hoffman, G.S.; Cid, M.C.; Rendt-Zagar, K.E.; Merkel, P.A.; Weyand, C.M.; Stone, J.H.; Salvarani, C.; Xu, W.; Visvanathan, S.; Rahman, M.U.; et al. Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: A randomized trial. Ann. Intern. Med. 2007, 146, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Taboada, V.M.; Rodriguez-Valverde, V.; Carreno, L.; Lopez-Longo, J.; Figueroa, M.; Belzunegui, J.; Mola, E.M.; Bonilla, G. A double-blind placebo controlled trial of etanercept in patients with giant cell arteritis and corticosteroid side effects. Ann. Rheum. Dis. 2008, 67, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Seror, R.; Baron, G.; Hachulla, E.; Debandt, M.; Larroche, C.; Puechal, X.; Maurier, F.; de Wazieres, B.; Quemeneur, T.; Ravaud, P.; et al. Adalimumab for steroid sparing in patients with giant-cell arteritis: Results of a multicentre randomised controlled trial. Ann. Rheum. Dis. 2014, 73, 2074–2081. [Google Scholar] [CrossRef]
- Schmidt, J.; Kermani, T.A.; Bacani, A.K.; Crowson, C.S.; Matteson, E.L.; Warrington, K.J. Tumor necrosis factor inhibitors in patients with Takayasu arteritis: Experience from a referral center with long-term followup. Arthritis Care Res. 2012, 64, 1079–1083. [Google Scholar] [CrossRef] [PubMed]
- Mekinian, A.; Neel, A.; Sibilia, J.; Cohen, P.; Connault, J.; Lambert, M.; Federici, L.; Berthier, S.; Fiessinger, J.N.; Godeau, B.; et al. Efficacy and tolerance of infliximab in refractory Takayasu arteritis: French multicentre study. Rheumatology 2012, 51, 882–886. [Google Scholar] [CrossRef]
- Clifford, A.; Hoffman, G.S. Recent advances in the medical management of Takayasu arteritis: An update on use of biologic therapies. Curr. Opin. Rheumatol. 2014, 26, 7–15. [Google Scholar] [CrossRef]
- Gudbrandsson, B.; Molberg, O.; Palm, O. TNF inhibitors appear to inhibit disease progression and improve outcome in Takayasu arteritis; an observational, population-based time trend study. Arthritis Res. Ther. 2017, 19, 99. [Google Scholar] [CrossRef]
- Wu, K.; Throssell, D. A new treatment for polyarteritis nodosa. Nephrol. Dial. Transplant. 2006, 21, 1710–1712. [Google Scholar] [CrossRef]
- Ginsberg, S.; Rosner, I.; Slobodin, G.; Rozenbaum, M.; Kaly, L.; Jiries, N.; Boulman, N.; Awisat, A.; Hussein, H.; Novofastovski, I.; et al. Infliximab for the treatment of refractory polyarteritis nodosa. Clin. Rheumatol. 2019, 38, 2825–2833. [Google Scholar] [CrossRef]
- Wegener’s Granulomatosis Etanercept Trial (WGET) Research Group. Etanercept plus standard therapy for Wegener’s granulomatosis. N. Engl. J. Med. 2005, 352, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Ciledag, A.; Deniz, H.; Eledag, S.; Ozkal, C.; Duzgun, N.; Erekul, S.; Karnak, D. An aggressive and lethal course of Churg-Strauss syndrome with alveolar hemorrhage, intestinal perforation, cardiac failure and peripheral neuropathy. Rheumatol. Int. 2012, 32, 451–455. [Google Scholar] [CrossRef]
- Tiliakos, A.T.; Shaia, S.; Hostoffer, R.; Kent, L. The use of infliximab in a patient with steroid-dependent Churg-Strauss syndrome. J. Clin. Rheumatol. 2004, 10, 96–97. [Google Scholar] [CrossRef]
- Arbach, O.; Gross, W.L.; Gause, A. Treatment of refractory Churg-Strauss-Syndrome (CSS) by TNF-alpha blockade. Immunobiology 2002, 206, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Melikoglu, M.; Fresko, I.; Mat, C.; Ozyazgan, Y.; Gogus, F.; Yurdakul, S.; Hamuryudan, V.; Yazici, H. Short-term trial of etanercept in Behcet’s disease: A double blind, placebo controlled study. J. Rheumatol. 2005, 32, 98–105. [Google Scholar] [PubMed]
- Arida, A.; Fragiadaki, K.; Giavri, E.; Sfikakis, P.P. Anti-TNF agents for Behcet’s disease: Analysis of published data on 369 patients. Semin. Arthritis Rheum. 2011, 41, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Accorinti, M.; Pirraglia, M.P.; Paroli, M.P.; Priori, R.; Conti, F.; Pivetti-Pezzi, P. Infliximab treatment for ocular and extraocular manifestations of Behcet’s disease. Jpn. J. Ophthalmol. 2007, 51, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Nakamura, S.; Hori, S.; Shimakawa, M.; Kawashima, H.; Mochizuki, M.; Sugita, S.; Ueno, S.; Yoshizaki, K.; Inaba, G. Efficacy, safety, and pharmacokinetics of multiple administration of infliximab in Behcet’s disease with refractory uveoretinitis. J. Rheumatol. 2004, 31, 1362–1368. [Google Scholar] [PubMed]
- Tugal-Tutkun, I.; Mudun, A.; Urgancioglu, M.; Kamali, S.; Kasapoglu, E.; Inanc, M.; Gül, A. Efficacy of infliximab in the treatment of uveitis that is resistant to treatment with the combination of azathioprine, cyclosporine, and corticosteroids in Behçet’s disease: An open-label trial. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2005, 52, 2478–2484. [Google Scholar] [CrossRef]
- Okada, A.A.; Goto, H.; Ohno, S.; Mochizuki, M.; Ocular Behcet’s Disease Research Group of Japan. Multicenter study of infliximab for refractory uveoretinitis in Behcet disease. Arch. Ophthalmol. 2012, 130, 592–598. [Google Scholar]
- Calvo-Río, V.; Blanco, R.; Beltrán, E.; Sánchez-Bursón, J.; Mesquida, M.; Adán, A.; Hernandez, M.V.; Hernandez Garfella, M.; Valls Pascual, E.; Martínez-Costa, L. Anti-TNF-α therapy in patients with refractory uveitis due to Behçet’s disease: A 1-year follow-up study of 124 patients. Rheumatology 2014, 53, 2223–2231. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, C.; Vitale, A.; Emmi, G.; Vannozzi, L.; Lopalco, G.; Guerriero, S.; Orlando, I.; Franceschini, R.; Bacherini, D.; Cimino, L. Efficacy and safety of adalimumab in Behçet’s disease-related uveitis: A multicenter retrospective observational study. Clin. Rheumatol. 2017, 36, 183–189. [Google Scholar] [CrossRef]
- Atienza-Mateo, B.; Martín-Varillas, J.L.; Calvo-Río, V.; Demetrio-Pablo, R.; Beltrán, E.; Sánchez-Bursón, J.; Mesquida, M.; Adan, A.; Hernández, M.V.; Hernández-Garfella, M. Comparative study of infliximab versus adalimumab in refractory uveitis due to Behçet’s Disease: National multicenter study of 177 cases. Arthritis Rheumatol. 2019, 71, 2081–2089. [Google Scholar] [CrossRef]
- Emmi, G.; Vitale, A.; Silvestri, E.; Boddi, M.; Becatti, M.; Fiorillo, C.; Fabiani, C.; Frediani, B.; Emmi, L.; Di Scala, G. Adalimumab-Based treatment versus disease-modifying antirheumatic drugs for venous thrombosis in Behçet’s Syndrome: A retrospective study of seventy patients with vascular involvement. Arthritis Rheumatol. 2018, 70, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.; Biard, L.; Addimanda, O.; Lambert, M.; Hachulla, E.; Launay, D.; Ackermann, F.; Perard, L.; Hot, A.; Maurier, F. Efficacy of anti-TNF alpha in severe and refractory major vessel involvement of Behcet’s disease: A multicenter observational study of 18 patients. Clin. Immunol. 2018, 197, 54–59. [Google Scholar] [CrossRef]
- Aksoy, A.; Yazici, A.; Omma, A.; Cefle, A.; Onen, F.; Tasdemir, U.; Ergun, T.; Direskeneli, H.; Alibaz-Oner, F. Efficacy of TNFα inhibitors for refractory vascular Behçet’s disease: A multicenter observational study of 27 patients and a review of the literature. Int. J. Rheum. Dis. 2020, 23, 256–261. [Google Scholar] [CrossRef]
- Hellmich, B.; Csernok, E.; Gross, W.L. Proinflammatory cytokines and autoimmunity in Churg-Strauss syndrome. Ann. N. Y. Acad. Sci. 2005, 1051, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Jakiela, B.; Szczeklik, W.; Plutecka, H.; Sokolowska, B.; Mastalerz, L.; Sanak, M.; Bazan-Socha, S.; Szczeklik, A.; Musial, J. Increased production of IL-5 and dominant Th2-type response in airways of Churg-Strauss syndrome patients. Rheumatology 2012, 51, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Yanagibashi, T.; Satoh, M.; Nagai, Y.; Koike, M.; Takatsu, K. Allergic diseases: From bench to clinic—Contribution of the discovery of interleukin-5. Cytokine 2017, 98, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Kahn, J.E.; Grandpeix-Guyodo, C.; Marroun, I.; Catherinot, E.; Mellot, F.; Roufosse, F.; Bletry, O. Sustained response to mepolizumab in refractory Churg-Strauss syndrome. J. Allergy Clin. Immunol. 2010, 125, 267–270. [Google Scholar] [CrossRef]
- Kim, S.; Marigowda, G.; Oren, E.; Israel, E.; Wechsler, M.E. Mepolizumab as a steroid-sparing treatment option in patients with Churg-Strauss syndrome. J. Allergy Clin. Immunol. 2010, 125, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Gross, W.L.; Moosig, F. Extended follow-up after stopping mepolizumab in relapsing/refractory Churg-Strauss syndrome. Clin. Exp. Rheumatol. 2012, 30, S62–S65. [Google Scholar]
- Wechsler, M.E.; Akuthota, P.; Jayne, D.; Khoury, P.; Klion, A.; Langford, C.A.; Merkel, P.A.; Moosig, F.; Specks, U.; Cid, M.C.; et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N. Engl. J. Med. 2017, 376, 1921–1932. [Google Scholar] [CrossRef]
- Stone, J.H.; Merkel, P.A.; Spiera, R.; Seo, P.; Langford, C.A.; Hoffman, G.S.; Kallenberg, C.G.; St Clair, E.W.; Turkiewicz, A.; Tchao, N.K.; et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 2010, 363, 221–232. [Google Scholar] [CrossRef]
- Jones, R.B.; Tervaert, J.W.; Hauser, T.; Luqmani, R.; Morgan, M.D.; Peh, C.A.; Savage, C.O.; Segelmark, M.; Tesar, V.; van Paassen, P.; et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 2010, 363, 211–220. [Google Scholar] [CrossRef] [PubMed]
- McAdoo, S.P.; Bedi, R.; Tarzi, R.; Griffith, M.; Pusey, C.D.; Cairns, T.D. Ofatumumab for B cell depletion therapy in ANCA-associated vasculitis: A single-centre case series. Rheumatology 2016, 55, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.; Hirayama, K.; Ebihara, I.; Shimohata, H.; Kobayashi, M.; Koyama, A. Serum levels of BAFF and APRIL in myeloperoxidase anti-neutrophil cytoplasmic autoantibody-associated renal vasculitis: Association with disease activity. Nephron. Clin. Pract. 2011, 118, c339–c345. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Davidson, A. BAFF and selection of autoreactive B cells. Trends Immunol. 2011, 32, 388–394. [Google Scholar] [CrossRef]
- Furie, R.; Petri, M.; Zamani, O.; Cervera, R.; Wallace, D.J.; Tegzova, D.; Sanchez-Guerrero, J.; Schwarting, A.; Merrill, J.T.; Chatham, W.W.; et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011, 63, 3918–3930. [Google Scholar] [CrossRef]
- Furie, R.; Rovin, B.H.; Houssiau, F.; Malvar, A.; Teng, Y.K.O.; Contreras, G.; Amoura, Z.; Yu, X.; Mok, C.C.; Santiago, M.B.; et al. Two-Year, Randomized, Controlled Trial of Belimumab in Lupus Nephritis. N. Engl. J. Med. 2020, 383, 1117–1128. [Google Scholar] [CrossRef]
- Jayne, D.; Blockmans, D.; Luqmani, R.; Moiseev, S.; Ji, B.; Green, Y.; Hall, L.; Roth, D.; Henderson, R.B.; Merkel, P.A.; et al. Efficacy and Safety of Belimumab and Azathioprine for Maintenance of Remission in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A Randomized Controlled Study. Arthritis Rheumatol. 2019, 71, 952–963. [Google Scholar] [CrossRef]
- Mayer, E.; Holzl, M.; Ahmadi, S.; Dillinger, B.; Pilat, N.; Fuchs, D.; Wekerle, T.; Heitger, A. CTLA4-Ig immunosuppressive activity at the level of dendritic cell/T cell crosstalk. Int. Immunopharmacol. 2013, 15, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Langford, C.A.; Cuthbertson, D.; Ytterberg, S.R.; Khalidi, N.; Monach, P.A.; Carette, S.; Seo, P.; Moreland, L.W.; Weisman, M.; Koening, C.L.; et al. A Randomized, Double-Blind Trial of Abatacept (CTLA-4Ig) for the Treatment of Giant Cell Arteritis. Arthritis Rheumatol. 2017, 69, 837–845. [Google Scholar] [CrossRef]
- Langford, C.A.; Cuthbertson, D.; Ytterberg, S.R.; Khalidi, N.; Monach, P.A.; Carette, S.; Seo, P.; Moreland, L.W.; Weisman, M.; Koening, C.L.; et al. A Randomized, Double-Blind Trial of Abatacept (CTLA-4Ig) for the Treatment of Takayasu Arteritis. Arthritis Rheumatol. 2017, 69, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Langford, C.A.; Monach, P.A.; Specks, U.; Seo, P.; Cuthbertson, D.; McAlear, C.A.; Ytterberg, S.R.; Hoffman, G.S.; Krischer, J.P.; Merkel, P.A.; et al. An open-label trial of abatacept (CTLA4-IG) in non-severe relapsing granulomatosis with polyangiitis (Wegener’s). Ann. Rheum. Dis. 2014, 73, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Turner, M.J.; Shields, J.; Gale, M.S.; Hutto, E.; Roberts, B.L.; Siders, W.M.; Kaplan, J.M. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 2009, 128, 260–270. [Google Scholar] [CrossRef]
- Mohammad, A.J.; Smith, R.M.; Chow, Y.W.; Chaudhry, A.N.; Jayne, D.R. Alemtuzumab as remission induction therapy in Behcet Disease: A 20-year experience. J. Rheumatol. 2015, 42, 1906–1913. [Google Scholar] [CrossRef]
- Walsh, M.; Chaudhry, A.; Jayne, D. Long-term follow-up of relapsing/refractory anti-neutrophil cytoplasm antibody associated vasculitis treated with the lymphocyte depleting antibody alemtuzumab (CAMPATH-1H). Ann. Rheum. Dis. 2008, 67, 1322–1327. [Google Scholar] [CrossRef]
- Gopaluni, S.; Smith, R.; Goymer, D.; Broadhurst, E.; Mcclure, M.; Cahill, H. Alemtuzumab for relapsing and refractory primary systemic vasculitis: A trial of efficacy and safety (ALEVIATE)[abstract no: TH-PO1160]. J. Am. Soc. Nephrol. 2018, 29, B8. [Google Scholar]
- Walport, M.J. Complement. Second of two parts. N. Engl. J. Med. 2001, 344, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xing, G.Q.; Yu, F.; Liu, G.; Zhao, M.H. Complement deposition in renal histopathology of patients with ANCA-associated pauci-immune glomerulonephritis. Nephrol. Dial. Transplant. 2009, 24, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Gou, S.J.; Yuan, J.; Chen, M.; Yu, F.; Zhao, M.H. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 2013, 83, 129–137. [Google Scholar] [CrossRef]
- Jayne, D.R.W.; Bruchfeld, A.N.; Harper, L.; Schaier, M.; Venning, M.C.; Hamilton, P.; Burst, V.; Grundmann, F.; Jadoul, M.; Szombati, I.; et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-Associated vasculitis. J. Am. Soc. Nephrol. 2017, 28, 2756–2767. [Google Scholar] [CrossRef]
- Jayne, D.R.W.; Merkel, P.A.; Schall, T.J.; Bekker, P.; Group, A.S. Avacopan for the treatment of ANCA-Associated vasculitis. N. Engl. J. Med. 2021, 384, 599–609. [Google Scholar] [CrossRef]
- Isaacs, A.; Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1957, 147, 258–267. [Google Scholar]
- Shibuya, H.; Hirohata, S. Differential effects of IFN-α on the expression of various TH2 cytokines in human CD4+ T cells. J. Allergy Clin. Immunol. 2005, 116, 205–212. [Google Scholar] [CrossRef]
- Shibuya, H.; Nagai, T.; Ishii, A.; Yamamoto, K.; Hirohata, S. Differential regulation of Th1 responses and CD154 expression in human CD4+ T cells by IFN-α. Clin. Exp. Immunol. 2003, 132, 216–224. [Google Scholar] [CrossRef]
- Yang, P.; Huang, G.; Du, L.; Ye, Z.; Hu, K.; Wang, C.; Qi, J.; Liang, L.; Wu, L.; Cao, Q. Long-term efficacy and safety of interferon alpha-2a in the treatment of Chinese patients with Behçet’s uveitis not responding to conventional therapy. Ocul. Immunol. Inflamm. 2019, 27, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Celiker, H.; Kazokoglu, H.; Direskeneli, H. Factors affecting relapse and remission in Behçet’s uveitis treated with interferon Alpha2a. J. Ocul. Pharmacol. Ther. 2019, 35, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Gueudry, J.; Wechsler, B.; Terrada, C.; Gendron, G.; Cassoux, N.; Fardeau, C.; Lehoang, P.; Piette, J.-C.; Bodaghi, B. Long-term efficacy and safety of low-dose interferon alpha2a therapy in severe uveitis associated with Behçet disease. Am. J. Ophthalmol. 2008, 146, 837–844.e831. [Google Scholar] [CrossRef]
- Hasanreisoglu, M.; Cubuk, M.O.; Ozdek, S.; Gurelik, G.; Aktas, Z.; Hasanreisoglu, B. Interferon alpha-2a therapy in patients with refractory Behçet uveitis. Ocul. Immunol. Inflamm. 2017, 25, 71–75. [Google Scholar] [CrossRef]
- Çalgüneri, M.; Onat, A.M.; Öztürk, M.A.; Özçakar, L.; Ureten, K.; Akdogan, A.; Ertenli, İ.; Kiraz, S. Transverse myelitis in a patient with Behcet’s disease: Favorable outcome with a combination of interferon-α. Clin. Rheumatol. 2005, 24, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Monastirli, A.; Chroni, E.; Georgiou, S.; Ellul, J.; Pasmatzi, E.; Papathanasopoulos, P.; Tsambaos, D. Interferon-α treatment for acute myelitis and intestinal involvement in severe Behçet’s disease. QJM Int. J. Med. 2010, 103, 787–790. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alpsoy, E.; Durusoy, C.; Yilmaz, E.; Ozgurel, Y.; Ermis, O.; Yazar, S.; Basaran, E. Interferon alfa-2a in the treatment of Behçet disease: A randomized placebo-controlled and double-blind study. Arch. Dermatol. 2002, 138, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Ozguler, Y.; Hatemi, G.; Cetinkaya, F.; Tascilar, K.; Hamuryudan, V.; Ugurlu, S.; Seyahi, E.; Yazici, H.; Melikoglu, M. Clinical course of acute deep vein thrombosis of the legs in Behçet’s syndrome. Rheumatology 2019, 59, 799–806. [Google Scholar] [CrossRef] [PubMed]
Systemic Vasculitis |
Large-vessel vasculitis (LVV) |
Giant cell arteritis (GCA) |
Takayasu arteritis (TA) |
Medium-vessel vasculitis (MVV) |
Polyarteritis nodosa (PAN) |
Kawasaki disease (KD) |
Small-vessel vasculitis (SVV) |
Anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis (AAV) |
Microscopic polyangiitis (MPA) |
Granulomatosis with polyangitis (GPA) |
Eosinophilic granulomatosis with polyangitis (EGPA) |
Immune complex vasculitis |
Anti-glomerular basement membrane (anti-GBM) disease |
Cryoglobulinemic vasculitis (CV) |
IgA vasculitis (Henoch-Schonlein) (IgAV) |
Hypocomplementemic urticarial vasculitis |
Variable vessel vasculitis (VVV) |
Behçet’s disease (BD) |
Cogan’s syndrome (CS) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, S.-W. Vasculitis: From Target Molecules to Novel Therapeutic Approaches. Biomedicines 2021, 9, 757. https://doi.org/10.3390/biomedicines9070757
Chung S-W. Vasculitis: From Target Molecules to Novel Therapeutic Approaches. Biomedicines. 2021; 9(7):757. https://doi.org/10.3390/biomedicines9070757
Chicago/Turabian StyleChung, Sang-Wan. 2021. "Vasculitis: From Target Molecules to Novel Therapeutic Approaches" Biomedicines 9, no. 7: 757. https://doi.org/10.3390/biomedicines9070757
APA StyleChung, S.-W. (2021). Vasculitis: From Target Molecules to Novel Therapeutic Approaches. Biomedicines, 9(7), 757. https://doi.org/10.3390/biomedicines9070757